
Random analysis on controlled buckling structure for energy harvesting

Yong Wang,1,2 Teng Ma,2 Hongyu Yu,3 and Hanqing Jiang2,a)

1Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China
2School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe,
Arizona 85287, USA
3School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe,
Arizona 85287, USA

(Received 21 December 2012; accepted 17 January 2013; published online 1 February 2013)

The controlled buckling piezoelectric structures can be used for stretchable energy harvesting due

to the stretchability and piezoelectricity. In this paper, the ambient environmental excitation is

modeled as a bound-limited white noise, and the random analysis is conducted to study the system

response of controlled buckling structures. The spatial distribution of the harvestable energy is

revealed, and the optimal locations of electrodes for maximal energy output are indicated. The

optimal locations of electrodes are robust to the upper bound of environment excitation and the

applied strain. This work provides a theoretical basis for stretchable energy harvesting using

controlled buckling structures. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4789998]

Energy harvesting is to transform one type of energy,

such as mechanical vibration, heat, and light, into electrical

energy form by using different transduction mechanisms.

Due to almost ubiquitous existing of ambient kinetic

energy, much effort has been devoted to converting me-

chanical vibration energy into electric power by exploiting

piezoelectricity,1 electromagnetic induction,2 or capaci-

tance variations.2 Because of the structural simplicity of the

piezoelectric devices that only consist of piezoelectric

ceramics and electrodes and their compatibility with micro-

electromechanical systems, piezoelectric energy harvesting

devices to harness vibration energy have gained great atten-

tion. Many of these devices rely on linear resonance, and

the representative geometry is a cantilever beam with pie-

zoelectric material attached on the top or bottom surfaces

of the beam.3 The efficiency of energy harvesting using

cantilever-based devices is high only in the vicinity of the

system fundamental frequency but very low for other

frequency ranges. To resolve the shortcoming of cantilever-

based energy harvesting, some technologies has been devel-

oped, such as oscillator arrays for large frequency range

coverage4 and tunable-resonance.5 Compared with linear

resonance that has been widely used, nonlinear energy har-

vesting is more attractive due to the large response band-

width and high output energy. The typical nonlinear energy

harvesting includes inverted pendulum attached with per-

manent magnets,6 bistable curved beams, curved shells

with initial curvatures,7 and the resonating cantilever beams

attached to buckled slender bridges in which the piezoelec-

tric cantilevers are impulsively excited when the buckled

bridges snap through two equilibrium positions.8 It has

been found that superior power generation is realized by

using bistable buckled beams.9 Buckled piezoelectric

beams (such as zirconate titanate,10 aluminum nitride,11

and zinc oxide12) have also been used for stretchable

energy harvesting.

In this paper, we conducted random analysis for one

type of buckled structure, namely, controlled buckled

beams,12 to determine the random response under the

bound-limited white noise which is a reasonable approxi-

mation to ambient environment excitation. The stochastic

partial differential equations were solved to obtain the sys-

tem response. The results reveal the spatial distribution of

the harvestable energy in ambient environment and provide

the optimal locations of electrodes for maximal energy

output.

The fabrication process of the controlled buckling is

briefly summarized here, and the details have been presented

elsewhere.12–14 Figure 1(a) illustrates that a soft material

(e.g., poly(dimethylsiloxane) (PDMS)) is subjected by a pre-

strain epre (¼DL/L for length changed from L to L þ DL)

and modified by surface treatment to define activated and

inactivated regions with width Wact and Win, respectively.

The piezoelectric material (e.g., zinc oxide (ZnO)) nanorib-

bons are aligned parallel to the pre-strain direction on the

stretched PDMS substrate (Fig. 1(b)), where the piezoelectric

materials and PDMS substrate form strong and weak bond-

ing over the activated and inactivated sites, respectively. The

relaxation of the pre-strain epre in PDMS induces the ribbons

popping-up over the inactivated sites due to the interfacial

delamination (Fig. 1(c)). The pop-up wavelength is given

by13 k ¼ Win

1þ epre
. Figure 1(d) shows a tilted view of a scanning

electron microscope (SEM) image of controlled buckling

ZnO ribbons with 40% pre-strain, 370 nm thickness, and

Wact ¼ 40 lm, Win ¼ 300 lm. The pop-up structure with pie-

zoelectric materials provides a means for energy harvesting.

In the following, random analysis is conducted to study the

dynamic behavior of this type of structure that is buckled as

the initial state.

One element of the controlled buckling structure (i.e.,

the popped-up region) is modeled as a fixed-fixed beam.

Taking into account the geometric nonlinearity due to mid-

plane stretching,15,16 the nondimensional governing equation

is given bya)Email: hanqing.jiang@asu.edu.
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and the boundary conditions are

w ¼ @w

@x
¼ 0; at x ¼ 0; 1: (2)

Here the nondimensional spatial coordinate, time, and trans-

verse deflection are defined as x ¼ x̂=Win, t ¼ t̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð12qÞ

p
h=

W2
in, and w ¼

ffiffiffiffiffi
12
p

ŵ=h, in which x̂; t̂, and ŵ are the dimen-

sional spatial coordinate along with the ribbon direction,

time, and the transverse deflection, respectively. E, q, and h
are the Young’s modulus, density, and thickness of the pie-

zoelectric material, respectively. Other nondimensional vari-

ables are l ¼ l̂W2
in=ðbh2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qE=12

p
Þ, F ¼ 24

ffiffiffi
3
p

F̂W4
in=ðEbh4Þ,

and f1 ¼ 12W2
in=h2, in which l̂, F̂ are the damping coeffi-

cient and the distributed load and b is the ribbon width.

eapplied denotes the applied strain exerted on PDMS substrate

after relaxation of epre. In Eq. (1), the square bracket term

shows the effect of mid-plane stretching, and the right hand

side means random excitation.

By dropping the time-dependent terms in Eq. (1), one

arrives at a static solution, which gives the postbuckling con-

figuration with respect to applied strain eapplied,16

wstaticðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
epre � eapplied

ð1þ epreÞecr
� 1

r
½1� cosð2pxÞ�; (3)

where ecr ¼ p2

3
h

Win

� �2

is the critical buckling strain. To obtain

the vibration modes, the damping term (i.e., l @w
@t ) and the ex-

citation term (i.e., F term) are neglected, and a small disturb-

ance around the static postbuckling configuration wstaticðxÞ is

introduced as vðx; tÞ ¼ wðx; tÞ � wstaticðxÞ. The governing

equation and the corresponding boundary conditions with

respect to the small disturbance are given by
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Using the method of separation of variables, i.e., vðx; tÞ
¼ VðxÞTðtÞ, the solution of the space function VðxÞ can be

expressed as

VðxÞ ¼ d1sinðs1xÞ þ d2cosðs1xÞ þ d3sinhðs2xÞ

þ d4coshðs2xÞ þ d5

@2wstatic

@x2
; (5)

where s1;2 ¼
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is the non-

dimensional natural frequency, and X is the dimensional nat-

ural frequency. The relation between d5 and diði ¼ 1 � 4Þ is

x2 � 32p4 epre�eapplied

ð1þepreÞecr
� 1

h in o
d5 þ

Ð 1

0
@V
@x � d5

@3wstatic

@x3

� �
@wstatic

@x dx

¼ 0. Combining these relations and the boundary condition

(Eq. (4)), one determines the constants diði ¼ 1; 2; :::; 5Þ, as

well as the nondimensional natural frequencies xiði ¼
1; 2; :::Þ and the corresponding modal shapes around the

static postbuckling configuration wstaticðxÞ.
Figure 2 shows the results of the first four modal shapes

and the postbuckling after disturbance around the static post-

buckling configurations wstaticðxÞ for
epre�eapplied

ð1þepreÞecr
¼ 2� 104.

The natural frequencies show insensitivity to the pre- and

applied strains, since x1 ¼ 44:36, x2 2 ½73:39; 74:38�, x3

¼ 182:12, and x4 2 ½251:82; 259:45� for ðepre � eappliedÞ=½ð1
þ epreÞecr� 2 ½102; 106�. It is also noticed that the first-order

FIG. 1. Processing steps for controlled buckling piezoelectric structure on

PDMS substrate. (a) Pre-strained PDMS with periodic activated and inacti-

vated patterns. (b) Piezoelectric ribbons parallel to the pre-strain direction

are attached to the pre-strained PDMS substrate. (c) The relaxation of the

pre-strain in PDMS leads to buckles of piezoelectric ribbons. (d) Scanning

electron microscope image of controlled buckling ZnO ribbons with 40%

pres-strain, 370 nm thickness, and Wact ¼ 40 lm, Win ¼ 300 lm:
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and third-order modal shapes are asymmetric while the

second-order and fourth-order modal shapes are symmetric.

This phenomenon apparently distinguishes with that of the

planar beam and will induce the singular random behaviors

of the controlled buckling structure as to be discussed in the

following.

Now the external excitation term Fðx; tÞ and the damp-

ing term in Eq. (1) are considered. The external excitation

Fðx; tÞ is assumed to be spatially homogenous when the

source of excitation is far away from the controlled buckling

structure that are on the order of micrometers and varies with

time t, i.e., Fðx; tÞ ¼ fnðtÞ, where f is the excitation ampli-

tude and nðtÞ is a bound-limited white noise with correlation

function RnðsÞ and power spectrum density SnðxÞ.17 Under

random excitation, a disturbance vðx; tÞ is induced and can

be expanded by modal shapes18 vðx; tÞ ¼ VTðxÞ � TðtÞ, where

the bold symbols are for matrixes. Substituting the expanded

disturbance into the governing equation (4) and utilizing the

orthogonal properties of modal shapes, one arrives at

a � d
2T

dt2
þ b � dT

dt
þ c � T ¼ dnðtÞ; (6)

where a, b, c, and d are matrixes expressed in terms of modal

shapes. The power spectrum density matrix of TðtÞ is

STðxÞ ¼ �HðxÞ �HTðxÞSnðxÞ, where HðxÞ ¼ ð�x2aþ ixb

þ cÞ�1 � d is the frequency response function, i is the imagi-

nary unit, and the superscripts “bar” and “T” denote the

conjugate and transpose, respectively. Therefore, the power

spectrum density of the disturbance vðx; tÞ can be expressed as

Svðx;xÞ ¼ VTðxÞ � �HðxÞ �HTðxÞ � VðxÞSnðxÞ: (7)

The mean-square value of the disturbance vðx; tÞ can be

expressed through the integration of the associated power

spectrum density, i.e., E½v2� ¼
Ð1
�1 Svðx;xÞdx.

The disturbance caused by random excitation changes

the bending curvature and the maximal change of the axial

strain is proportional to curvature change, given by

Demax ¼ h
2

@2v
@x2

� �
max

. The expectation of the change of axial

strain under random vibration provides a means to evaluate

the location of maximum harvestable bending energy, which

is practically important for energy harvesting using pop-up

buckling structures. From Eq. (7), the power spectrum den-

sity and the mean-square value of the curvature change @2v
@x2

are given by

Sv00 ðx;xÞ ¼
d2VT

dx2
� �HðxÞ �HTðxÞ � d

2V

dx2
SnðxÞ

E½v002� ¼
ð1
�1

Sv00 ðx;xÞdx:
(8)

Figure 3(a) shows the power spectrum densities of the

disturbance Svðx;xÞ and the curvature change Sv00 ðx;xÞ at

x ¼ 0:25 normalized by that of the excitation SnðxÞ for

l ¼ 0:1, excitation constant f¼ 1, and ðepre � eappliedÞ=
½ð1þ epreÞecr� ¼ 2:0� 104. It is found that there are peaks at

x ¼ x2;x4 but no peaks at x ¼ x1;x3, because the first-

order and the third-order modal shapes are asymmetric as

FIG. 2. Analytical results of the first four-order modal shapes of controlled

buckling structure.

FIG. 3. Random analysis results. (a) The power spectrum densities of the

disturbance Svðx1;xÞ and the curvature change Sv00 ðx1;xÞ at x1 ¼ 0:25,

normalized by that of the excitation SnðxÞ, as functions of x. (b) The mean-

square values of the disturbance E½v2� and curvature change E½v002�, normal-

ized by S0, as functions of x.
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shown in Fig. 2 and almost cannot be excited by the

uniform-distribution mono-source excitation.

Suppose the power spectrum density of bound-limited

white noise nðtÞ is

SnðxÞ ¼
S0; ½�80; 80�
0; other

:

�
(9)

The mean-square values of the disturbance E½v2� and curva-

ture change E½v002�, normalized by S0, are shown in Fig. 3(b).

It is found that the mean-square values (E½v2� and E½v002�) are

symmetric about the center. The maximal mean-square value

of curvature change (E½v002�) appears at x ¼ 0; 1 and three

extreme values appear at x ¼ 0:220; 0:780, and x ¼ 1=2, in

which the value at x ¼ 0:220; 0:780 is larger than that at

x ¼ 1=2. For large energy output, the electrode should be

placed at the locations with maximal curvature changes.

These results suggest that the optimal locations of the elec-

trode are the anchor points between the activated and inacti-

vated areas (i.e., x ¼ 0; 1), and the sub-optimal locations are

x ¼ 0:220; 0:780.

We also studied the effects of band-width of external

excitation and the applied strain on the optimal locations

of electrodes. The dependences of the optimal locations of

electrodes and the extreme values of mean-square value of

curvature change on the upper bound xupper of external exci-

tation are shown in Fig. 4, where the upper bound xupper is

limited in the interval [5, 100]. Figure 4(a) shows the relation

between the optimal locations of electrodes and the upper

bound xupper, where only half length of the beam is shown

due to the symmetry of the optimal locations. It is observed

that the first and the third optimal locations keep constant

(0, and 1/2), while the second optimal locations vary slightly

upon the upper bound xupper (in the ranges [0.207, 0.220]).

This result indicates that the robustness of the optimal loca-

tions of electrodes on the upper bound of external excitation

and the conclusion in Fig. 3(b) holds for a wide range of fre-

quency. Figure 4(b) shows the relation of the extreme values

of mean-square value of curvature change E½v002� to the upper

bound xupper. It is found that the harvestable energy

increases significantly as the upper bound xupper passes the

second fundamental natural frequency x2 and then keeps

constant for further increase of the upper bound.

The dependences of the optimal locations of electrodes

and the extreme values of mean-square value of curvature

change on applied strain are studied for two representative

excitations, xupper ¼ 80 > x2 and xupper ¼ 60 < x2, and

the applied strain is limited in the interval ðepre � eappliedÞ=
½ð1þ epreÞecr� 2 ½102; 106�. Figure 4(c) shows the relation

between the optimal locations and the applied strain, in

which the first and the third optimal location keep constant

(0 and 1/2), while the second optimal location slightly

changes from 0.221 to 0.220 for xupper ¼ 80 and from 0.212

to 0.211 for xupper ¼ 60. Figure 4(d) shows the dependency

of log10ðE½v00
2�=S0Þ on applied strain for xupper ¼ 80 and 60.

Once again, it is found that the dependency on applied

strain is weak but strong on xupper, which is consistent with

Fig. 4(b).

The random response of controlled buckling structure

subject to the bound-limited white noise is studied in this pa-

per. The spatial distribution of the harvestable energy is

revealed and the optimal locations of electrodes for maximal

FIG. 4. Effects of xupper and applied

strain. (a) The dependence of the optimal

locations of electrodes on the upper bound

xupper of environment excitation. (b) The

dependence of the extreme values of

mean-square value of curvature change on

the upper bound xupper of environment ex-

citation. (c) The dependence of the opti-

mal locations of electrodes on the applied

strain for xupper ¼ 80 and 60. (d) The de-

pendence of the extreme values of mean-

square value of curvature change on the

applied strain for xupper ¼ 80 and 60.
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energy output are indicated. The optimal locations of electro-

des are robust to the upper bound of environment excitation

and the applied strain. This work provides a theoretical basis

to use the pop-up structures for stretchable energy harvesting

device. It is noticed that although the present study does not

consider the electrodes that are indispensable in real device,

the approach used in this analysis also holds for multilayer

structures by simply using the equivalent material properties.
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