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Simulation of the Transient
Behavior of Gels Based on
an Analogy Between Diffusion
and Heat Transfer
The transient behaviors of the swelling and deswelling of gels involve concurrent
mechanical deformation and solvent diffusion and exhibit a fascinating phenomenon. In
this paper, a simple numerical tool is developed by using an analogy between diffusion
and heat transfer when large deformation presents for gels. Using this analogy, a finite
element method is developed in the framework of a commercial finite element package
ABAQUS via two material-specific user subroutines to describe the mechanical and mass
diffusion behaviors of gels. The present method is not limited to any specific materials;
therefore, this method can be extended to other materials that featured with coupled
deformation and diffusion. This method is expected to be able to serve as a useful numeri-
cal tool to study related materials and problems due to its simplicity.
[DOI: 10.1115/1.4007789]

A gel is formed as the solvent aggregated in a crosslinked
polymeric network. When the solvent diffuses in and out of the
polymeric network, gel swells and shrinks, respectively, which
endows gels the capability of large and reversible deformation as
well as the dual attributes of a solid and a liquid. Gels have been
extensively used in nature and in engineering for a variety of
applications, such as drug delivery [1,2], tissue engineering [3,4],
food processing [5], and oilfield management [6,7]. There are
some efforts to formulate theories for the coupled mass diffusion
and deformation in gels [8–11], and specifically large deformation
has been rigorously considered [12]. Numerical approaches have
been developed correspondingly for gels. Some are based on the
phase field method [13], and some are based on the finite element
methods [14–19]. Many efforts on the finite elements methods are
based on commercial package ABAQUS via its user-defined subrou-
tines. For example, a user-defined hyperelastic material was
developed to model the equilibrium state of gels [17], and a user-
defined element was used to treat the fields of diffusion and defor-
mation concurrently as independent field variables for transient
problems [19].

This paper develops an alternative method to study the transient
behavior of gels by an analogy between mass diffusion and heat
transfer with a rigorous consideration of large deformation. The
analogy between these two transport phenomena has been utilized
dated back to Prussin in the 1960s [20], though it was for small
deformation. In this paper, this analogy is implemented via sev-
eral user defined material subroutines in ABAQUS. Due to the fact
that this implementation does not involve any development of
new elements to couple mass diffusion and deformation in finite
element methods, it is expected that this approach can be more
straightforwardly utilized. As the following discussion is not spe-
cifically tied to any of the aforementioned theories, the methodol-
ogy can be applied to the general field theories to couple mass
diffusion and deformation when large deformation presents.

The mass diffusion in a large deformation framework was
described [12] using the nominal variables and is summarized
here using the true variables in order to compare with heat trans-
fer. In large deformation, deformation gradient F ¼ @x X; tð Þ=@X
is used to map between the reference state (with coordinate X)

and the current state (with coordinate x(X,t)). The conservation
of mass can be expressed by nominal variables ð@C=@tÞ
þ ð@JK=@XKÞ ¼ 0, where t is the time, C is the nominal solvent
concentration, and J is the nominal flux. An equivalent way to
express the flux is through the true flux ji, jinida ¼ JKNKdA,
where nida is the element of area in the current state
deformed from its counterpart NKdA in the reference state.
Using the conservation of mass in an integration form,
i.e., ðd=dtÞ

Ð
V CdV þ

Ð
A JKNKdA ¼ 0 and the divergence theorem,

its differential form can be expressed by true flux,
ð1=det Fð ÞÞð@C=@tÞ þ ð@ji=@xiÞ ¼ 0. The nominal concentration C
relates to the deformation via the condition of incompressibility
[12], i.e., 1þ vC ¼ det Fð Þ, and the true concentration of solvent
is related to the nominal concentration via det Fð Þ, i.e.,
c det Fð Þ ¼ C. The true flux ji is given by the gradient of the chem-
ical potential [21], ji ¼ �cDð@l=@xiÞ, where D is the diffusivity,

and l is the normalized chemical potential (by kT ¼ 4� 10�21J,
the temperature in the unit of energy) of the solvent inside the gel.

Thus the conservation of mass can be expressed as

1

det Fð Þ
@ det Fð Þ � 1½ �

@t
þ
@ � det Fð Þ � 1½ �D

det Fð Þ
@l
@xi

� �
@xi

¼ 0 (1)

This equation is similar to the conservation of heat in heat
transfer,

q
@U

@t
þ @fi

@xi
¼ 0 (2)

where q is the density, U is the internal heat energy, and fi is the
true heat flux.

By comparing Eq. (1) for mass diffusion and Eq. (2) for heat
transfer, an analogy can be made for large deformation: mass dif-
fusion is analogous to heat transfer by the following equivalence:

q ¼ 1

det Fð Þ
U ¼ det Fð Þ � 1

fi ¼ �
det Fð Þ � 1½ �D

det Fð Þ
@l
@xi

(3)1Corresponding author.
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This particular heat transfer behavior can be modeled in ABAQUS

via its user-defined heat transfer subroutine UMATHT, in which
the internal heat energy U and the heat flux fi are to be defined
based on Eq. (3). The normalized chemical potential l is analo-
gous to the temperature T. In addition, the gradients fi with respect
to temperature T and temperature gradient @T=@xi (or equivalently
chemical potential l and its gradient @l=@xi) are also needed as
these terms will contribute to the stiffness matrix of this user-
defined heat transfer problem. Specifically, one needs to define

@fi=@l ¼ 0 and @fi=@
�
@l=@xj

�
¼ �ð det Fð Þ � 1½ �D=det Fð ÞdijÞ.

The mechanical constitutive relation of gels is implemented in
ABAQUS via its user-defined hyperelastic material UHYPER [17]
by prescribing the free energy density. One choice of the free
energy density is the Flory–Huggins model [22,23], where the

normalized nominal free energy density Ŵ Fð Þ is given by [12]

Ŵ Fð Þ ¼ W Fð Þ
kBT

v

¼ 1

2
Nv FiKFiK � 3� 2 log det Fð Þ½ �

� det F� 1ð Þ log
det F

det F� 1

� �
þ v

det F

� 	

� l det F� 1ð Þ (4)

Here, two dimensionless parameters are involved, namely, Nv for
shear modulus of the dry polymer and v for enthalpy of mixing.
Here v ¼ 10�28m3 is a representative value of the volume per
solvent molecule. Thus the shear modulus of the dry polymer
NkT is related to the normalized shear modulus by NkT
¼ 4� 107Nv Pað Þ. The nominal chemical potential l in Eq. (4) is
a parameter instead of field variable as F.

Thus, the transient analysis of the gels with coupled mass diffu-
sion and large deformation is realized through coupled heat trans-
fer and deformation by defining specific heat transfer behavior
(UMATHT) and mechanical constitutive relations (UHYPER).
Since this implementation does not involve element development
(e.g., user-defined element [19]), it can be more straightforwardly
utilized. It should be emphasized here that this problem is nonlin-
ear, though the diffusion part is linear. Iterations are conducted to
reach convergent results.

There is a distinct feature of the gel simulation: the deformation
is extremely sensitive to chemical potential. A slight variation of
chemical potential leads to significant deformation especially for
short-time behavior once a dry polymer (with l ¼ �1) contacts
with a solvent (with l ¼ 0). The deformation on the other way
affects chemical potential. Therefore, the iteration between defor-
mation and diffusion fluctuates severely for short-time behavior,
and this fluctuation oftentimes results in divergent results, which
makes this problem numerically difficult. Here we should empha-
size that this severe fluctuation is not necessarily physical but a
result of numerical iteration. In order to mitigate this fluctuation, a

damping-like method is introduced, i.e., the term @fi=@
�
@l=@xj

�
is multiplied by a scaling factor a >1ð Þ. The scaling factor contrib-
utes to the stiffness matrix but not the residual vector (e.g., fi and
ð1=qÞð@U=@tÞÞ of this nonlinear problem. Since the convergence
of nonlinear problems is governed by the residual vector, this scal-
ing factor and the resulted approximated stiffness matrix do not
affect the accuracy of the results. In fact, this method of changing
stiffness in a nonlinear problem has been applied in many differ-
ent scenarios. One example is that the modified Newton’s method
uses an approximated stiffness matrix to save computational cost.
Another example is that in ABAQUS’ coupled thermal stress analy-
sis, the off diagonal components of the stiffness matrix are
ignored without affecting the accuracy of the solution [24]. A sim-
ilar scenario can also be found in coupled poromechanics prob-
lems, where various types of stabilization techniques are
introduced [25] and the stabilization factor is influenced by time
step and element size [26] as well.

The method of using scaling factor a is verified by studying a
free swelling of a cubic gel as illustrated in Fig. 1(a), in which a
dry cubic gel is set to contact with solvent from its outside surfa-
ces and thus swells without constraints. Due to symmetry, 1/8 of
this cube with size L� L� L is used in the modeling. Equation
(4) is used to describe the mechanical constitutive relation of the
gel with Nv ¼ 0:001 and v ¼ 0:2. Figure 1(b) compares the nor-
malized displacement w/L in the z-direction for three points (A, B,

and C) versus normalized time Dt=L2 for two cases where the

scaling factor a ¼ 1 (i.e., accurate @fi=@
�
@l=@xj

�
is used) and

a ¼ 100. It is clearly found that the results for a ¼ 1 and a ¼ 100
overlap. It is also noticed that by using the scaling factor a ¼ 100,
the swelling behavior at short time where the chemical potential
changes more dramatically can be captured. For the times that
both a ¼ 1 and a ¼ 100 can reach, the results are identical. How-
ever, a ¼ 100 can capture much shorter swelling time than a ¼ 1.
This example verifies the viability of the scaling method. The
shorter time that is achieved by using the scaling factor method is
very important for the transient analysis of gel. It needs to be men-
tioned here that the scaling factor slows down the speed of con-
vergence as the stiffness matrix is not accurate, which is similar to
the case of the modified Newton’s method versus Newton’s
method.

The current method is benchmarked by studying a one-
dimensional confined swelling problem. Figure 2(a) illustrates a

Fig. 1 (a) Schematic of a cubic gel swelling under no con-
straint. Three points A, B, and C are marked. (b) Normalized ver-
tical displacements w=L of three characteristic points (A, B,
and C) versus normalized time Dt=L2 for both scaling factors
a 5 1 and a 5 100. The inset shows the max principal strain con-
tour at Dt=L2 5 160.
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gel bar with a unit length that only swells in the X3 direction but not
in the X1 and X2 directions, which has nonvanishing stretching k3 in
the X3-direction. The evolution of k3 X3; tð Þ as a function of X3 and
time t is to be solved. As solvent diffuses in the gel, the chemical
potential l also evolves with X3 and time t as determined by mini-
mizing the free energy density Ŵ Fð Þ from Eq. (4). Substituting
l X3; tð Þ into Eq. (1), an evolution equation for k3 X3; tð Þ is achieved,

@k3

@t
¼ D

@

@X3

k3 � 1

k2
3

1

k2
3ðk3 � 1Þ

� 2v

k3
3

þ Nv 1þ 1

k2
3

 !" #
@k3

@X3

( )

(5)

This equation is solved by using COMSOL Multiphysics 4.2
as the benchmark for the present finite element method. One
thousand three-dimensional coupled displacement-temperature
brick elements (C3D8T) are used. The material parameters are the
following: Nv ¼ 0:001 and v ¼ 0:2. Figure 2(b) plots k3 X3ð Þ as a
function of X3 for Dt=L2 ¼ 560. It is found that the results from
the present method and COMSOL agree very well, which verifies
the accuracy of the present method.

In the following, we study two transient problems using
the present finite element method. The first problem is the gel
indentation. Recently, indentation experiments have been used to
characterize gels and soft materials [27–30]. The migration of
solvent in and out of the network of gels endows the gel visco-
elastic behavior. The creep (i.e., indentation with a constant force)
and relaxation phenomena (i.e., indentation with a fixed depth)
are observed. Specifically for a relaxation indentation experiment,
the gel is suddenly indented by a fixed indentation depth. At
short-time limit (t ¼ 0) (i.e., right after the gel is indented by a
fixed depth), the solvent has no time to migrate out of the gel, and

the gel behaves as an incompressible material. The indentation
force is denoted by F 0ð Þ. As the solvent migrates out of the gel
network, the gel becomes a compressible material, and thus the
applied indentation force gradually relaxes and reaches another
steady state F 1ð Þ at the long-time limit. F 0ð Þ and F 1ð Þ are
related to two material properties of gels, namely shear modulus
and Poisson’s ratio, for given indentation geometries [31–33]. The
evolution of F tð Þ provides a way to determine the diffusivity of a
solvent. In simulation, obtaining F 0ð Þ and F 1ð Þ is a static prob-
lem. We recently have studied the large deformation effect on this
regard [33]. It becomes a transient problem to determine F tð Þ,
which is the focus of this example.

The present finite element method is used to simulate the relax-
ation experiment. A rigid spherical indenter with radius R¼ 3 mm
indents h¼ 1 mm on a fully swollen gel modeled by 12,395
C3D8T elements (Fig. 3(a)). Two sets of material parameters are
used, namely, Nv ¼ 0:2, v ¼ 0:7, and Nv ¼ 0:07, v ¼ 0:8, with
both providing an equilibrium swelling ratio keq ¼ 1:2 (by
minimizing the free energy density W Fð Þ, Eq. (4)). Diffusivity of

solvent is taken as D ¼ 8� 10�4mm2=s. Figure 3(b) shows the
evolution of indentation force F tð Þ with time. The indentation
force decays as expected. As a first approximation, the evolution

Fig. 2 (a) Schematic of a gel bar swelling in X3 direction. (b)
Stretch in X3 direction k3 as a function of X3 when Dt=L2 5 560
using both COMSOL and the present method.

Fig. 3 (a) Schematic of gel indentation. (b) Evolution of inden-
tation force F tð Þ with time t for two gels with different
material parameters. The fitting curve based on F tð Þ5 F 0ð Þ
þ F ‘ð Þ � F 0ð Þ½ �



1� exp

�
� t

sind

��
is also given.
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of F tð Þ can be expressed by F tð Þ ¼ F 0ð Þ þ F 1ð Þ � F 0ð Þ½ �

1� exp

�
�ðt=sindÞ

��
and is also shown in Fig. 3(b), where sind is

the relaxation time of the gel under indentation. This relaxation
time is found to be approximately 10,000 s for these two gels. As
discussed before, this relaxation is due to the diffusion of the sol-
vent inside the gel. Upon indentation, the solvent inside the gel
diffuses out of the gel to reach the equilibrium with the external
solvent. The characteristic diffusion length is the contour length L
(Fig. 3(a)). In this simulation, the characteristic diffusion time is

given by sdiff ¼ ðL2=DÞ ¼ 8; 000s, which is on the same order of
sind. When the history of F tð Þ is obtained from experiments, the
simulation can be used to determine the diffusivity.

The second example is related to a recent application of gels in
the oilfield industry, primarily for zonal isolation. The gel, or as
they are more often named swellable elastomers, are used for
zonal isolation. A string of self-reactive swellable elastomer is
placed inside a set of complex tube assemblies. Either water-
reactive or oil-reactive swellable elastomer are available
depending on the chemical composition of the elastomer. In the
following, we study a water-reactive elastomer where the elasto-
mer is swellable when exposed to water but not oil so that it
remains at the dry state and allows the oil to freely flow. When
the water presents, which is undesirable since it is very costly to

separate oil and water, the elastomer swells to block the oil flow.
In this application, the transient behavior is very important as it
determines the history of pressure p(t) built on the pipeline as the
elastomer swells. Figure 4(a) illustrates our model where the elas-
tomer surrounding a rigid core is inside a pipe with modulus
E¼ 200 GPa and Poisson’s ratio �¼ 0.25. In the following simu-
lation, the radii of the gel and pipe are 90 mm and 100 mm,
respectively. Figure 4(b) shows two contour plots of p(t) as
elastomer swells. The material parameters used in Fig. 4(b) are
Nv ¼ 0:1, v ¼ 0:4253, and D ¼ 8� 10�4mm2=s. It is found that
the maximum pressure p(t) applied on the pipe is on the same
order of the shear modulus NkT (¼4 MPa) of the elastomer, which
is unique for soft matters with large swelling ratios. To study the
effect of material parameters on the history of pressure p(t),
Fig. 4(c) plots the average p(t) on the pipe versus t for different
material parameters. It is found that the pressure p(t) increases
with the shear modulus (or equivalently, the normalized shear
modulus Nv) of the elastomer in an approximate linear fashion for
the same equilibrium swelling ratio. The approximated linear
fashion can be understood from the dimensional analysis that the
shear modulus is the only dimension towards the pressure p(t).
For the same shear modulus, the elastomer with a larger equilib-
rium swelling ratio provides higher stress than that with a smaller
equilibrium swelling ratio. Overall, it is found that the pressure
p(t) mainly depends on the shear modulus of the elastomer but not
the equilibrium swelling ratio. Therefore, this result suggests
choosing an elastomer with a larger modulus and also a smaller v
to reach a larger equilibrium swelling ratio. It should be noticed
here that the working environment in the oilfield is much harsher
(such as very high pressure) so that the example shown here only
attempts to show the basic physics.

In summary, this paper establishes an analogy between diffusion
and heat transfer when large deformation presents for gels. Using
this analogy, a finite element method is developed in the framework
of a commercial finite element package ABAQUS via two material-
specific user subroutines to describe the mechanical and mass
diffusion behaviors of gels. This method is then used to study two
transient problems of gels, namely indentation and swellable elasto-
mers. Since this method does not involve any element development,
but limits on the material level, many built-in capabilities in ABAQUS

can be straightforwardly used, such as, the contact problem that has
been used in the indentation and swellable elastomer problems. More
importantly, the discussion in this paper is not limited to any specific
materials; therefore, this method can be extended to other materials
that featured with coupled deformation and diffusion, such as, visco-
elastic material coupled with diffusion. It is hoped that this method is
able to serve as a useful numerical tool to study related materials and
problems due to its simplicity.
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