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a b s t r a c t

Physical gels are characterized by dynamic cross-links that are constantly created and

broken, changing its state between solid and liquid under influence of environmental

factors. This restructuring ability of physical gels makes them an important class of

materials with many applications, such as in drug delivery. In this article, we present a

thermodynamic model for physical gels that considers both the elastic properties of the

network and the transient nature of the cross-links. The cross-links’ reformation is

captured through a connectivity tensor M at the microscopic level. The macroscopic

quantities, such as the volume fraction of the monomer f, number of monomers per

cross-link s, and the number of cross-links per volume q, are defined by statistic

averaging. A mean-field energy functional for the gel is constructed based on these

variables. The equilibrium equations and the stress are obtained at the current state.

We study the static thermodynamic properties of physical gels predicted by the model.

We discuss the problems of un-constrained swelling and stress driven phase transitions

of physical gels and describe the conditions under which these phenomena arise as

functions of the bond activation energy Ea, polymer/solvent interaction parameter w,

and external stress p.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Gels are materials where polymer chains form the links of a network immersed in a typically liquid environment. The
polymer chains are cross-linked at the microscopic level by chemical bonds or weaker physical bonds; the type of bond is
used to label the macroscopic material as a chemical or a physical gel, respectively. The physical bonds can have diverse
origins, such as van der Waals interactions or hydrogen bonding, and can involve a complex local structure such as the
formation of a small crystalline domain. Because of their significant liquid content (up to 99% liquid by weight), often
comparable to conditions in physiological tissue, gels have found various applications, especially in biomedical contexts.
For example, gels are used as scaffolds in tissue engineering (Lee and Mooney, 2001; Lee et al., 2006; Beck et al., 2007), as
systems of sustained drug delivery (Jeong et al., 1997; Qiu and Park, 2001), as materials for contact lenses, and in many
stimuli-sensitive actuators (Beebe et al., 2000; Sidorenko et al., 2007). In the rational design of the materials required for
these applications, knowledge and prediction of key properties are crucial. It is therefore highly desirable to have specific
models for these materials capable of describing their response to external stimuli.

The different microscopic behaviors of cross-links in chemical and physical gels endow them with distinct macroscopic
properties. Since the chemical cross-links prevent the chemical gels from dissolving in its environment solvent, chemical
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gels behave macroscopically like solids. However, because of the weaker nature of the cross-linking bonds, physical cross-
links are found in a constant cycle of creation and dissolution in physical gels. At short time scales, against quick
deformation, the cross-links do not have time to dissolve and the gel shares the same solid-like behavior of chemical gels.
At long time scales, bond destruction is able to eventually release all shear or anisotropic stress. In other words, physical
gels can adapt to the presence of boundaries in much similar way as a liquid at long time scales.

Physical gels exhibit important thermally driven properties. Their phase diagram can contain a reversible solution–gel
(i.e., sol–gel) transition within the range of temperatures of the host fluid (water in most cases). These transitions are
particularly useful in applications when the materials exhibit a lower critical solution temperature (LCST). In this case the
polymer is in solution at low temperatures and becomes gel at a higher temperature (Ono et al., 2007). These materials can
be deployed in biomedical applications as injectable polymers, liquid at room temperature but forming a gel at
physiological temperature. Therefore, physical gels are sometimes called thermoreversible gels, i.e., the creation and
dissolution of cross-links or sol–gel transition are temperature driven and reversible.

Theoretical models for the thermodynamic behavior of chemical gels have been extensively studied. Many of these models
are based on Flory–Huggins solution theory (Flory, 1941, 1942; Huggins, 1941). Recently, Hong et al. (2008) have developed a
rigorous framework to describe the coupled large deformation and diffusion in chemical gels. The solid-like property of
chemical gels makes it feasible to use the concept of ‘‘markers’’ that are commonly used in solid mechanics to describe the
deformation from one configuration (with position X) to another (with position x(X,t)). By tracking the trajectory of the markers
upon deformation in the Lagrangian description, the macroscopic deformation gradient F¼ @xðX,tÞ=@X can be defined and the
stress tensor at the macroscopic level is just the work conjugate with respect to the deformation gradient F. The kinetic law of
diffusion follows the Fickian model and was presented in a rigorous manner by differentiating the different configurations.

In contrast, the microscopic characteristics of physical gels, i.e., the creation and dissolution of cross-links lead to new
forms of macroscopic behaviors. The ‘‘markers’’ can still be used but the microscopic characteristic associated with them
change. The connectivity of the cross-links at the microscopic level becomes an independent internal degree of freedom.
Their connectivity is not solely governed by the deformation from a reference state but also depends on its own evolution
rule. Therefore, the stress cannot be solely determined by the deformation; it also depends on the continuous
reconstruction of the network which ‘‘fades out’’ the deformation history. More precisely, the stress of the materials is a
function of its instantaneous connectivity at the current state.

This paper develops a phenomenological model for physical gels that emphasizes internal variables that describe both
the density of cross-links and their spatial organization. We obtain a mean field model of the thermodynamic properties of
the physical gels. Fig. 1 illustrates some of the properties of the model. At the microscopic level, we define a connectivity
tensor to describe the local environment of the cross-links. When the reformation of cross-links occurs, the neighbors of a
cross-link and the intrinsic length of the linking polymer segments change, which alters the connectivity tensor. Therefore,
the connectivity tensor can capture the reformation of the cross-links at this level. We formulate a macroscopic free energy
density function based on the mean-field model and the description of the gel through the connectivity tensor. We propose
a model for the dynamics of the connectivity of cross-links that explicitly considers the evolution of the cross-links. We use
standard thermodynamic notation (e.g., Prigogine, 1967) as well as some terminology from Hong et al. (2008).

The structure of the paper is the following. Section 2 defines the connectivity tensor and its counterpart under statistical
average. A kinetic law for the evolution of cross-links is also given in this section. Section 3 formulates a mean-field free
energy density function. The equilibrium equations are derived in Section 4, while the explicit form of the macroscopic

P

P

Fig. 1. The scheme shows a gel formed by a set of polymers. Contacts between pairs of polymers can lead to the formation of cross-links; a subset of these

cross-links is indicated with filled circles. The scheme shows two examples of pairs of polymers chains, marked red and blue, that form a cross-link here

shown as a black circle. These cross-links have four neighboring cross-links marked with grey circles. The bottom panel shows the relative vectors of

position for the neighbors of these cross-links. These vectors are used to define the connectivity tensor as explained in the text. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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stress tensor is obtained in Section 5. Section 6 discusses the physical range of values of key parameters. Section 7 analyzes
the un-constrained swelling of a physical gel, while a stress driven phase transition is studied in Section 8, followed by
concluding remarks of this paper in Section 9. The two appendices show that this model degenerates to the case of
chemical gels when the cross-links become fixed.

2. Field variables: connectivity tensor, number density of monomers, and number of monomers per cross-link

2.1. Microscopic level

As shown in Fig. 1, at the microscopic level, polymer chains are cross linked by physical cross-links, marked as filled
circles. These cross-links are randomly distributed in space. In the most common cases, the cross-links have four nearest-
neighbor cross-links.1 For example, cross-link P joins the red and blue polymer chains and has a pair of nearest neighbors in
each chain (top panel). Define four linking vectors, RPn ðn¼ 1,2,3,4Þ that emanate from the cross-link P and end at the four
neighboring cross-links (bottom panel). Thus, these four linking vectors can reflect the local distribution of cross-links at
microscopic level. This definition can be applied to any cross-links. At the cross-link P, a symmetric and positive definite
connectivity tensor MP is defined by these linking vectors as

MP
ij ¼

1

4

X4

n ¼ 1

RPn

i RPn

j : ð1Þ

The dynamics of the cross-links alters the number of monomers between two cross-links along a polymer chain. Similar
to the case of the linking vectors RPn , the number of monomers allocated to a cross-link, such as P, is defined as the
following average:

sP ¼
1

4

X4

n ¼ 1

sPn , ð2Þ

where sPn ðn¼ 1,2,3,4Þ is the number of monomers along nth branch of a polymer chain emanating from P and ending at the
corresponding neighboring cross-links. It should be noted that the linking vectors RPn (or the connectivity tensor MP) and
the number of monomers sP are independent, because RPn describes the geometric distribution of monomers in space,
while sP gives information of mass distribution of monomers.

2.2. Macroscopic level

The connectivity tensor M at a material particle (or a marker) is the statistic average of its counterpart at the
microscopic level. This average leads to a macroscopic connectivity tensor

Mij ¼/MP
ijS: ð3Þ

The trace of M represents the average square of link–link distance at a material particle

Mkk ¼
1

4

X4

i ¼ 1

ðRPn Þ
2

* +
: ð4Þ

Similarly, at each material particle, the average number of monomers allocated to a cross-link is the statistic average of
its microscopic variables

s¼/sPS: ð5Þ

Thus, the connectivity tensor M and average number of monomers s allocated to a cross-link form continuum fields,
M(x, t) and s(x, t), that evolve with time and characterize the dynamics of the cross-links.

2.2.1. Isotropic state

The isotropic state is an ideal state in which the probability of finding nearest-neighbor cross-links of a given cross-link
is the same along any spatial direction. In other words, the local environment for all cross-links is identical.

The macroscopic connectivity tensor Mo for an isotropic state is proportional to the identity tensor

Mo ¼
1

3
R2

o

1 0 0

0 1 0

0 0 1

2
64

3
75, ð6Þ

where Ro is the statistic average of the length of linking vectors, and the subscript ‘‘o’’ denotes the isotropic state.

1 Here we do not consider the rare situations in which the cross-links do not have four nearest-neighbor crosslinks, such as the case when the

crosslinking agent requires the simultaneous presence of more than two chains to produce the association or the links are created at extremes of the

chains with finite length. We assume that these rare cases are not statistically significant for the model.
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We assume that in the isotropic state the local level connectivity structure is similar to that of the diamond lattice
structure. In both cases the repeated unit (the atom of diamond structure and the cross-link of the gel network) has a
coordination number 4. They both lead, upon averaging, to isotropic connectivity tensors and have equal distances
between nearest neighbors. Derived quantities such as the density of cross-links are therefore calculated in the isotropic
state using the information for the diamond lattice. The number density of cross-links is equivalent to the number density
of atoms in the diamond structure and is given by

qo ¼
3
ffiffiffi
3
p

8R3
o

: ð7Þ

The number density of monomers allocated to each cross-link is

fo ¼
3
ffiffiffi
3
p

so

4R3
o

, ð8Þ

where so is the average number of monomers between two cross-links. Other representative structures can be used instead
of the diamond lattice structure. A different choice of structure will lead to different prefactors in Eqs. (7) and (8) but lead
to the same qualitative properties of the model.

2.2.2. Arbitrary state

In general, the deformations of the gel lead to non-isotropic inhomogeneous states. In the following, we establish the
relations between the connectivity tensor in an arbitrary state and the isotropic state.

The symmetry and positive definiteness of the connectivity tensor M allows its construction, for an arbitrary state, by
means of a series of orthogonal transformations applied to a reference isotropic state that has the same density of cross-
links. We write

M¼QUDUMuoUDUQ T
¼ TUMuoUTT , ð9Þ

where Q is an orthogonal tensor, D is diagonal and M0o is isotropic. We can choose D to have determinant 9D9=1. Then we
can write

Muo ¼
1

3
ðRuoÞ

2

1 0 0

0 1 0

0 0 1

2
64

3
75, ð10Þ

where R0o is the average length of linking vectors at the reference isotropic state. T is the equivalent transformation tensor
that maps the reference isotropic state to an arbitrary state. Therefore, at least locally, the connectivity tensor for an
arbitrary state can be mapped to that of a reference isotropic state by means of affine transformations. During the affine
transformations the number of monomers in a reference region is not changed even as the total volume does. The affine
transformations do no modify the number of cross-links of the region either.

It should be emphasized that, in general, an arbitrary state cannot be mapped, using the previous transformation, from
the physical isotropic initial state since the number of cross-links may be different, as illustrated in Fig. 2. However, any
arbitrary state can be geometrically mapped from a reference isotropic state while preserving number of cross-links. For
each arbitrary state there is a corresponding reference isotropic state. Although reference states are usually chosen as
stress-free states in continuum mechanics, it is not required that the reference state in this problem be an actual physical
state of the body. The reference state can have a conceptual nature.

In Eq. (9), tensor T geometrically maps an infinitesimal vector dX0 defined in a reference isotropic state to dx in an
arbitrary state by

dx¼ TUdXu: ð11Þ

Since the reference isotropic state and the arbitrary state have the same number of cross-links, the tensor T has the
same properties as the deformation gradient F in continuum mechanics. An infinitesimal element in the reference isotropic
state with volume dV0o changes, upon deformation, to du in the arbitrary state. The ratio of the volumetric change is given

Mapping

Isotropic state:
physical

No mapping:

Arbitrary state: physical Isotropic state:
reference

0R 0R

Fig. 2. Mappings between physical or reference isotropic states and arbitrary state. The reference isotropic state has different average length of linking

vectors, marked as R00 compared with R0 for the physically isotropic state. The mapping is only possible if the number of cross-links is preserved by the

transformation.
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by the determinant of the transformation tensor T

detT¼
dv

dV uo
: ð12Þ

which we have chosen to be det9T9¼ 1. The number of monomers is conserved during this affine transformation and we
can simply use their density in the reference isotropic state. Combining with Eq. (8), we can write the number density of
monomers in the arbitrary state as

f¼
s

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p : ð13Þ

Similarly, the number density of cross-links can be related to M as

q¼
f
2s
¼

1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p : ð14Þ

2.3. Dynamic evolution of field variables

The evolution of the monomer density f and the connectivity tensor M can be modeled on the basis of fairly general
properties of the system as described below. We note that the previous relation given for the average link length s in terms
of our independent variables fully determines its dynamics once the evolution rules for those variables are specified.

2.3.1. Evolution of f
The evolution of f is governed by the mass conservation law

@f
@t
þ
@ðfvp

i Þ

@xi
¼ 0,

where ui
p is the absolute velocity of the polymer network. We assume that ui

p approximates the relative velocity of the
polymer network with respect to the solvent ui by taking the solvent as a fixed background. Without loss of the physical
generality, this assumption can lead to a completed scheme by latterly relating ui with the stress of gel through the
conservation of the linear momentum (Eq. (39)).

2.3.2. Evolution of M
We consider two different forms of transformation of the connectivity tensor M.

(1) Deformation induced evolution of M
First we discuss the affine transformations induced by macroscopic deformations of the gel. In these transformations
the cross-links are preserved. An example of the effect of this type of transformation appears in Fig. 3a. At time t, a
material particle occupies a position with coordinate x. At time t+Dt, this material particle is found at position ~x after a
displacement Dx

~x ¼ xþDx: ð15Þ

With the displacement field Dx, the linking vector R is mapped to a new value ~R as

~R ¼ fUR, ð16Þ

where f maps between two configurations with the same cross-links

fij ¼ dijþ
@Dxi

@xj
: ð17Þ

The increment of displacement field Dx also leads to the infinitesimal strain

eij ¼
1

2

@ðDxiÞ

@xj
þ
@ðDxjÞ

@xi

� �
: ð18Þ

The connectivity tensor M at time t+Dt is obtained from its value at time t as

~M ¼ fUMUfT : ð19Þ

The rate of change of the connectivity tensor M due to deformation Dx is then given by

dM

dt deformation ¼ 2
de
dt

UM

���� ð20Þ

where we have used the symmetry properties of the tensor and the relation between the rates f and e

df

dt
¼

de
dt

Uf: ð21Þ
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(2) Reconstruction induced evolution of M
The dynamic nature of cross-links in physical gels permits their relaxation from arbitrary stress states to isotropic
stress states. As the location of cross-links is dynamic, new cross-links can be formed at energetically favorable
positions that reduce stress. Such processes are illustrated in Fig. 3b. Conversely, cross-links that impose connectivities
that lead to unbalanced or excess stress become more likely to disappear. Both processes lead an arbitrary initial state
into an isotropic stress final state. We assume the following phenomenological model to describe the evolution of the
connectivity tensor M due to these network reconfigurations

dM

dt reconstruction ¼
1

tre
ðM�mf1Þ:

���� ð22Þ

Here tre is the characteristic time for the reconstruction of the cross-links and mf1 is the optimal isotropic state
depending on the number density of monomers f at the current time t. We describe in the next section the
construction of explicit expressions for the free energy Wtot of the system. The optimal value mf is determined by
minimizing this total free energy. As discussed below, in Section 3, the free energy depends on M and f, so that mf is a
function of f. Because f changes with time, this desired isotropic state mf1 also evolves with time. In other words,
during the dynamics evolution, this optimal isotropic state will not be reached, but provides a target or direction for
the evolution. Only the last isotropic state can be realized.
The overall evolution of the connectivity tensor M is then given by

dM

dt
¼ 2

de
dt

UMþ
1

tre
ðM�mf1Þ: ð23Þ

A full description of the evolution of the gel requires complementary laws for the dynamics of the monomer
concentration and the motion of the background fluid. The proposed dynamical description of the connectivity tensor
can be incorporated into different schemes that describe the full gel. We note, in addition, that the idea that there
exists at least two well differentiated processes during dynamic transformations of gels is well known, for both

Fig. 3. Scheme of the two types of dynamical transformations considered by the model. (a) The gel undergoes an affine transformation where the average

positions of the cross-linkers are changed following a macroscopic displacement field. Black markers identify the same cross-links in both panels. (b) An

example of reconstruction of the network: the white cross-link disappears while the black one is created.
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chemical (Suzuki et al., 1999) and physical gels (Leon et al., 2009). Our proposed scheme identifies explicitly these two
different mechanisms as the reconstruction of internal structure and the simpler affined deformations induced by
motion of the boundaries of the system.

3. Free energy density function

We now consider the free energy density function W. Its integral over a volume v at the current state computes the total
energy of the system due to the presence of the gel, i.e., Wtot ¼

R
vWdv. W consists of three contributions, the elastic energy

of polymer chain Welastic, the mixing energy of solvent and polymer Wmix, and the bond energy associated to the creation of
cross-links Wbond, i.e.

W ¼WelasticþWmixþWbond: ð24Þ

3.1. Elasticity energy density Welastic

To describe the polymer segments between cross-links, we use the Gaussian chain model (Flory, 1953; Rubinstein and
Colby, 2003). An unconstrained polymer segment composed by s monomers explores a number of states proportional to

Oo ¼ 23s, ð25Þ

i.e., the number of random walks of length s in a cubic lattice. When the segment correspond to a link in a gel, its extremes
are constrained to occupy positions with relative length R; the number of states with such configuration is given by

O¼ 23sP3dðMkk,sÞ ¼ 23s 3

2ps

� �3=2

exp �
3Mkk

2sb2

� �
, ð26Þ

where P3d(Mkk, s) is the probability distribution function of the end-to-end vector with distance Rð ¼
ffiffiffiffiffiffiffiffiffi
Mkk

p
Þ (Eq. (4)) of an

ideal polymer chain of s monomers (Rubinstein and Colby, 2003), and b is the Kuhn length of monomer. The increase of
entropy due to the constraint is then given by the standard thermodynamic computation

DS¼ k lnO�k lnOo ¼
3

2
k ln3�

3

2
k lnð2psÞ�

3kMkk

2sb2
, ð27Þ

where k is Boltzmann’s constant. The change of free energy per segment thus becomes

DF ¼�TDS¼
3

2
kT lnð2psÞþ

Mkk

sb2
�lnð3Þ

� �
, ð28Þ

where T is the temperature. Since the volume per monomer is 1/f, and the volume associated with a link is s/f, the elastic
energy density is given by

Welastic ¼
DF

s=f
¼

3fkT

2s
lnð2psÞþ

Mkk

sb2
�lnð3Þ

� �
: ð29Þ

Here the density of free energy is calculated with respect to the volume at the current state; instead of using the elastic
energy per reference volume (Hong et al., 2008).

This formulation holds for both physical gels in which the number of monomers per chain s is a variable and chemical
gels in which s is fixed and becomes a parameter. Appendix A shows that this elastic energy density can be presented in the
standard format for chemical gels (Rubinstein and Colby, 2003).

3.2. Mixing energy density Wmix

Following Flory–Huggins’ polymer solution theory (Rubinstein and Colby, 2003), the energy of mixing a s-monomer
polymer chain and solvents is given by

DWmix ¼ kT
c

s
lncþð1�cÞlnð1�cÞþwcð1�cÞ

h i
, ð30Þ

where c is the volume fraction of polymer, 1�c is the volume fraction of solvent, and w is Flory’s dimensionless parameter
to describe the hydrophilicity of the polymer. The mixing energy density is thus the energy of mixing per unit lattice
volume (i.e., the specific volume of a solvent molecule, us) by

Wmix ¼
kT

vs
ð1�vmfÞlnð1�vmfÞþwvmfð1�vmfÞ
� 	

, ð31Þ

where um is the specific volume of a monomer unit.
In introducing this mixing energy term, we assume that all monomers are not involved in the bond formation with all

other monomers and solvent molecules in a way that is properly described by a mean field theory. The interactions that
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give rise to a gel forming bond are rare and these separate interactions are considered independently in the model and
described in the next subsection.

3.3. Bond energy density Wbond

To describe the contribution of cross-links, we assume that they all have the same structure. We coarse-grain the details
of the bonding interaction and simply write an effective free energy that assigns equal contribution to all of them

Wbond ¼�qEa, ð32Þ

where Ea(40) is the activation energy or the energy required to disassociate a cross-link and q is the number density of the
cross-links (see Eq. (14)).

We can further contrast the two different modes of interaction between monomers, namely generic polymer–polymer
interactions in mixing energy and bond formation interactions in bond energy. One may consider a case in which the
monomers can be found in two different states, one in which the interaction with other monomers is weak, and a second
state where a bond can be formed. This scenario is discussed, for example, in Solis et al. (2005). Alternatively, the polymer
might be constructed of two different monomers. The more abundant monomer has weak interactions with all other
monomers, while a minority monomer can participate in bond formation. Both scenarios can be addressed through the
same model. The main difference lies in the different values of number of monomers between two links, but these
differences effectively disappear when we consider the value of s averaged over a large region. We also note that the
experimental measurement of interaction parameter w should be conducted for polymers only consisted of inert
monomers in order to avoid possible overlap between the mixing and bond energies.

We note that if it is assumed that the bonding energy has an Arrhenius form, the activation energy Ea is related to the
characteristic time tre for the reconstruction by

tre ¼ Aexp
Ea

kT

� �
, ð33Þ

where the prefactor A has dimensions of time and does not depend on temperature and activation energy. This simple
model can be modified to include further details. For example, the activation energy Ea may contain an explicit
temperature dependence to capture the LCST behavior.

The number density of cross-links q is a variable (given by Eq. (14)) for physical gels so that the bond energy density
Wbond enters the picture. However for chemical gels, the cross-links are permanent and the number of monomers between
two cross-links is fixed and q is just a parameter, such that the bond energy density Wbond is just a constant and does not
enter the picture (or can be omitted in the free energy calculation).

3.4. Constraint of number of monomers between two cross-links

The components of the free energy density, Welastic, Wmix, and Wbond, depend on two independent variables, such as M
and f; then the number of monomers between two cross-links, s, is determined according to Eq. (13). We note, however,
that the mean-field theory presented has a limitation: the number of monomers between two cross-links cannot be
indefinitely small. It is also consistent with the physical picture that the monomers capable of forming bonds are minority
and there is lowest value of the average number of monomers in the chain segment between two nearest neighbored
crosslinks. We only consider values such that sZslower. When the minimum of the free energy corresponds to smaller
values of the link length, we consider that the gel is physically close to a dry state as there is relatively little space for the
solvent. We implement this inequality and the relation to the independent variables using a Lagrange multiplier, and write

W ¼WþPð4f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p

�slower�b
2
Þ: ð34Þ

Here P is the Lagrange multiplier and b2(Z0) is the slack variable to ensure the satisfaction of the inequality constraint.
The values of the linker length are also limited by the constraint that the linkers must be shorter than the monomer
number N of the polymers. This constraint can be used to identify the solution (sol) phase, but it is not directly
implemented in the free energy.

3.5. Nominal free energy density function Ŵ

The nominal free energy density function Ŵ is defined as the energy per volume in the reference state, i.e.,
Wtot ¼

R
Vo

ŴdV . The conservation of monomers requires that
R

Vo
fodV ¼

R
vfdv. At the reference state (i.e., dry state),

vmfo ¼ 1. Therefore, the nominal free energy function Ŵ is obtained as

Ŵ ¼
W

vmf
, ð35Þ
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or explicitly

Ŵ ¼
3kT

8vmf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p ln

8pf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p

3

 !
þ

Mkk

4f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p b2

" #

þ
kT

vs

1

vmf
�1

� �
lnð1�vmfÞþwð1�vmfÞ

� �
�

Ea

8vmf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p

þPð4f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p

�slower�b
2
Þ ð36Þ

4. Conservation of linear momentum

We denote the stress of the gel by sij. The conservation of linear momentum in continuum mechanics can be written as
the pair of conditions

sij,j ¼ bi ð37Þ

in the volume of the system, and

sijnj ¼ ti ð38Þ

on its surface. Here bi is the body force, ti the surface traction defined in the current state and ni the outward normal
direction of a surface in the current state. The above equilibrium equation in the volume Eq. (37) neglects the inertial term
by assuming that the gel is in a quasi-static state.

A simple constitutive model for the determination of the body force in the gel is to assume that it originates only from
viscous drag against the background fluid, i.e., bi ¼ Fif. Here Fi is the drag force applied on one monomer particle by fluid
environment due to the viscosity of the solvent and given by Stokes’s law Fi ¼ 6pZavi (Jones, 2002), where Z is the viscosity
of the solvent; a¼ v1=3

m is the radius of one monomer particle; and vi is the velocity of the polymer network with respect to
the solvents. Therefore, the conservation of linear momentum in volume Eq. (37) assumes that the net force from the
divergence of stress is proportional to the relative velocity between the gel and solvents

sij,j ¼ 6pZv1=3
m fvi: ð39Þ

It can be observed that the velocity ui links the volume fraction of monomers f, connectivity tensor M, and stress of gel
sij; and thus a completed scheme is established. Similar equilibrium equations have been used in the THB model (Tanaka
et al., 1973) and can also be understood to arise from microscopic Rouse-type dynamics (Doi and Edwards, 1986). The
Stokes–Einstein formula can be used to relate the factor of proportionality between stress and relative velocity vi to the
diffusion constant D of the monomers in solution via D¼ kT=ð6pZv1=3

m Þ.

5. Stress in physical gels

We select a material particle that occupies spatial position x at time t and consider a field of virtual displacements dx
under which there is no cross-links reformation. Based on Eqs. (17) and (19), the virtual mapping function is given by

dfij ¼ dijþ
@dxi

@xj
: ð40Þ

The connectivity tensor M and the number density of monomers f at the virtual state x+dx are given by

Mðxþdx,tÞ ¼ dfUMðx,tÞUdfT
ð41Þ

and

fðxþdx,tÞ ¼
fðx,tÞ

detðdfÞ
: ð42Þ

Thus free energy density W at state x+dx can be obtained by plugging Eqs. (41) and (42) into Eq. (24), i.e.,
W ¼Wðxþdx,tÞ.

Associated with this virtual displacement field, the body force and the surface traction do work and cause the change of
the free energy density via

dU ¼

Z
v

bidxidvþ

Z
a

tidxida¼

Z
v

Wðxþdx,tÞdv, ð43Þ

where dv is the element volume and da is the element area, in the current state; and the modified free energy density W is
given by Eq. (34). Insert the conservation of linear momentum Eqs. (37) and (38) into Eq. (43) and applying the Gaussian
divergence theorem, the work dU can be expressed as

dU ¼

Z
v
sijdeijdv: ð44Þ
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Consequently, the stress sij is the thermodynamic variable conjugate to the strain eij. Let the virtual displacement to be
infinitesimal, i.e., dx=0. The stress is expressed as

sij ¼
@Wðxþdx,tÞ

@eij

����
dx ¼ 0

: ð45Þ

Explicitly, we obtain

sij ¼
3fkT

s2b2
Mijþ

kT

vs
lnð1�vmfÞþvmfþwf2v2

m

h i
dij: ð46Þ

The first term in Eq. (46) is the contribution from the deformation of the network, while the second term is the typical
contribution from the regular solution model. It should be pointed out here that since the number of cross-links remains
constant under the virtual displacement field dx, the activation energy Ea does not explicitly appear in this expression for
the stress r, but implicitly affects stress through M and f.

When the number of monomers s per cross-link or number of cross-links q is fixed, the physical gels degenerate to
chemical gels. Appendix B shows that the stress evaluated in Eq. (46) gives the correct limit for chemical gels when the
bonds are fixed (e.g., Rubinstein and Colby, 2003; Hong et al., 2008).

6. Dimensional analysis

It is useful to reduce the number of parameters of the model by assuming that the characteristic size of all components of the
model, monomers and solvent molecules is the same, i.e., um=us=u. This approximation entails only small corrections to the free
energy density and is commonly used (e.g., Hong et al., 2008). We retain some of the molecular details of the system by using the
aspect-ratio parameter a=u/b3. This parameter compares the volume occupied by a monomer and the volume of a cube with sizes
equal to the Khun length. The aspect ratio is largest for polymers that have large side structures. In this paper we use a value for
this aspect ratio of a=30. The energy (e.g., Ea) is normalized by kT and the energy density (or stress) is normalized by kT/v. At
room temperature, kT=4�10�21 J and a representative value of v is the volume of a water molecule, approximately 10�28 m3.
The activation energy Ea/kT varies from 2.5 (Jones, 2002) to 250 (Emsley, 1980) depending on the type of physical bonding, i.e.,
hydrogen bonds versus van der Waals bonding. In the paper we consider only values of the bond energy with Ea/kT410. The
number of monomers per chain varies in a very wide range, from 101 to 108. In the following calculation, we use a minimum link
length of slower=100. These parameters used have been chosen to best exhibit interesting features of the model, such as the clear
transition between sol and gel states. We note that the value of the aspect ratio a is relatively large and that the bonding energies
consider here are strong. When a more complete choice of parameters and further model details are included, these quantities can
be chosen closer to experimentally relevant values. More detailed versions of the model would consider, for example, different
connectivity structures, more complex elastic models for the polymer cross-linkers.

This model has an intrinsic time scale tre. When the system considered has finite volume, the length dimension or the
characteristic size of the problem, L, enters the picture and introduces another time scale tdiff=L2/D, which can be used to
normalize time. Thus the length dimension and velocity will be normalized by L and L/tdiff, respectively. The interplay
between the intrinsic time scale tre and the diffusion-induced time scale tdiff can be understood by normalizing the
evolution law of the connectivity tensor M (Eq. 23) as

@M

@t
¼ 2

@e
@t

UMþ
tdiff

tre
ðM�mf1Þ, ð47Þ

where t¼ t=tdiff is the normalized time. When tre is comparable to tdiff, both the contributions from the deformation and
the reconstructions are important; when tre is much greater than tdiff, in other words, the reconstruction occurs in much a
slower rate than diffusion, M solely depends on the deformation. The latter degenerates to the case of chemical gel, in
which the reconstruction is suppressed.

7. Free swelling of physical gels

We now apply our formalism to the problem of the swelling of a gel without constraints in a solvent. When the physical
gels swell without constraints, the final equilibrium state is isotropic described by a homogeneous isotropic connectivity
tensor M=meq1 and constant f. Their values are determined by

@Ŵ

@f
¼ 0

@Ŵ

@m
¼ 0, ð48Þ

and the inequality constraint is ensured by @Ŵ=@P¼ 0. Therefore, the state of free swelling gel can be determined by
solving these three nonlinear equations. Eliminating Ea from Eq. (48), one can arrive at this equation

3v

16fm2b2
þ lnð1�vfÞþvfþwv2f2
h i

¼ 0: ð49Þ
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This is the stress (Eq. 46) in the isotropic state; so that the free swelling means a stress-free swelling state. Instead of
solving these nonlinear equations, the free swelling can be determined by minimizing the free energy density Ŵðm,fÞwith
the inequality constraint 4fm3=2

Zslower .

Fig. 4. Contour plots of the strain energy density function Ŵ=kT with respect to uf and m/b2 in un-constrained swelling. (a) The minimal energy (marked

as n) occurs in an area satisfying the inequality constrain 4fm3=2 oslower for Ea/kT=28.5 and w=0.7; (b) the minimal energy occurs at the equality

constraint 4fm3=2 oslower for relatively strong bond energy Ea/kT=60 and w=0.7; (c) the minimal energy is reached for vanishing uf and infinite m/b2

when the bond energy is relatively weak (Ea/kT=15).
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Pictorial interpretation of this constrained minimization can be shown in the contour plots of Ŵðm,fÞ and 4fm3=2. Fig. 4a
shows the energy contour for Ea/kT=28.5 and w=0.7. The energy contours are closed curves and the minimal energy is found at
ufeq=0.478 and meq/b2=171.4. For relatively strong bond energy, Ea/kT=60 and w=0.7, the contours are plotted in Fig. 4b.
Different from the energy contour shown in Fig. 4a, which are closed curves, the contour plots are open curves and concave
downwards. The tangential point of the Ŵðm,fÞ contour and the 4fm3=2

Zslower curve is marked by an asterisk with ufeq=0.51
and meq/b2=130.1. This is the critical point with the minimal energy under the inequality constraint. This result indicate that for
the current set of parameters with relative strong bond energy Ea, polymer chains tend to form the maximum allowable bonds
to efficiently reduce the energy so that the minimal energy occurs at the equality constraint. Fig. 4c shows the contour plots of
Ŵ=kT with relative weak bond energy Ea/kT=15 and w=0.2, as well as 4fm3=2 ¼ 4000. The contour plot of Ŵ=kT does not
contain a minimum value. The white line indicates a trend: as the energy Ŵ=kT further decreases, the equilibrium values of
ufeq and m/b2 approach 0 and infinity, respectively. More explicitly, the equilibrium value of s, the number of monomers
between two cross-links, is infinity and the equilibrium state is a polymer solution. Based on Eq. (39), large m/b2 makes elastic
and bond energies vanishing so that the current model recovers to the solution theory, i.e., the equilibrium polymer
concentration ufeq is solely determined by the mixing energy. It should be pointed out that to rigorously degenerate to the
solution theory, the mixing energy (Eq. (31)) should also incorporate this term, ðkT=vsÞðvmf=NÞln ðvmf=NÞ to include the
entropy from unconfined polymer chains, where N is the number of monomers per polymer chain. In this case, the bond
activation energy or bond energy is too weak to hold the polymer chains together so that all cross-links are broken and the
vectors defining the connectivity tensor do not exist. In other words, the gel dissolves into a polymer solution.

Fig. 5 shows the effect of the activation energy on the equilibrium polymer concentration. A phase transition is
observed, at which the equilibrium polymer concentration has a sharp change. There always exists a critical activation
energy at which the phase transition from solution to gel occurs. For relatively hydrophobic polymers (e.g., w=0.7), the
phase transition occurs at a relatively weak activation energy. For relatively hydrophilic polymers (w=0.5, 0.2), the mixing
energy prefers to dissolve the polymer, but this effect is balanced with a relative strong activation energy. One can also
observe a phase transitions when the interaction parameter w has a sudden change. The phase transition can be classified
to sol–gel transition and gel–gel transition. The occurrence of different type of phase transition strongly depends on the
activation energy. These phase transitions, sol–gel transition (Tempel et al., 1996; Jeong et al., 1999, 2002) and gel–gel
transition (Hirokawa and Tanaka, 1984; Bae et al., 1991) have been extensively observed in experiments. The change of
Ea/kT and w can be realized by variations of the temperature. In other words, there exists a critical temperature at which the
phase transition occurs in the macroscopic state. This behavior has been extensively observed in thermoreversible gels
(such as PNIPAAm gel) (Ono et al., 2007).

The phase behavior is also illustrated for fixed activation energy and various w as shown in Fig. 6. For a weak activation
energy (e.g., Ea/kT=15), only the sol state is present. The gel state is present when the activation energy is relatively strong
(e.g., Ea/kT=60). The sol–gel transition occurs at the moderate activation energy (e.g., Ea/kT=30, 40, and 50).

The previous results assume that the polymer is trapped in a region from which solvent can enter or exit without
energetic penalty. These fluxes change the area of the interface between the gel and the pure solvent region and it is
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assumed that there is no cost to this area change. In this scenario the condition for equilibrium is the balance of osmotic
pressure in the gel and the outside environment (Eq. (48)1) but not the balance of the chemical potential of monomers. This
scenario is approximately realizable with a proper selection of boundary material, such as an extremely flexible, solvent-
permeable but monomer-impermeable balloon. However, a more interesting case in experiments is when the gel is in
direct contact with the solvent and is not constrained by an interface. In this second case, the gel is in fact in equilibrium
with a dilute polymer phase. The conditions for equilibrium are that both osmotic pressure and chemical potential be equal
in both phases. We examine these now in more detail.

It can be shown that the osmotic pressure for a very dilute polymer solution can be approximately taken to be zero
since it is, to first order, proportional to concentration of polymer. On the other hand, the osmotic pressure of the gel is
proportional to @Ŵ=@f. Thus, the equilibrium of osmotic pressures is well approximated by Eq. (48)1.

Next, the chemical potential of the monomers is obtained as the derivative of the free energy density W (per current
volume) with respect to the number density of monomer f. In the dilute phase the chemical potential contains a term
proportional to the logarithm of concentration lnðvmf=NÞ. This term is highly sensitive to concentration. When a gel is
immersed in a solvent and the solvent region is not several orders of magnitude larger than the size of the gel, the chemical
potential condition can be quickly satisfied. The gel can release a small fraction of its polymer chains into the surrounding
solution thus changing the environment concentration and the chemical potential of the solvent phase. Eventually the
chemical potential is equilibrated, at the cost of a small polymer chain number change. We conclude that the equilibrium
conditions for free swelling and coexistence with a dilute solvent lead to essentially identical solutions.

The only caveat to this broad rule is that when the minimum of the constrained problem for free swelling is found to
correspond to a solvent phase (s4N). In such case, the true equilibrium state of the system is a single homogenous dilute
phase instead of coexistence of two separate phases.

With the identification outlined above, we can now qualitatively compare our results for the free swelling problem with
experimental determinations of the coexistence region of the phase diagram of specific physical gels. We consider, in
particular, the case of copolymers with a majority of NIPAAm monomers (Leon et al., 2009) that have been extensively
used in drug delivery. For these materials, several prominent features appear in their phase diagrams. In the temperature-
volume fraction phase diagram (Fig. 4 in Leon et al., 2009), there exists a critical temperature (i.e., LCST) at which the phase
separation of sol and gel is presented. Above the LCST a system decomposes into a mixture of sol and gel states, i.e.,
coexistence states. In polymeric systems the key effect of temperature change is the modification of the w parameter. For
LCST type systems a larger temperature corresponds to a greater magnitude of the interaction parameter w. By the
connection made above between the free swelling problem and coexistence, we see that the features of the phase diagram
closely correspond to those of our results (Fig. 6). We have a sharp onset of swelling that corresponds to the presence of the
LCST and a gel/sol coexistence state above the sharp onset. This feature qualitatively agrees with the experiment of a
NIPAAm based physical gel.

8. Stress driven phase transition

Many experiments have shown the so-called yielding behavior of physical gels, in which a gel changes to solution upon
application of an external stress, such as the shear stress by rheometer (e.g., Kim et al., 2003; Rogovina et al., 2008;
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Putz and Burghelea, 2009). We now study the stress driven phase transition in physical gels. A hydrostatic stress p (po0
for compression and p40 for tension) is applied so that the stress satisfies the following equation:

3v

16fm2b2
þ lnð1�vfÞþvfþwv2f2
h i

¼
pv

kT
: ð50Þ

The minimization of the free energy density with respect to the internal variable m, i.e., @Ŵ=@m¼ 0 is also required,
along with the inequality constraint enforced by @Ŵ=@P¼ 0, which form three nonlinear equations to determine the
swelling of a physical gel under hydrostatic stress. Similar to the free swelling case, this problem can also be solved by
minimizing the modified free energy density function L¼ Ŵðm,fÞ�p=ðvfÞ with the inequality constraint 4fm3=2

Zslower .
Here the term p/(uf) is the work done by the hydrostatic stress.

First, we study the compression induced phase transition. The number of monomers between two cross-links, s, can
clearly indicate the solution or gel state. Large or infinite s denotes solution state and finite s is for gel state. Fig. 7 shows the
relation between s and pressure pu/kT, for a given activation energy Ea/kT=30 and various w. Critical hydrostatic pressure
for the sol–gel transition depends on the hydrophilicity of the polymer. The critical pressure for gels with relative large w is
less than that with relative small w. The mechanism for the sol–gel transition can be understood as the following. Upon
compression, the monomers that are initially at the solution state are brought together. Once the monomer concentration
reaches a critical value, cross-links start to form so that the phase transition occurs. The critical compressive stress for
hydrophilic polymers (small w) is greater than that for the hydrophobic ones (large w) because the former tends to dissolve
in solvent.

Next, we study the tension case. In tension, Eq. (50) can only be satisfied if the polymer is actually forming
a gel. Therefore, the location of the gel–sol transition is determined by the critical point at which solutions of Eq. (50) do
not exist. Fig. 8a shows the relation between s and tensile stress pu/kT, for an activation energy Ea/kT=60 and various w.
The transition predicted is sharp. Before the tensile stress reaches the critical point, the volume fraction of monomers
ufeq decreases or equivalently the volume of the gel increases to accommodate the tensile stress pu/kT without
the dissociation of cross-links (Fig. 8b). Once the critical stress is reached, gel-sol phase transition is trigged and all cross-
links are broken. The gel–sol transition occurs when the increase of gel volume alone cannot accommodate the
deformation.

9. Concluding remarks

We have developed a phenomenological model for physical gels. A mean-field framework is used to capture the details
at the microscopic level, e.g., cross-links’ reformation, through a connectivity tensor M, and to define the measurable
quantities at the macroscopic level by statistic averaging, such as the volume fraction of the monomer f, number of
monomers per cross-link s, and the number of cross-links per volume q. An evolution rule for the connectivity tensor M has
been proposed that includes the effect of cross-link reformation. We have proposed a free energy density function for
physical gels, which consists of three components, namely elastic energy, mixing energy, and bond energy. The free energy
density function depends on two independent variables, M and f. The equilibrium equations and the stress are derived
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Fig. 7. Phase transition by compression. The graph shows the number of monomers between two cross linkers, s, versus the hydrostatic pressure pu/kT for

Ea/kT=30 and various values of the w parameter. It is observed that a sol–gel transition occur at a critical pressure value.

Y. An et al. / J. Mech. Phys. Solids 58 (2010) 2083–20992096



Author's personal copy

from the work conjugate relation at the current state. The presented framework is able to recover the case of chemical gels
when the number of monomers per cross-link s is fixed.

We have examined the thermodynamic properties of this model and considered two specific conditions: the
un-constrained swelling of a physical gels and its counterpart under imposed stress conditions. We have used the model to
study the properties of the sol–gel transitions as a function of the bond activation energy Ea and the polymer/solvent
interaction parameter w. Our study of stress-driven behavior clearly shows the expected reformation of bonds under such
conditions.

We intend to further explore other properties of physical gels that can be addressed by means of this model and its
extensions. In particular, the model we have presented provides a framework for the exploration not only of the static
properties of physical gels, but is constructed so as to address its dynamic properties. We have proposed a model for the
evolution of the key variable of our approach, the connectivity tensor M. A full dynamic model will be developed in a
separate publication.
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Appendix A

For chemical gels, all accessible states can be obtained by means of a map from an isotropic state. The connectivity
tensor M at the arbitrary states is related to its counterpart M0 at the isotropic state via

M¼ FUMoUFT
ðA:1Þ

where F is the deformation gradient, FT the transpose of deformation gradient, and Mo is given by (similar to Eq. (6))

Mo ¼
1

3
R2

oI, ðA:2Þ

where I is the second-order identity tensor. The mean-square displacement of a random walk, from one cross-link to a
neighbor cross-link along a segment of a polymer chain with s monomers, is given by (Rubinstein and Colby, 2003)

R2
o ¼ sb2: ðA:3Þ

Eqs. (A.2) and (A.3) show that for chemical gel in which the number of monomers s between two cross-links is fixed,
Kuhn constant b has a simple relation with the isotropic connectivity tensor Mo. The trace of M is thus

Mkk ¼
1

3
sb2ðl2

1þl
2
2þl

2
3Þ, ðA:4Þ

where liði¼ 1,2,3Þ are the principle stretches or the eigenvalues of the deformation gradient F. The number of cross-link
segments per volume is given by

n¼
f
s
: ðA:5Þ

The elastic energy density for chemical gels can be obtained by substituting Eqs. (A.4) and (A.5) into the elastic energy
density given by Eq. (29)

Wchemical gel
elastic ¼

nkT

2
l2

1þl
2
2þl

2
3þ3ln

2ps

3

� �� �
: ðA:6Þ

We note that the constant term ð3nkT=2Þlnð2ps=3Þ is different from the one that appears in the literature (e.g.,
Rubinstein and Colby, 2003) since the reference states are different. We also point out that this elastic energy does not have
the logarithmic term ln(l1l2l3) which was originally included in Flory’s model (Flory, 1953) and recently modified by
Hong et al. (2008). Deam and Edwards (1976) have discussed the reasons for the difference in these expressions. Some
current theoretical literature, supported by experimental results, omits logarithmic term. See for example, Rubinstein and
Colby (2003) and Han et al. (1999).

Appendix B

Eqs. (A.1) and (A.2) have shown that

Mij ¼
1

3
sb2FiK FjK : ðB:1Þ

The conservation of monomers gives

fo ¼fdetðFÞ, ðB:2Þ

where the number density of monomers at the reference state (i.e., dry state) is related to monomer volume via fovm ¼ 1.
Then the number of cross-link segments per volume at the reference state is given by

N ¼ fo

s
ðB:3Þ

which is used in a recent paper (Hong et al., 2008). Combining Eqs. (B.1) and (B.3) with the expression for stress, Eq. (46),
we obtain the stress for chemical gels as

sij ¼
N kT

detðFÞ
FiKFjKþ

kT

vs
ln 1�

1

detðFÞ

� �
þ

1

detðFÞ
þ

w
detðFÞ2

( )
dij ðB:4Þ

We note that the stress does not contain a term of the form �ðN kT=detðFÞÞdij, which was included in Hong et al. (2008).
This term is derived from the logarithmic term in the elastic energy. Appendix A discusses the omission of this term in our
model.
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