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Abstract
Lithium-ion batteries have attracted great deal of attention recently. Silicon is
one of the most promising anode materials for high-performance lithium-ion
batteries, due to its highest theoretical specific capacity. However, the short
lifetime confined by mechanical failure in the silicon anode is now considered
to be the biggest challenge in desired applications. High stress induced by
the huge volume change due to lithium insertion/extraction is the main reason
underlying this problem. Some theoretical models have been developed to
address this issue. In order to properly implement these models, we develop a
finite element based numerical method using a commercial software package,
ABAQUS, as a platform at the continuum level to study fully coupled large
deformation and mass diffusion problem. Using this method, large deformation,
elasticity–plasticity of the electrodes, various spatial and temporal conditions,
arbitrary geometry and dimension could be fulfilled. The interaction between
anode and other components of the lithium ion batteries can also be studied as
an integrated system. Several specific examples are presented to demonstrate
the capability of this numerical platform.

(Some figures may appear in colour only in the online journal)

1. Introduction

Lithium-ion (Li-ion) batteries, as one type of rechargeable battery, have attracted a great deal
of attention due to their high-energy density, no memory effect, reasonable life cycle and one
of the best energy-to-weight ratios. They are used in applications such as portable electronic
devices, satellites and potentially electric vehicles [1–3]. Among the active research occurring
in electrode materials for Li-ion batteries, the development of novel electrodes that show both
high-energy and high-power density is much sought after. Silicon (Si) is an attractive anode
material for Li-ion batteries because it has a low discharge potential and the highest known
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theoretical charge capacity of 4200 mAh g−1, ten times higher than that of existing graphite
anodes and other oxide and nitride materials [4]. However, the development of Si-anode Li-ion
batteries has lagged behind because of the large volumetric change that occurs upon insertion
and extraction of Li. During charge/discharge cycling, Li atoms diffuse in and out of the Si
matrix and different LixSi phases are formed depending on the Li concentration. The largest
volumetric change occurs for Li22Si5 alloy, where up to 400% volumetric change is required
to accommodate 4.4 Li atoms for each Si atom, resulting in pulverization and early capacity
fading of the battery cells due to the loss of electrical contact [5, 6].

The extraordinarily high-energy capacity of Si, however, has motivated researchers to
explore new means that curb the limitation of Si as a practical anode material for Li-ion
batteries. Exploration of Si nanostructures is one of the encouraging research directions, such
as nanowires or nanotubes [4, 7–10]. High-energy capacity has been realized through these
attempts, but only in the first few tens of cycles of charging and discharging and dropped
quickly in the following cycles and the total cycle number is still low.

In order to improve the cyclic stability of Si anodes, the mechanism underlying the behavior
of failure should be well understood in the first place. From the perspective of mechanics, the
failure of lithiated Si can be attributed to the high level of lithiation induced stress [11]. It is
possible that the high stress level in Si could also affect the electrochemical performance of
the Si anodes [12], such as changing the working voltage of the battery and influencing the
charging rate of the battery. Thus, in addition to being a key factor in understanding the failure
of Si under lithiation, stress might also be an important factor that affects the performance
of Li-ion batteries. Motivated by these aforementioned aspects, a large amount of work has
already been conducted to examine the fundamental role of stress in Si-anode Li-ion batteries.

New novel phenomena for Si anode in Li-ion batteries have been observed in experiments.
Some of them are actually beyond the traditional scope of our knowledge on the mechanical
behavior of Si, such as the plasticity of lithiated Si [13]. The optical method has been used to
measure the stress evolution in lithiated/delithiated Si film in situ. A novel feature, plasticity,
has been observed in this classic material that is usually considered to be brittle [14].

From the theoretical aspect, specifically at the continuum level, various types of models
have been proposed regarding the multiple mechanisms through which stress is coupled with
mass diffusion. The model of diffusion induced stress can be dated back to the work by
Prussin in 1960s [15], in which an analogy between diffusion induced stress and thermal
stress was used. In Prussin’s original work, he assumed a one-way coupling in which the
diffusion of the alien particles into the matrix material produced stress in the same way
as the temperature load in thermally expandable materials. This work was broadened by
considering mass diffusion resulting heterogeneous materials as elastic inclusion problems,
in which the inclusion energy has been incorporated into the chemical potential of migrating
particles [16–18]. Thus, the coupling between mass diffusion and deformation has become
two-way behavior. Explicitly, local stress level affects how fast particles could migrate into a
matrix material, and in turn, the mass distribution of alien particles affects what kind of stress
distribution the matrix material would take. Later, Swaminathan et al [19, 20] developed a
strict electromechanical theory to address the diffusion induced stress problem, in which not
only the elastic inclusion energy induced by the migrating defect was considered but also
electrostatic energy was accounted in for charged defects. In this theory, an alien particle
in a matrix material induces stress through two mechanisms, namely strain induced by the
geometrical incompatibility, and Maxwell stress due to the charge carried by the particle.
Recently, based on molecular dynamic simulations [21, 22], another mechanism has been
proposed through which stress could affect diffusion. It is a kinetic mechanism, in which the
diffusivity of an alien particle in a matrix material is exponentially dependent on the lateral
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normal stress applying perpendicular to the diffusing direction. To sum up, previous studies
have already shown at least four mechanisms to couple mass diffusion and deformation or
stress, namely mass distribution of alien particles affecting deformation through geometric
mismatch (mechanically) and carried charge (electrostatically), and stress or deformation of
alien particles affecting mass diffusion through chemical potential (thermodynamically) and
diffusivity (kinetically). The above mentioned studies were limited to elastic behavior of Si
anode.

Motivated by recent experimental observation of plasticity of lithiated Si, there
are a handful of theoretical studies incorporating Si plasticity [23, 24]. By employing
nonequilibrium thermodynamics, Zhao et al [25] considered the coupled plastic deformation
and lithiation in a spherical anode. Bower et al [26] developed a systematic theory to include
finite deformation, diffusion, plastic flow and electrochemical reaction in the Si anode of Li-ion
batteries. However, because of the complexity of these models, only simplified cases [27] were
studied though the theoretical frame is somewhat complete. In order to utilize these proposed
models to study more realistic situations, which include more complicated conditions, such
as shapes of electrodes, mechanical and electrochemical boundary conditions with spatial and
temporal complexity, as well as interaction of electrodes with different types of substrates and
binders, a robust and versatile numerical platform must be developed correspondingly. To the
best of our knowledge, such a numerical platform that is able to rigorously couple the important
factors in electrodes, namely large deformation, mass diffusion and plasticity, is not available
to the research community, though there are many related works on coupled mass diffusion
and elasticity [28–31], or based on small deformation theory [32, 33]. More importantly, the
numerical platform must be capable of studying the fracture and damage of electrodes, which
makes this demand more challenging.

In this paper, we propose a finite element based numerical method using the commercial
finite element package, ABAQUS, as a platform to study fully coupled large deformation
and mass diffusion problems in electrodes. This work has two merits to differentiate it
from previous studies [32]. Firstly, coupled large deformation (elasticity and plasticity) and
mass diffusion is realized. The four coupling mechanisms as we previously discussed can be
realized in this platform. Secondly, the implementation of this numerical method is realized
via commercially available software so that the complicated mechanical and electrochemical
boundary conditions can be readily imposed and electrodes with various geometries, such
as three-dimensional bulk, two-dimensional thin film and one-dimensional nanowires and
nanotubes can be studied. Even at the system level, the interaction between the electrode with
other components in Li-ion batteries, such as current collector, substrate and binders, can be
studied. Moreover, the facture and damage of electrodes can be studied through the established
modules in the commercial software package, such as cohesive elements for interfacial failure.
Such a numerical platform with a rigorous consideration of coupled large deformation, mass
diffusion and plasticity using a commercial software package, therefore provides a robust and
versatile means to study the coupled large deformation and mass diffusion in electrodes of
Li-ion batteries.

This paper is organized as follows. In section 2, a general theoretical framework of
coupled diffusion and large deformation is addressed. This theoretical framework will be
used to develop the numerical method. Section 3 details the numerical implementation, which
is based on a rigorous analogy between mass diffusion and thermal transport when large
deformation presents. Section 4 presents a one-dimensional example that is studied using
the present method and compared with COMSOL Multiphysics as the benchmark. Section
5 studies some practically important examples, namely Si anode bonded on current collector
with and without soft binders, in which the damage and cohesive elements are involved, and the
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interplay between the different failure modes in binder and anode film is investigated. Future
work and application of the numerical method are discussed in section 6 as the concluding
remarks.

2. Theoretical model

In this section, the theoretical model for coupled large deformation and mass diffusion in
electrodes for Li-ion batteries is generalized and integrated by following the previously
developed models [25, 26, 34]. The Lagrangian description is used in depicting the model.
Here the physical explanations are the focus while the rigorous derivation and proof are left
for the previously developed models.

2.1. Kinematics of deformation

The process of charging and discharging in Li-ion battery is the process of Li migrating in
and out of electrodes, such as the Si electrode. Thus, the object of interest consists of Li
and electrode and it is referred as the system. Following standard continuum mechanics,
deformation gradient F (X, t) is used to describe the deformation of the system. X is the
coordinates of a material point at the reference state, which is chosen to be the state for pure
electrode or completely discharged electrode. t is the time. To characterize the distribution of
Li in the electrode matrix, the nominal concentration of Li C(X, t) is defined as the mole of
Li per unit volume of electrode at the reference state.

It is assumed that the deformation gradient F could be polar decomposed into three
parts, namely, deformations due to material’s elasticity, plasticity and concentration change,
respectively [25, 26]. Furthermore, these three parts could be diagonalized concurrently.
Thus, the principal stretches could be decomposed into three parts, i.e. elastic, plastic and
concentration parts,

λi = λe
i λ

p
i λ

c
i (i = 1, 2, 3. No summation convention). (1)

Here the superscripts ‘e’, ‘p’ and ‘c’ denote elastic, plastic and concentration parts,
respectively. The principal stretch due to concentration change is assumed to be isotropic,

λc
1 = λc

2 = λc
3 = λc(C), (2)

though it may not be valid for crystal materials, such as Si, in which the stretch due to
concentration change depends on the crystal orientation [35].

2.2. Constitutive relations

Assume that the nominal free energy density of the system W can be defined as the function
of the seven basic variables, λe

1, λe
2, λe

3, λ
p
1, λ

p
2, λ

p
3 and C. Utilizing the thermodynamics

inequality and incompressibility of plasticity, the chemical potential µ of Li in an electrode,
and true stress σ in the Li/electrode compound could be determined by

σi = 1

λ1λ2λ3

∂W

∂ ln λe
i

, (3)

µ = ∂W

∂C
− λ1λ2λ3σh

3

λc

dλc

dC
. (4)

Here σi (i = 1, 2, 3) is the principal true stress and σh = 1
3 (σ1 + σ2 + σ3) is the hydrostatic

stress. The detailed derivation can be found in [25]. Equations (3) and (4) provide constitutive
relations of the Li/electrode system.
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In a recent work by Cui et al [36], in addition to the hydrostatic stress, the deviatoric
stress also enters the chemical potential in the form of the Eshelby stress tensor. Moreover,
the dependence of a material’s mechanical property on the compositional strain makes another
stress related contribution to the chemical potential. We adopt the hydrostatic stress-dependent
chemical potential in the following analysis, though the general stress-dependent chemical
potential could be easily implemented using a similar approach.

2.3. Material models

The nominal free energy density of the system W consists of strain energy density and chemical
energy density,

W(λe
i , λ

p
i , C) = Ws(λ

e
i , λ

p
i ) + Wc(C). (5)

Ws(λ
e
i , λ

p
i ) is the strain energy density exclusively depending on elastic–plastic deformation.

In other words, Ws(λ
e
i , λ

p
i ) is caused by the change of atomic potential of electrode atoms due

to the change in their distance induced by mechanical deformation elastically or plastically.
Ws(λ

e
i , λ

p
i ) vanishes when λe

i = λ
p
i = 1 (i = 1, 2, 3). Different forms of strain energy density

will give different mechanical constitutive relations. Here we decide not to specify and leave
it in a general form, while the specific mechanical constitution we used in our simulation
is described in the following section. Wc(C) is the chemical energy density introduced in
the system due to the new chemical bonding formed between Li and electrode atoms, which
depends on the electrochemical reactions, as well as the entropy increase because of mixing
these heterogeneous species, which is similar to that in the solution theory. As an example, a
specific form of the chemical energy density is given by the following [34],

Wc = RT Cmax(C̄ ln C̄ + (1 − C̄) ln(1 − C̄)) + CmaxC̄(1 − C̄)(A0C̄ + B0(1 − C̄)). (6)

Here RT is the product of gas constant R and absolute temperature T (i.e. energy per mole),
Cmax is the maximum concentration that could ever be reached in the Li/electrode system,
C̄ = C/Cmax is the normalized concentration that is used to characterize the relative saturation
level of Li in an electrode and A0 and B0 are two empirical parameters. The first term in
equation (6) describes the mixing entropy based on ideal mixing from the solution theory, and
the second term in equation (6) represents the energy of forming new chemical bonding, which
is also called excess energy, accounting for deviation from ideal behavior of mixing. The excess
energy reflects the existence of different Li/electrode phases at different Li concentrations,
which depends on the process of electrochemical reactions. It should be noted that it is not
necessary to take the form suggested by equation (6), which is specifically called the three-
suffix Margules model [37]. In fact, different forms, such as the Van Laar model and Wilson
model, have been developed and other empirical parameters (similar to A0 and B0) have
been employed. One must realize that accurate modeling needs to use more realistic excess
energy for the Li/electrode system and thus detailed information on the phase transition of the
Li/electrode system is important.

Recent experiments have revealed that the lithiation process always involves a sharp phase
boundary between Li rich and Li poor phases [38–40]. The motion of the phase boundary is
isotropic in amorphous Si while anisotropic in crystal Si [41]. The current numerical approach
can be extended for the diffusion controlled phase boundary problem, though the numerical
simulation of these phenomena is not within the scope of this work. The basic idea is to follow
the phase-field method to model the coexistence of two phases. A free energy with double
well has to be constructed by choosing the proper parameters A0 and B0 in the excess energy
(equation (6)). In order to suppress the instability at the interface, the interface energy between
two phases will be introduced. To consider the anisotropic motion of the phase boundary, the
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orientation dependence of surface energy can be introduced. A similar idea has been used by
Hong and Wang [42]. Different from the diffusion controlled interface motion as discussed
above that can be easily realized through a slight modification of our numerical platform, the
reaction controlled phase boundary motion cannot be implemented by a simple modification
of the present platform. A separate paper on the reaction controlled phase boundary motion is
in preparation by the same authors.

Substituting equation (6) into equation (4), the chemical potential per mole is given as

µ = RT ln
C̄

1 − C̄
− [2(A0 − 2B0)C̄ − 3(A0 − B0)C̄

2] − λ1λ2λ3σh

3

λc

dλc

dC
. (7)

The first term is the driving force for Li diffusion, which urges Li to diffuse from places with
high concentration to places with low concentration; the second term depends on the quadratic
term of Li concentration and thus prefers to keep Li in a pre-determined state depending on
the two empirical parameters A0 and B0, which leads to phase separation; and the third term
reflects the influence of stress on the chemical potential, which can be understood by the
analogy of a pipette, i.e. a negative pressure ‘pumping in’ and a positive pressure ‘squeezing
out’.

The dλc/dC term actually defines a coefficient of compositional expansion, similar to
the coefficient of thermal expansion. As a simple model, the stretch due to the change in Li
concentration is assumed to be linearly dependent on Li concentration,

λc(C) = 1 + βC̄. (8)

Hereβ is the non-dimensional coefficient of compositional expansion, which can be determined
by the maximum volumetric change of the electrode during charge and discharge.

It is noticed that different volume expansion has been suggested, such as linear dependence
of volume change on concentration [43–45]. Before more accurate experimental measurement,
these two forms of compositional expansion are both reasonable. We adopt equation (8) in
the following analysis, though other expressions of compositional expansion can be similarly
implemented.

2.4. Mechanical constitution

The model/numerical approach is neither limited to any particular mechanical constitution,
nor is this paper focused on the topic of a realistic mechanical constitution. In fact, one would
find the present numerical platform in this paper is compatible with most of the standard or
user-defined mechanical models. In order to provide a completed model description, a simple
elastic–plastic mechanical constitution is given here and used throughout our simulation. The
logarithm strain is adopted as the strain measurement here, which is commonly used as the
strain measurement in the updated Lagrangian description for nonlinear finite element analysis.

The elastic property of the material is assumed isotropic, with the constitutive relation in
the principal directions as

σi = E

1 + ν

(
ln λe

i +
ν

1 − 2ν
(ln λe

1 + ln λe
2 + ln λe

3)

)
, (9)

where E, ν are Young’s modulus and Poisson’s ratio of the Si anode. For a small time
increment in an updated Lagrangian description, this elastic constitutive relation recovers the
linear Hook’s law.

The von Mises yielding criterion is adopted for the plastic deformation as

σv = σY(ln λp
eq), (10)
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Figure 1. (a) A bilinear elastic–plastic strain–stress curve for uniaxial tensile testing. (b)
Illustration of a silicon thin film on a rigid substrate lithiated by constant flux. (c) Geometry
used to model the system in ABAQUS and COMSOL.

where σv is the von Mises stress and defined by

σv =
√

1
2 [(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (11)

and σY is the material’s yielding stress, which could be described as follows when a linear
stress hardening law is assumed

σY(ln λp
eq) = σY0 + Ep ln λp

eq. (12)

Here σY0, Ep are the initial yielding stress and the ‘plastic’ modulus, respectively, and ln λ
p
eq

is the equivalent plastic strain that characterizes the accumulated plastic deformation during
the deformation history, defined by

ln λp
eq = ln λp

eq

∣∣∣
t=0

+
∫ t

0

√
2

3

d(ln λ
p
i )

dt

d(ln λ
p
i )

dt
dt. (13)

The incremental plastic strain is determined by the flow rule,

� ln λ
p
i = �α(t)(σi − σh) (14)

and

�α(t) =

�α > 0, for

dσv

dt
>

dσY

dt
, σV = σY,

0, otherwise
(15)

is a time-dependent scalar which could be determined by the boundary value problem.
Figure 1(a) illustrates a bilinear strain–stress curve under uniaxial tension as an example

of the aforementioned constitutive relations. In uniaxial tension, σv = σ , ln λ
p
eq = ln λp and

the tangential modulus is given by

Et = 1

(1/Ep) + (1/E)
. (16)

2.5. Governing equations and boundary conditions

The governing equations for the coupled large deformation and mass diffusion include
mechanical equilibrium and mass conservation law as follows:

∂σij

∂xi

= 0, (17)

∂C

∂t
+

∂JK

∂XK

= 0. (18)
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The mechanical equilibrium is written in terms of true stressσij and current coordinatesxi , at the
current time t . The mass conservation law is expressed in terms of the nominal concentration C,
nominal mass flux JK and the reference coordinates XK , at the current time t . The detailed
derivations can be found elsewhere [26]. It should be noted that the usually used conservation
law in small deformation,

∂c

∂t
+

∂jk

∂xk

= 0 (19)

written using true quantities (true concentration c and true flux jk) and current coordinates xk ,
does not hold for large deformations.

Various boundary conditions for the coupled deformation and mass diffusion could be
imposed, including stress or displacement boundaries for mechanical deformation and flux
or concentration boundaries for mass diffusion. Specifically for Li-ion battery problems, a
meaningful boundary condition is the prescribed flux condition in reference coordinates,

JKNK = J̄ on Sf , (20)

where J̄ is the prescribed flux over a surface Sf with the outward normal direction Nk in the
reference state. Equation (20) stands for the constant electrical current condition under which
the battery is charging or discharging, or galvanostatic charging or discharging.

2.6. Kinetics

Similarly, the kinetic law describing the mass flux of Li into the electrode is given in terms of
nominal quantities [26] other than true ones, as

JI = −CMIJ

∂µ

∂XJ

, (21)

where MIJ is the mobility tensor, as a measurement of how fast Li diffuses in the electrode
matrix. Here one should note that since the nominal flux J is used, the coordinates (I and J )

in equation (21) refer to the initial coordinates.
An alternative way to define flux in finite deformation theory is to assume that the true

flux is proportional to the true gradient of chemical potential at the current state. These
two definitions coexist in the literature [26, 45] and both have their own merits. In terms of
implementation, one can easily switch from one to the other using the numerical platform in
this paper. In addition, the mobility tensor MIJ can be connected through the deformation
gradient with the diffusivity tensor in the current state, which can be measured experimentally
or determined from ab initio calculation.

Suggested by Haftbaradaran et al [22, 34], the lateral pressure perpendicular to the
direction of diffusion could affect the diffusivity, working in a way similar to frictional force.
Therefore, a stress-dependent mobility tensor is adopted and its nonzero components are

M11 = M0 exp

(
κ

S22 + S33

2

)
,

M22 = M0 exp

(
κ

S11 + S33

2

)
,

M33 = M0 exp

(
κ

S11 + S22

2

)
.

(22)

Here M0 is the mobility at a stress-free state, κ is an empirical parameter describing the
coupling between stress and diffusivity and SIJ is the second Piolar–Kirchhoff stress. The
second Piolar–Kirchhoff stress is used since the mobility tensor is defined in the reference state.
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The two-way coupling of deformation and mass diffusion is thus realized in this section,
specifically the hydrostatic stress term in chemical potential (equation (7)), and the stress-
dependent mobility (equation (22)). No Maxwell stress is involved since the electrostatic
interaction between Li and electrode matrix is not considered in this paper.

3. Numerical method

In order to utilize the theoretical model as presented in section 2, a robust and versatile numerical
method must be developed correspondingly. In addition to the development of an in-house
code [46], a numerical method that is based on commercial software may be more powerful and
easier to disseminate in the community. In this section, we will present a rigorous numerical
method to implement the theoretical model in section 2 in a commercial finite element package,
ABAQUS. Here ABAQUS is chosen because of its wide use in the mechanics community.

The mechanical deformation, both elasticity and plasticity under large deformation, can
be modeled in ABAQUS via its well-developed modules. Therefore, this section does not
discuss the implementation of the mechanical deformation in ABAQUS but focuses on the
coupled mechanical deformation and mass diffusion under large deformation in ABAQUS,
since this coupling is not yet readily available in ABAQUS.

3.1. Dimensionless description of mass diffusion

A dimensionless formulation is used. The energy per mole is normalized by RT (unit:
J mole−1); mole density is normalized by Cmax (unit: mole m−3); length is normalized by
a characteristic length L in the problem considered; and time is normalized by L2/D0, where
D0 = M0RT (unit: m2 s−1) is diffusivity of Li in the electrode matrix in a stress-free state.
Thus, the following dimensionless quantities are defined: Li concentration C̄ = C/Cmax, time
τ = D0t/L

2, coordinates X̄K = XK/L, x̄i = xi/L, stress σ̄ij = σij /CmaxRT , chemical
potential µ̄ = µ/RT , flux J̄ = (L/CmaxD0)J , mobility tensor M̄ = (RT /D0)M and other
parameters Ā0 = A/RT , B̄0 = B/RT , κ̄ = κCmaxRT .

Based on equation (18), the dimensionless mass conservation law becomes

∂C̄

∂τ
+

∂J̄K

∂X̄K

= 0, (23)

and dimensionless nominal flux is obtained from equation (21),

J̄K = −M̄KL

{[
1

1 − C̄
− 2(Ā0 − 2B̄0)C̄ + 6(Ā0 − B̄0)C̄

2 +
3β2C̄ det F σ̄h

(1 + βC̄)2

]
∂C̄

∂X̄L

− 3βC̄

1 + βC̄

∂

∂X̄L

(det F σ̄h)

}
. (24)

3.2. An analogy between mass diffusion and heat transfer

The analogy between these two transport phenomena, namely mass diffusion and heat transfer,
has been realized and utilized dating back to Prussin in 1960s [15] when coupled deformation
and mass diffusion was studied, though it was for small deformations. This analogy must be
carefully examined for large deformation, specifically for the implementation in ABAQUS.

The governing equation for heat transfer in ABAQUS is

ρ
dU

dT

∂T

∂t
+

∂fi

∂xi

= r, (25)
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where ρ is the density, U is the heat energy, T is the temperature, t is the time, fi is the true
heat flux and r is the production of heat source. It should be noted that this equation is written
at current coordinates x. However, it is by no means an Eulerian description but an updated
Lagrangian description that is used when a large deformation is considered in ABAQUS.

To compare with equation (25), the mass conservation law (equation (23)) using the total
Lagrangian description is expressed in the current configuration as

1

det F

∂C̄

∂τ
+

∂

∂x̄i

(
FiKJ̄K

det F

)
= 0. (26)

By comparing equation (25) for heat transfer and equation (26) for mass diffusion, an analogy
can be made for large deformation: mass diffusion is analogous to heat transfer by the following
equivalence,

C̄ = T ,

τ = t,

FiK J̄K

det F
= fi, (27)

1

det F
= ρ

dU

dT
,

r = 0.

The mass diffusion problems then can be modeled as heat transfer problems in ABAQUS
by defining temperature T as dimensionless concentration C̄, time t as τ , true heat flux fi

as FiKJ̄K/det F , density of heat capacity ρ(dU/dT ) as 1/det F and vanishing heat source r .
This specifically defined heat transfer behavior is implemented in ABAQUS via its user-defined
heat transfer subroutine UMATHT.

UMATHT subroutine receives temperature T (or equivalently C̄ in this analogy) and its
spatial gradient ∂T /∂xi (i.e. ∂C̄/∂x̄i) from ABAQUS and defines heat capacity per volume
ρ(dU/dT ) (i.e. 1/det F ), heat flux fi (i.e. FiKJ̄K/det F ) and its derivatives respective
to temperature ∂fi/∂T and temperature gradient ∂fi/∂(∂T /∂xi). Thus in addition to the
equivalence given by equation (27), the equivalence

∂fi

∂T
= ∂

∂C̄

(
FiKJ̄K

det F

)
,

∂fi

∂(∂T /∂xi)
= ∂(FiKJ̄K/det F )

∂(∂C̄/∂x̄i)

(28)

also needs to be included.
This user-defined heat transfer behavior depends on deformation and stress since the

deformation gradient F and stresses (true stress σ and second Piolar–Kirchhoff stress S)
appear in the equivalence (equations (27) and (28)), which can also be realized in UMATHT
through some practical techniques. It should be noted that even the deformation gradient F and
stresses can be passed into UMATHT, the appearance of the gradient of stress and deformation
(i.e. ∂(det F σ̄h)/∂X̄L in equation (24)) makes the implementation challenging since they are
defined at the integration points not nodal variables as displacement that its derivatives can be
calculated via interpolation using shape functions or the pointwise least squares (PLS) method.
Appendix A details these practical techniques to implement UMATHT.

Using this user-defined heat transfer subroutine UMATHT and existing coupled
deformation and heat transfer module in ABAQUS, the coupled deformation and mass diffusion
can be realized in ABAQUS. To correctly implement this numerical method, the thermal
expansion in heat transfer that is analogous to the compositional expansion in mass diffusion
must be reconsidered in ABAQUS as we will discuss in the next subsection.

10



Modelling Simul. Mater. Sci. Eng. 21 (2013) 074007 Y An and H Jiang

3.3. An analogy between compositional expansion and thermal expansion

The compositional expansion and thermal expansion are both eigen deformations, in which they
are analogous. In Li-ion batteries, particularly for electrodes such as Si that experience large
volumetric change, the compositional expansion is extremely large, up to 400% volumetric
expansion for the Si electrode, which is far beyond the small deformation range for thermal
expansion. Therefore, the analogy between composition expansion and thermal expansion
must be carefully reexamined regarding the numerical aspect for large deformation.

Equation (8) assumes a linear compositional expansion. Using the undeformed electrode
as the reference (i.e. vanishing Li concentration), at a given Li concentration C̄ (or equivalently,
temperature T using the analogy as discussed), the compositional strain is

εcompositional = λc − 1 = βC̄. (29)

For thermal expansion, a linear relation between temperature change and thermal strain is also
commonly used. For a nonlinear problem, it is solved by dividing into many incremental steps
and at each increment step, e.g. at the increment step N , the thermal strain is given by

ε
(N)

thermal = α�T (N), (30)

where α is the coefficient of thermal expansion and �T (N) = T (N) −T (N−1) is the temperature
increment at the current increment step N with the superscript as the number of the increment.
Despite equations (29) and (30) being similar in formality, a simple equivalence cannot be
established in the numerical method since different strain measurements are used.

The compositional strain equation (29) is based on a total Lagrangian description, i.e.
the strain measurement is regarding the undeformed state. However, an updated Lagrangian
algorithm is used in many commercial finite element packages (e.g. ABAQUS), in which the
reference state is not the undeformed state and every time step is treated as a problem with
an infinitesimal increment in displacement. When doing that, converged coordinates from the
last time step are used as the reference state and a small Green strain at time step N is defined
in the principal coordinates as

ε(N) = ∂x(N)

∂x(N−1)
− 1. (31)

In order to correctly express the compositional strain equation (29) as a thermal strain in
ABAQUS, thermal strain must be redefined. It could be derived from equation (31) that

1 + ε(N) = ∂x(N)

∂x(0)

/
∂x(N−1)

∂x(0)
= λ(N)/λ(N−1). (32)

Based on this equation, the thermal strain should be defined as follows:

ε
(N)

thermal ≈ ln
(

1 + ε
(N)

thermal

)
= ln(1 + βT (N)) − ln(1 + βT (N−1)). (33)

This redefined thermal strain is able to correctly represent the compositional strain equation (29)
and can be embedded in ABAQUS via its user-defined thermal expansion subroutine UEXPAN.

3.4. Prescribed flux boundary condition

Prescribed flux boundary condition represents an important experiment process, namely,
constant current during charge and discharge, or galvanostatic charge and discharge.
Depending on the mass and theoretical capacity (e.g. 4200 mAh g−1 for Si) of the active
electrode materials, a current is pre-determined to conduct the galvanostatic charge and
discharge. In the modeling, the current is actually the applied flux of Li on the surface

11
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Table 1. Parameters used in section 4.

Parameters Values

E, Young’s modulus of Si 130 GPa
Ep, plastic modulus of Si 1.83 GPa
ν, Poisson’s ratio of Si 0.3
εY, yielding strain of Si 0.2%
v, molar volume of Si 12 × 10−6 m3 mole−1

Cmax, maximum nominal Li concentration 0.3667 × 106 mole m−3

R, gas constant 8.314 J K−1 mole−1

T , room temperature 300 K
β, compositional expansion coefficient 0.5874
D0, diffusivity of Li 10−12 cm2 s−1

of electrodes. In other words, the flux is pre-determined before the deformation and thus
the prescribed flux is calculated in the undeformed state. However, the updated Lagrangian
algorithm in ABAQUS uses an updating state as the reference. Thus, the prescribed flux
boundary condition for the undeformed state has to be re-calculated for the current state.

Starting from the conservation of total flux

j̄ da = J̄ dA. (34)

Here da and dA are the areas of an element of surface after and prior to deformation, j̄ is the
flux for the current configuration to be determined, and J̄ is the prescribed flux calculated for
the undeformed reference state. Using Nanson’s formula, the deformation dependent flux for
the current state is given by

j̄ = J̄

det F

√
(NKF−1

Ki )(NLF−1
Li )

. (35)

Quantities involved in this expression are either accessible in ABAQUS or provided by users.
A user subroutine UFLUX is utilized to implement this formula. Appendix A further discusses
this implementation with more details.

By the implementation of the above discussed aspects, the coupled large deformation
and mass diffusion in electrodes for Li-ion batteries can be rigorously realized in ABAQUS.
It should be noted that a static problem with a pre-determined state of charge (SOC) only
needs to redefine the thermal expansion to correctly represent the compositional expansion as
discussed in section 3.3, while the transient problems have to include all the aspects discussed
in this section. Appendix B gives a few examples to benchmark the numerical methods and
the user subroutines involved are available upon request to the authors.

Through these examples in appendix B, it is verified that each of the three user subroutines
UMAT, UEXPAN and UFLUX is properly programmed. Furthermore, in order to verify
that all these subroutines work properly in a coordinated way, we set up a simple example
as a benchmark by comparing results using the present approach and using COMSOL
Multiphysics 4.2a.

4. Benchmark of the numerical implementation

4.1. Material parameters and element

In our simulation, we focus on the Si electrode. All the parameters used in examples in this
section are listed in table 1.
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It is assumed that the Si anode is amorphous, as it becomes amorphous after the first cycle
of charge in experiments. The phase transformation of Si anode from crystal to amorphous
during the first cycle is not considered in this paper. We assume a bilinear plastic–elastic
constitutive relation for Si, as described in section 2.3. For material properties in the elastic
range, we refer to the literature for amorphous Si [47] with elastic modulus E = 130 GPa and
Poisson’s ratio ν = 0.3. However, the material properties in the plastic range are not fully
available yet so that we adopt some typical values: the yielding strain εY = 0.2% as a typical
one for metal plasticity, and a ‘plastic’ modulus Ep = 1.83 GPa as a reasonable value to fit
some experiments [14, 48].

In all user subroutines, both moduli and stresses are normalized by CmaxRT and it is
estimated as follows. The volume of one mole Si atoms in solid is given by v = MSi/ρSi ≈
12 × 10−6 m3 mole−1, where MSi and ρSi are molar mass and density of Si, respectively. It
is known that the compound with maximum Li concentration among all the possible Li/Si
compounds during the electrochemical reactions is Li22Si5. Thus, the maximum nominal
Li concentration Cmax is determined by Cmax = 4.4/v = 0.3667 × 106 mole m−3 and
CmaxRT = 0.915 GPa. Therefore, normalized elastic and plastic moduli are Ē = 142.15
and Ēp = 14.215, which are the material parameters used in the examples presented in
this paper.

It is also known that the maximum volumetric expansion for lithiated Si is as high as
400% associated with compound Li22Si5 [4], which determines the coefficient of compositional
expansion β = 0.5874 via (λc

max)
3 = (1 + β)3 = 400%. Since this model does not consider

the electrical process, the maximum capacity 4200 mAh g−1 of Si does not explicitly enter the
picture. The parameters A0 and B0 are taken to be zero as there are no meaningful reference
values available.

To normalize time, the factor td = L2/D0 is estimated in the following. As listed
in [49, 50], the diffusivity of Li in Si is 1.7 × 10−11 cm2 s−1 and 6.4 × 10−11 cm2 s−1 at
discharge capacity of 800 mAh g−1 and 1200 mAh g−1, respectively (in bulk material), and
2 × 10−10 cm2 s−1 at average discharge capacity of 1882 mAh g−1 (in nano material). By
extrapolating these data, it is estimated that the stress-free diffusivity or the diffusivity at
vanishing Li concentration is D0 ≈ 10−12 cm2 s−1. Therefore, for the range of characteristic
length scale L = 10 nm–10 µm, the diffusion time range td = 1–106 s.

The physical meanings for normalized time τ and flux J̄ are the following. In normalized
time τ = D0t/L

2, the real time t has a physical meaning, such as total charge time T , e.g.
3600 s for 1 C charge rate and 360 s for 10 C charge rate, respectively; L has a physical meaning
as a characteristic length scale, such as the thickness of a Si anode. Thus, for total charge time
T , the corresponding normalized total charge time τtotal becomes τtotal = D0T /L2. For a Si
anode 100 nm in thickness (i.e. L = 100 nm), unit normalized total charge time (i.e. τtotal = 1)

actually means that it takes 100 s to fully charge this Si anode, which provides a charge rate
36 C. For the same unit normalized total charge time, it takes 10 000 s to fully charge a Si anode
with 1 µm in height, which corresponds to 0.36 C. The nominal flux J , total charge time T

and maximum nominal Li concentration Cmax are related via

JAT = CmaxAL, (36)

where A is the cross-sectional area in the reference state. Considering the normalized flux
J̄ = (L/CmaxD0)J (discussed in section 3.1), one obtains that

J̄ τtotal = 1. (37)

Thus, a unit normalized total charge time is accompanied by a unit normalized flux on the Si
anode. In the following simulations, without specific statement, all variables are normalized.
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A quadratic brick element with temperature as an additional degree of freedom is used.
Specifically, element C3D20T in ABAQUS is used throughout the simulations in this paper.
This element has 20 nodes and 27 integration points. However, any element with coupled
displacement and temperature as active degree of freedom can be utilized.

4.2. Benchmark using a simple example

For an essentially coupled multi-field problem with large deformation, elasticity and plasticity,
as described in section 2, to the best of our knowledge, there is no verified numerical tool
available to solve it. In order to benchmark the present numerical approach, we formulate a
simple coupled problem, in which the deformation field can be explicitly determined from the
concentration field. In other words, this problem is analytically decoupled and reformulated
into a nonlinear diffusion problem. Therefore, this problem could be readily solved by
commercial software, such as COMSOL Multiphysics through its PDE module. Meanwhile,
this problem can still be treated as a coupled multi-field problem and solved by the present
numerical approach. Thus, the present numerical approach is benchmarked by comparing with
COMSOL Multiphysics.

The example we consider here is illustrated in figure 1(b), where an infinitely large thin Si
film is firmly bonded on a rigid thick substrate. A uniform lithium flux J0 is applied from the
top surface of the Si thin film. The interface between the Si thin film and the rigid substrate
is assumed to be impermeable to lithium. A computational model shown in figure 1(c) is
meshed into 100 (100×1×1) quadratic elements, and used for both ABAQUS and COMSOL
simulation.

Appendix C provides details of this problem with some core equations in the following.
The governing equations are given by

∂C̄

∂τ
+

∂J̄1

∂X̄1
= 0, (38)

J̄1 = −
[

1

1 − C̄
+

3β2C̄λ1σ̄h

(1 + βC̄)2

]
∂C̄

∂X̄1
+

3βC̄

1 + βC̄

∂

∂X̄1
(λ1σ̄h) (39)

with boundary conditions

J̄1 = J̄0 at X̄1 = 1,

J̄1 = 0 at X̄1 = 0,

where

λ1σ̄h =




−Ē
2Ē ln λY0 + 4Ēp ln(1 + βC̄)

3Ē + 6(1 − ν)Ēp
(λY0)

(4ν−2)Ē

Ē+2(1−ν)Ēp (1 + βC̄)
3Ē+2(1+ν)Ēp

Ē+2(1−ν)Ēp ,

if
1

1 − ν
ln(1 + βC̄) > ln λY0,

− 2Ē

3(1 − ν)
ln(1 + βC̄)(1 + βC̄)

1+ν
1−ν ,

if
1

1 − ν
ln(1 + βC̄) � ln λY0.

(40)

Results from COMSOL and ABAQUS are plotted in figure 2. From figures 2(a)–(d),
normalized lithium concentration, total logarithm strain and logarithm plastic strain along
the thickness direction, and the in-plane true stress solved from COMSOL and ABAQUS are
plotted for different SOCs, respectively. It is shown that the two sets of solutions from the
independent approach agree very well with each other. Thus the numerical implementation
embedded in ABAQUS as described in section 3 is benchmarked.
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Figure 2. Comparison between the results obtained from the present approach via ABAQUS and
COMSOL Multiphysics 4.2: (a) normalized concentration, (b) total logarithm total strain in the
thickness direction, (c) logarithm plastic strain in the thickness direction, and (d) true in-plane
normal stress in the thickness direction at different states of charge (SOC), 20%, 50% and 80%,
respectively.

5. Practical examples—capabilities and implications

To demonstrate the capability of the present numerical approach, we study two cases with more
practical significance in this section. Figure 3(a) shows the problem that we are studying, in
which an array of Si patches is patterned as anode material on a copper substrate as the current
collector. The configuration of patterned Si patches on substrate has already been used in
experiments [51].

5.1. Firmly or compliantly bonded Si on current collector

In this section, we study two cases for different bonding between Si and the current collector.
One is that Si is directly and firmly bonded with the current collector and the other one is
that there is a compliant and conductive binder between Si and the current collector. In finite
elements simulations, the above difference is reflected by the different treatment of the interface
between Si and the current collector, as shown in a representative unit cell of this periodical
structure in figure 3(b) consisting of anode, current collector and the interface. We only study
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Figure 3. (a) Illustration of an array of silicon patches on copper current collector. (b) A
representative unit. (c) A quarter unit used in the finite element simulations with four representative
lines defined.

a quarter of the unit as shown in figure 3(c) by applying symmetric boundary conditions. Also
because of the symmetry, four representative lines in the quarter of the unit, namely top-edge,
top-center, bottom-edge and bottom-center are focused in these two cases. All additional
parameters used in this section are listed in table 2.

In finite element simulations, the current collector copper is modeled as a linear elastic
material with Young’s modulusECu = 110 GPa and Poisson’s ratioνCu = 0.34. The dimension
of copper is 10 × 10 × 10, meshed into 8000 (= 20 × 20 × 20) C3D8R elements. The bottom
of the copper (X3 = −10) is fixed and the symmetric boundary conditions are applied on its
side surfaces.

The Si anode has the same mechanical properties as discussed in section 4.1, in addition
to which the damage of Si is considered here. Due to the lack of experimental data on the
damage behavior of Si and that the main point of this section is to demonstrate the capability
of the present numerical approach rather than to discuss quantitative physics, we here adopt a
simple damage model that is commonly used for metals. We assume that damage is initiated
when the equivalent plastic strain εpl reaches a threshold (εpl = 0.1 in these two cases). Once
damage is initiated, the modulus of Si is subjected to a linear degradation described by the
accumulated damage. The evolution of the damage is driven by plastic displacement and the
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Table 2. Parameters used in section 5.

Parameters Values

ECu, Young’s modulus of Cu 110 GPa
νCu, Poisson’s ratio of Cu 0.34
εpl, equivalent plastic strain for damage initiation in Si 10%
upl, maximum plastic displacement for total failure in Si six times of element size
KT, tension rigidity of compliant binder 15 GN m−1

KS, shear rigidity of compliant binder 5 GN m−1

ECr, Young’s modulus of Cr 279 GPa
GCr, shear modulus of Cr 115 GPa
ε0

n, ε0
s , ε0

t , normal, shear, transverse strain for 1%
damage initiation in binder and crack

εmax
n , εmax

s , εmax
t , normal, shear, transverse 10%

strain for total failure in binder and crack

failure criterion is the maximum plastic displacement upl (upl = 6 in these two cases). The
dimension of Si is 5 × 5 × 1, meshed into 20 × 20 × 4 C3D20T elements. A constant flux is
applied on the top surface of Si.

The interface between Si and current collector is treated differently in the two cases. The
firmly bonded case is realized by ‘tie’ constraint in finite element simulations. The compliant
binder between Si and current collector is realized by cohesive elements in ABAQUS.
Specifically, we use zero thickness cohesive elements to model the contacting area of 5 × 5,
meshed into one layer of 741 COH3D8 cohesive elements. The traction–separation relation
is used to model the cohesive elements. The tension rigidity KT = 15 GN m−1 and shear
rigidity KS = 5 GN m−1 are used, corresponding to a linear material with normalized modulus
Ēbinder = 15 and Poisson’s ratio νbinder = 0.5. For the sake of simplicity of simulations, element
elimination is not considered here.

Figure 4 provides the profiles of normalized Li concentration (C/Cmax) and the percentage
of the stiffness degradation in the X2 direction along four representative lines for different
SOCs. Figure 4(a) shows that the Li concentration is higher at the outside (X2 = 5) than
the inside (X2 = 0) on both top-edge and top-center lines since the outside is more free and
less constrained and thus the Li is easier to diffuse in. Going from top-edge to top-center, it
is found that the difference in Li concentration from the outside to the inside increases and
the absolute value of the Li concentration decreases for the same reason of constraints. The
center of the top-edge (X2 = 0) and the edge of the top-center (X2 = 5) occupy the same
situation, i.e. with two free surfaces; thus they show the same Li concentrations. For example,
normalized Li concentration is 0.91 for the center of the top-edge (X2 = 0) and the edge of
the top-center (X2 = 5) when SOC= 60%. Because of the relatively free top surface, the
percentage of stiffness degradation is low (only a few per cent), as shown in figure 4(c). Near
the edge of the top-edge (X2 = 5), there is even no degradation. This suggests a critical size
such that, below this size, the degradation can be avoided on the top surface.

Compared with figure 4(a) where Li concentrations show significant difference between
the edge and center, the Li concentrations for the bottom surface, i.e. bottom-edge and bottom-
center as in figure 4(b), show less difference, which is a result of the strong constraints
at the bottom. Freedom in the lateral direction at the bottom-edge does not provide much
advantage in the stress relaxation. The absolute value of the Li concentration on the bottom
as a whole is lower than that on the top for the same SOCs. Figure 4(d) shows the
percentage of stiffness degradation at the bottom-edge and bottom-center. As we can see,
a significant degradation is observed on the bottom-edge. Due to the stress concentration
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Figure 4. Profiles of normalized lithium concentration (C/Cmax) (a) and (b) and percentage of
stiffness degradation (c) and (d) in the X2 direction along four representative lines at different
SOCs, respectively. The interface between Si and the current collector is firmly bonded.

at the edge of the bottom-edge (X2 = 5), the degradation is even higher, such as over
20% for SOC = 60% according to numerical results (truncated in the figure). Due to the
lack of stress concentration at the bottom-center, the percentage of stiffness degradation
is not very high, on the order of a few per cent. These results indicate that the bonding
between Si and the current collector is a critical point of failure and the failure may
start from the corner of the electrode. Solutions to avoid or delay fracture may include
electrodes without corners (e.g. round pillar) or compliant binders as to be discussed in the
following.

When the bonding between Si and current collector is changed from firmly bonded to
elastic binder, the results are very different, as shown in figure 5. Figure 5 provides the profiles
of normalized Li concentration (C/Cmax) and the percentage of the stiffness degradation in
the X2 direction at four representative lines for different SOCs. Figure 5(a) shows that the Li
concentration is relatively uniform along both top-edge and top-center, which is very different
from the obvious nonuniformly distributed Li shown in figure 4(a). The explanation is that
the elastic binder reduces the constraint to the Si anode from the current collector; thus the
stress level and its gradient are lower than the case with firmly bonded interface. Without the
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Figure 5. Profiles of normalized lithium concentration (C/Cmax) (a) and (b) and percentage of
stiffness degradation (c) and (d) in the X2 direction along four representative lines at different
SOCs, respectively. The interface between Si and the current collector is compliant binder. To
compare with the stiffness degradation shown in figures 4(c) and (d), the same scale is used.

stress and its gradient as driving force for diffusion, diffusion in the X2 direction thus does
not exhibit apparent difference. It is also found from figure 5(a) that the Li concentration at
the top-edge (solid line) is overall higher than that at the top-center (dashed line) since the
top-edge is less constrained. Again, the center of the top-edge (X2 = 0) and the edge of the
top-center (X2 = 5) occupy the same situation, i.e. with two free surfaces; thus they show
the same Li concentrations. Because the Si is relatively free when the elastic binder is used,
the percentage of stiffness degradation for both top-edge and top-center as in figure 5(c) is
much smaller than that in the case of firmly bonded (figure 4(c)). The percentage of stiffness
degradation is on the order of 1%. This result suggests that elastic binder can significantly
reduce the mechanical degradation of Si anode by creating a more ‘free’ situation to let Si
expand during electrochemical reactions. Thus the cyclic retention can be improved.

Compared with the Li concentration given by figure 5(a) for the top surface, the Li
concentrations for the bottom surface, i.e. bottom-edge and bottom-center in figure 5(b),
show similar relatively uniform distribution in the X2 direction, which is a result of stress
relaxation at the bottom. The absolute value of the Li concentration on the bottom as a
whole is lower than that on the top for the same SOCs. As shown in figure 5(d), the
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percentage of stiffness degradation on the bottom surface is much smaller than the case for
firmed bonded interface but larger than that on the top surface, because of more constraint on
the bottom.

By comparison between the results for firmly bonded interface and elastic binders as
interface, it seems to suggest that the elastic bonding is able to help us to homogenize the
concentration distribution and mediate the electrode damage, which makes us believe that the
cyclic retention of Li-ion batteries can be significantly improved. In fact, elastic binders [52]
or similarly elastic substrates [12] have been used in recent experiments and very good cyclic
retention has been realized.

5.2. Si bonded on current collector with multiple failure mechanisms

There are two limitations of the cases presented in section 5.1. First, the failure of binders
is not considered. Second, Si anodes are assumed intact before lithiation, which does not
hold as there are some flaws serving as sites for stress concentration. The interaction between
the failure of binders and flaws of Si anodes may provide a variety of failure mechanisms in
the anode–binder–collector assembly. In this section, the interplay between different failure
mechanisms is studied.

To fulfil the failure in the anode–binder–collector assembly, two modifications are
employed in figure 3. First, the failure behavior of the binder that is modeled as a layer of
cohesive element is now considered through stiffness degradation. The stiffness degradation is
initialized when the nominal strain (either normal strain εn, shear strain εs or transverse strain
εt) reaches a critical values, ε0

n, ε0
s or ε0

t , respectively. Linear damage evolution is assumed
and the binder fails completely when the nominal strain reaches the maximum values, εmax

n ,
εmax

s or εmax
t . In this section, the binder is assumed to be chromium, which is a widely used

adhesive material for Si and Cu. The traction–separation relation is given based on Young’s
modulus and shear modulus of chromium, ECr = 279 GPa, GCr = 115 GPa. For simplicity,
the criteria for damage initiation are taken as ε0

n = ε0
s = ε0

t = 1% and those for failure are
εmax

n = εmax
s = εmax

t = 10%. 2500 (= 50 × 50 × 1) COH3D8 elements are used to model
the cohesive layer with thickness 0.1. Second, two pre-existing planar cracks are placed in the
symmetrical planes of the Si anode, i.e. in the X1X3 and X2X3 planes, which are also modeled
as cohesive elements with vanishing thickness. The traction–separation relation is used for
these cohesive elements based on the property of Si. Similar damage initiation and evolution
rules are used with ε0

n = ε0
s = ε0

t = 1% and εmax
n = εmax

s = εmax
t = 10%. 500 (= 50×10×1)

COH3D8 elements are employed to model each pre-existing crack.
A series of lithiation and delithiation simulations are conducted. Figure 6 shows the

contour plots of percentage of stiffness degradation for the two pre-existing cracks and binder
at different states of lithiation and delithiation. Figure 7 shows the overall deformation of
the Si–binder–collector system at three lithiation/delithiation states listed in figure 6. Before
lithiation starts, cracks and binders are not damaged as shown in figure 6(a) where all elements
are in blue. During lithiation (figures 6(a)–(f )), damage mainly occurs in the binder and
increases monotonically as lithiation. At 90% lithiation (figure 6(f )), the majority of binder
has been damaged. The failure of the binder is attributed to the shear between Si patch and
copper substrate, which can be observed in figure 7. Figure 7(a) shows the Si–binder–collector
assembly before lithiation and figure 7(b) is for the assembly at 50% lithiation. It is obvious
that the area of the Si patch increases significantly upon lithiation and bends toward the current
collector due to the constraint from it, which leads to great sliding at the interface between
the Si patch and the substrate. As observed from figure 6(b), the failure zone initializes from
the corner of the binder where the largest sliding occurs. It is also observed that there is no
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Figure 6. Contour plots of percentage of stiffness degradation in binder and pre-existing cracks at
different degrees of lithiation ((a)–(f )) and delithiation ((g)–(j )).

Figure 7. Morphology of the silicon–binder–collector at selected degrees of lithiation/delithiation:
(a) initial state, (b) lithiation state corresponding to figure 6(b), and (c) delithiation state
corresponding to figure 6(h).

significant failure in the pre-existing cracks during lithiation since the Si patch is subjected to
compressive stress caused by the compositional expansion and constraint from the collector.
Figures 6(g)–(k) show the delithiation processes. It is interesting that there is still no significant
failure in the pre-existing cracks, no matter from which state the delithiation starts, at least
for 10% and 20% delithiation. This surprising observation is because once the binder is
damaged during lithiation, the Si patch above the damaged binder can deform freely and thus
‘peeling-off’ occurs, which can be seen in figure 7(c). Figure 7(c) corresponds to the state
of delithiation given by figure 6(h), in which the corner of the binder has been completely
damaged. Therefore, upon delithiation, the Si patch bends against the current collector as
a response to the compositional contraction, which leads to compressive stress on the pre-
existing cracks and thus prevents damage in the pre-existing cracks. On the other hand, the
‘peeling-off’ further damages the binder, which is tension controlled and different from the
sliding during lithiation.

The results in this section seem to imply that the introduction of damage in some areas
of the binder in a controllable way could prevent damage of the active materials. It should be
noticed that some parameters (particularly the damage initiation and evolution parameters) are
not available yet and chosen in a somewhat arbitrary way. Thus, this section mainly shows the
capability and potential of the present numerical approach.
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6. Concluding remarks

In this paper, we develop a finite element based numerical method to study the coupled
large deformation and diffusion of electrodes in Li-ion batteries under the framework of
ABAQUS. The coupling is realized by an analogy between diffusion and thermal transfer
in ABAQUS. Due to the large deformation, this analogy is rigorously examined and the
corresponding relation is established. It is found that this formulation is able to realize the
coupled deformation and diffusion in large deformation using several user-defined subroutines
in ABAQUS, namely user-defined thermal transport (UMATHT), user-defined flux (UFLUX)
and user-defined expansion (UEXPAN). Because the present formulation does not involve any
element development in ABAUQS, many built-in modules can be directly utilized. A system
comprising three components, namely, Si electrode, binder and current collector, is studied
using the cohesive elements and the damage to the electrode is considered. It is anticipated that
this formulation is able to model many coupled large deformation and diffusion problems in
electrodes with complex spatial and temporal conditions, such as damage evolution, fracture
and electrodes/binder delamination, among others. When this formulation is combined with
experimental work, it is expected that the constitutive relations (e.g. stress versus SOC) can
be extracted from various techniques, such as micro-indentation.

We here have to emphasize again that the results presented in this paper by no means intend
to explain the real mechanisms occurred in the electrodes during electrochemical reactions. The
main point of this paper is to examine a rigorous implementation of coupled deformation and
diffusion through a commonly used coupled deformation and heat transfer when the extremely
large deformation presents. When the theoretical model is changed, the implementation can
be revised correspondingly. However, since the major field variables are used in the present
implementation, such as stress, deformation gradient, concentration and their gradient, the
modification of the implementation is fairly straightforward.

Acknowledgments

The authors appreciate the High Performance Computing Initiative (HPCI) at the Arizona State
University. YA acknowledges the financial support from the China Scholarship Council. HJ
acknowledges the support from NSF CMMI-1067947 and CMMI-1162619.

Appendix A. Implementation of UMATHT

In the subroutine UMATHT, the standard parameters received from ABAQUS are temperature
T and its spatial gradient at the current state ∂T /∂xi , or equivalently, C̄ and ∂C̄/∂x̄i using
the analogy discussed in section 3.2, respectively. The variables that are needed to pass
out to ABAQUS are heat capacity per volume ρ(dU/dT ), heat flux fi and its derivatives
respective to temperature ∂fi/∂T and temperature gradient ∂fi/∂(∂T /∂xi).Using the analogy
discussed in section 3.2, the output variables in UMATHT are 1/det(F ) (for ρ(dU/dT )),
FiKJ̄K/det F (for fi), (∂/∂C̄)(FiKJ̄K/det F ) (for ∂fi/∂T ), and ∂(FiKJ̄K/det F )/∂(∂C̄/∂x̄i)

(for ∂fi/∂(∂T /∂xi)). The flux J̄K depends on deformation gradient F , stress σ , and second
Piolar–Kirchhoff stress S, as shown in equation (24). Therefore, the implementation of
UMATHT also needs to access the deformation gradient F and stress σ (and S) and to calculate
their derivatives (specifically, ∂(det F σ̄h)/∂X̄L in equation (24)), which are not the standard
parameters received from ABAQUS.

The access of deformation gradient F can be realized by a ‘dummy’ user-defined material
subroutine UMAT. Here the ‘dummy’ indicates that this subroutine UMAT does not actually
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Figure A1. (a) Models used to examine the calculation of ∂/∂X̄3(det(F )σ̄h) in UMATHT in
appendix A, fat square pillar used to compare the shape function extrapolation (SFE) method and
the PLS method, and thin square pillar used to examine the ‘gradient calculation window’ in PLS
method. (b) Models used in the benchmark examples in appendix B, an undeformed thin plate
with geometry 6 × 6 × 1 and a deformed thin plate with geometry 9 × 5 × 1. The deformation is
prescribed as x1 = 1.5X1, x2 = 5X2/6.

perform any calculations but access the deformation gradient F from ABAQUS since UMAT
is one of the two ways in ABAQUS that can retrieve the deformation gradient F (UHYPER
is another way). The stress tensor is obtained using another ABAQUS subroutine USDFLD,
user-defined field variables. The accessed deformation gradient F and stress are given for
every integration point and passed to the subroutine UMATHT.

In addition to deformation gradient F and stress in UMATHT, the gradients of det(F )σ̄h

with respect to the reference coordinates X need to be calculated, which is the main challenge
here. In the finite element method, the calculation of derivatives is realized through the
shape function that interpolates a nodal value of a variable to its value at the integration
point. However, here the deformation gradient F and stress are given at the integration
points, not at the nodal points. We have implemented two ways to calculate this gradient
(∂/∂X̄L)(det(F )σ̄h).

The first way is the shape function extrapolation (SFE) method. det(F )σ̄his calculated
at all integration points within an element. Then these values at the integration points are
extrapolated to their nodes using the inverse of a certain shape function (depending on the type
of element). Once the nodal value of det(F )σ̄h is known, the derivatives at the integration
points are calculated using the same shape function. It could be proved that this algorithm is
equivalent to the spatial finite difference method. Although this method is straightforward,
two drawbacks exist. One shortcoming is that this method is element dependent because of
the shape function, which involves more efforts to implement this method for different types
of elements. The second one is more critical. The present method of calculating derivatives
only involves local information within one element, which causes unrealistic gradients even
when the deformation and stress fields are relatively smooth throughout a few neighboring
elements. This unrealistic gradient fluctuates and makes the convergence difficult.

The second way is to calculate this gradient using the PLS method. In order to calculate
(∂/∂X̄L)(det(F )σ̄h) of an integration point, we first select a ‘gradient calculation window’ that
contains a few elements around it. Within this window, det(F )σ̄h is assumed to be distributed
linearly, i.e.

det(F )σ̄h(X̄K) = a0 + a1X̄1 + a2X̄2 + a3X̄3, (A1)
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Figure A2. Gradient ∂/∂X̄3(det(F )σ̄h) profile in the X3 direction at different SOC, calculated
from shape function extrapolation (SFE) and PLS methods. SOCs are (a) 1%, (b) 2%, (c) 5% and
(d) 10%, respectively. Here the dimensionless time is used.

where X̄K are the initial coordinates of an integration point within the ‘gradient calculation
window’ and det(F )σ̄h(X̄K) is the value of this function at X̄K , and ai(i = 0, 1, 2, 3) are
four unknown polynomial coefficients to be determined using the least squares method. The
gradient (∂/∂X̄L)(det(F )σ̄h) at an integration point can therefore be calculated based on the
obtained coefficients a1, a2 and a3.Since this method involves non-local information, compared
to the first method that only uses the local information within one element, the fluctuation of
the gradient can be largely removed and the accuracy of the gradient can be greatly improved.
This method has been used in obtaining meaningful strain field from measured displacement
field in digital image correlation (DIC) [53].

As sketched in figure A1(a), a Si pillar with a square cross section is used. The pillar
geometry is 0.25 × 0.25 × 1. The pillar is charged by a unit flux with lateral displacement
totally confined. The material parameters involved are the same as listed in section 4.1 and
4 × 4 × 40 C3D20T elements are used to mesh this pillar. Figure A2 compares the gradient
(∂/∂X̄L)(det(F )σ̄h) calculated from SFE and PLS methods at different SOC. In the SFE
method, the standard quadratic shape function of C3D20T element is used; while for the PLS
method, averaging over second-order neighboring elements is adopted. It is found that the
gradients calculated from these two methods are very close. However, the gradient from the
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Figure A3. The profile of Li concentration in the X3 direction at different SOCs using various
‘gradient calculation windows’. The SOCs are (a) 5%, (b) 20%, (c) 40% and (d) 70%.

PLS method is always smoother than that from the SFE method, which usually make the
convergence easier in most of our simulations.

It is important to note that to obtain reasonable and accurate gradients(∂/∂X̄L)(det(F )σ̄h)

using the PLS method, the size of ‘gradient calculation window’ is critical. There is a trade-
off between the accuracy and smoothness of the gradient. Figure A3 shows a case study on
the effect of ‘gradient calculation window’ using an example of charging a laterally confined
slender Si pillar (figure A1(a)). The dimensions are 0.01×0.01×1 and the mesh is 1×1×100.
A unit flux is applied on the top surface. The material properties are given in section 4.1. The
‘gradient calculation window’ is defined by the number of neighboring element, i.e. ‘0’ means
the element itself, ‘1’ means the first-order neighboring elements and so on. The profiles of
Li concentration in the X3 direction at different SOCs are shown in figure A3. The results
show that for this relatively homogeneous deformation (1D problem), the size of ‘gradient
calculation window’ is insignificant. The difference only lies in the efficiency of convergence,
namely, small ‘window’ leads to much slower convergence rate than that for larger ‘window’.
The calculations presented in this paper normally use second-order or third-order neighboring
elements to conduct the PLS method.

With all the necessary quantities accessed and calculated, the mass diffusion in large
deformation is implemented in UMATHT through the analogy discussed in section 3.2.
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Figure A4. Benchmark of numerical implementation in user subroutines. (a) Upon applying a
prescribed temperature boundary condition, temperature profiles in the X3 direction at different
time steps, using ABAQUS built-in thermal transport with Fickian law and ABAQUS UMATHT
by expressing the total Lagrange description in updated Lagrange framework via equation (26).
(b) Upon applying a prescribed flux boundary condition, temperature profiles in the X3 direction at
different time steps, using ABAQUS built-in heat transfer/flux boundary condition and ABAQUS
UMATHT/DLFUX via equations (26) and (35). (c) Thermal expansion versus temperature for a
static state problem, by increasing the temperature from 0 to 1, using ABAQUS UEXPAN. The
coefficient of expansion is taken to be 0.5874 and thus large deformation due to elevated temperature
is introduced.

Appendix B. Benchmark examples

Several benchmark examples are conducted to show the correct implementation of all aspects
discussed in section 3.

Figure A1(b) illustrates a thin-film model used in the benchmark studies. The X3-axis is
normal to the film and the X1- and X2-axes are along the in-plane direction. The thickness of
the film is set to 1. To illustrate that the large deformation can be correctly captured, a large
deformation, x1 = 1.5X1, x2 = 5X2/6, is applied to the undeformed configuration to deform
it to the deformed one shown in figure A1(b). We use 27 C3D8T elements in the benchmark
studies.

B.1. Benchmark updated Lagrange and total Lagrange descriptions on the same problem

The analogy between mass diffusion and heat transfer in ABAQUS relies on one basic
foundation, which is the mass conservation law for diffusion in the total Lagrange description
(equation (23)) is equivalent to the heat conservation law for heat transfer in the updated
Lagrange description (equation (25)) through equation (26). To verify that this equivalence
does describe the same physics, we create two scenarios. In the first scenario, we just use
ABAQUS built-in Fickian diffusion to study a pure heat transfer problem, i.e. without thermal
expansion and mechanical deformation. The model is shown on the left side in figure A1(b).
The top surface is subjected to a prescribed unit temperature for a unit time. Thus, the governing
equation in this case is equation (25). In the second scenario, we apply large deformation and
then conduct the heat transfer. The model is shown on the right side in figure A1(b). This
deformation is uniform, which can be accurately described by these 27 elements used in the
example. The boundary condition for heat transfer is the same as that in the first scenario. In
this analysis, the large deformation option is on and the deformation gradient can be accessed
using the ‘dummy’ UMAT subroutine as discussed in appendix A. The conservation law is
described in the total Lagrange framework, which is similar to equation (23). We implement
equation (23) in the updated Lagrange framework using equation (26) in UMATHT. These
two scenarios solve a pure heat transfer problem since the deformation and heat transfer are
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intentionally decoupled. Figure A4(a) shows that the temperature profiles in the X3 direction
for these two scenarios are identical for several time steps, which verifies the realization of
total Lagrange description in updated Lagrange framework via equation (26).

B.2. Benchmark prescribed flux boundary condition

Still because of the discrepancy between total Lagrange and updated Lagrange descriptions,
flux is applied on different elements of area in these two descriptions. This discrepancy can
be eliminated using Nanson’s formula as discussed in equation (35). We still create two
scenarios to benchmark. The first scenario is similar to the first case in B1, except that the
prescribed temperature boundary condition is replaced by a prescribed flux boundary condition.
Specifically, the top surface of the film is subjected to a unit heat flux for a unit time. The
same prescribed flux boundary condition and the deformation field are applied in the second
scenario. To accommodate the change of the area on the top surface, subroutine DFLUX
is used in the second scenario along with UMATHT for the heat conservation law defined
in updated Lagrange framework when large deformation presents. It should be emphasized
here again that these two cases are temperature–deformation decoupled. The deformation is
introduced solely in order to show that a proper transformation between total Lagrange and
updated Lagrange framework is needed to correctly describe the physics. Figure B4(b) shows
that the temperature profiles in the X3 direction at different time steps for these two scenarios
are identical, which verifies the implementation of DFLUX to capture the flux when large
deformation presents.

B.3. Benchmark thermal expansion for large deformation

For large deformation, the thermal expansion needs to be redefined to realize the desired
compositional expansion (equation (29)) through equation (33). We study a steady-state
problem by increasing the temperature from zero to unity and the compositional expansion
coefficient β = 0.5874. The thermal expansion is redefined in UEXPAN via equation (33).
As shown in figure A4(c), a desired linear expansion is produced. The slope is just the
compositional expansion β (= 0.5874).

Appendix C. Analytical solution for deformation in a 1D problem

As illustrated in figure 1(b), the substrate is assumed rigid. Due to the symmetry of the
problem, there are five independent field variables λe

1(X1, t), λe
2(X1, t), λ

p
1(X1, t), λ

p
2(X1, t)

and C̄(X1, t).
From the incompressibility of plastic deformation

ln
(
λ

p
1λ

p
2λ

p
2

) = 0, (C1)

and the fixed in-plane displacement condition imposed by a rigid substrate

λ2 = 1, (C2)

as well as the traction-free condition in the thickness direction

σ1 = 0, (C3)

one obtains

ln λ
p
2 = − ln λe

2 − ln(1 + βC̄), (C4)

ln λp
eq = 2| ln λP

2 |. (C5)
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In addition, from the traction-free condition in the thickness direction and the elastic
constitutive relations, one can reach

σ2 = E

1 − ν
ln λe

2, (C6)

σv = E

1 − ν
| ln λe

2|. (C7)

Substituting the von Mises stress and equivalent strain into the yielding criterion, one
obtains

E

1 − ν
| ln λe

2| = σY0 + 2Ep| ln λP
2 |. (C8)

During lithiation, there is no unloading and the film is subjected to lateral compressive
stress, which gives

ln λe
2 � 0, ln λP

2 � 0. (C9)

Then equation (C8) leads to

− E

1 − ν
ln λe

2 = E ln λY0 + 2Ep(ln λe
2 + ln(1 + βC̄)), (C10)

from which all four independent deformation fields could be determined as a function of C̄ in
the following

ln λe
2 = − (1 − ν)E ln λY0 + 2(1 − ν)Ep ln(1 + βC̄)

E + 2(1 − ν)Ep
, (C11)

ln λe
1 = 2νE ln λY0 + 4νEp ln(1 + βC̄)

E + 2(1 − ν)Ep
, (C12)

ln λ
p
2 = (1 − ν)E ln λY0 − E ln(1 + βC̄)

E + 2(1 − ν)Ep
, (C13)

ln λ
p
1 = −2(1 − ν)E ln λY0 + 2E ln(1 + βC̄)

E + 2(1 − ν)Ep
. (C14)

Two dependent variables which explicitly enter the governing equation for the diffusion
problem could be calculated as

σh = −E
2E ln λY0 + 4Ep ln(1 + βC̄)

3E + 6(1 − ν)Ep
, (C15)

ln λ1 = −(2 − 4ν)E ln λY0 + (3E + (2 + 2ν)Ep) ln(1 + βC̄)

E + 2(1 − ν)Ep
. (C16)

Aforementioned formulae hold for plastic deformation, which is specified by the condition
of yielding

1

1 − ν
ln(1 + βC̄) > ln λY0. (C17)

The formulae for elastic deformation can be degenerated from the plastic solution by
simply taking Ep → ∞.
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