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Abstract
The buckling mode of a thin film lying on a soft substrate has been used to determine the
elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In
this paper, dimensional analysis and three-dimensional nonlinear finite element computations
have been made to investigate the buckling of a film with finite width bonded to a compliant
substrate. Our study demonstrates that the effect of Poisson’s ratio of the film can be neglected
when its width–thickness ratio is smaller than 20. For wider films, omitting the influence of
Poisson’s ratio may lead to a significant systematic error in the measurement of the Young’s
modulus and, therefore, the film should be treated as a plate. It is also found that the
assumption of the uniform interfacial normal stress along the width of the film made in the
theoretical analysis does not cause an evident error, even when its width is comparable to its
thickness. Based on the computational results, we further present a simple expression to
correlate the buckling wavelength with the width and thickness of the film and the material
properties (Young’s moduli and Poisson’s ratios) of the film and substrate, which has a similar
form to that in the classical plane-strain problem. The fundamental solutions reported here are
not only very accurate in a broad range of geometric and material parameters but also
convenient for practical use since they do not involve any complex calculation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The buckling of a stiff layer on a compliant substrate was
addressed a long time ago in the context of structural
sandwich panels [1], and it remains a critical and fundamental
issue in mechanics of materials. Recently, considerable
efforts have been directed towards understanding the physical
mechanisms underlying various phenomena associated with
surface buckling and generating controlled buckling patterns

4 Authors to whom any correspondence should be addressed.

on different length scales, which involve various applications in
such fields as thin-film metrology [2–7], stretchable electronics
[8–10] and optical gratings [11]. This study is concerned
with the application of the buckling mode of a relatively stiff
layer on a compliant substrate to measure the elastic modulus
of the former. Cerda and Mahadevan [12] pointed out that
research on the geometry and physics of wrinkling could form
the basis of a highly sensitive quantitative wrinkling assay
for the mechanical characterization of thin solid membranes.
Stafford et al [2] proposed a buckling-based technique to
measure the moduli of ultra-thin polymeric films. It uses the
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following fundamental relation to correlate the wavelength,
film thickness and material properties in the plane-strain
case [13–15]:

λ0 = 2πh

(
E∗

f

3E∗
s

)1/3

, (1)

where λ0 is the wavelength and h the thickness of the film.
E∗ = E/(1 − ν2) is the plane-strain modulus and ν the
Poisson’s ratio. Throughout this paper, the subscripts ‘f’ and
‘s’ stand for the film and the substrate, respectively.

Recently, the buckling-based technique proposed by
Stafford et al [2] has been demonstrated to be applicable
in a wide range of problems by using different fundamental
relations. For example, Huang et al [7] developed a new
relation to determine the Young’s modulus of an ultra-thin
film when the effects of surface stresses are significant. Khang
et al [16] measured the wavelength of buckled single-walled
carbon nanotubes on a PDMS substrate to calculate the elastic
modulus of the former. It is noted that equation (1) is based
on the infinitesimal strain assumption, and when the substrate
undergoes finite deformation, the result reported by Jiang
et al [17] and Song et al [18] should be used to measure the
Young’s moduli of the film. The application of equation (1)
also requires that the width of the film is much larger than its
buckling wavelength. Or specifically, equation (1) is for plane-
strain problems. In many practical measurements, however,
this condition may not be satisfied. For instance, when
the technique is applied to a stretchable metal interconnect
[8–10], which is a one-dimensional-like stripe, the plane-strain
assumption seems to be improper and equation (1) may lead
to significant errors. In this case, Tarasovs and Andersons
[19] and Jiang et al [20] investigated, both numerically and
theoretically, the buckling of a film with a finite width lying on
a compliant substrate. Their studies indicate that for relatively
narrow films, the wavelength predicted by equation (1) can be
much larger than the actual value. The analyses of Tarasovs and
Andersons [19] and Jiang et al [20] help understand the effects
of the finite width of the film and are valuable for practical
measurements. However, it is still of paramount interest
to further investigate the fundamental relations used in the
buckling-based technique for measuring the elastic modulus
of thin films. For instance, the film has been treated as a
beam in the previous theoretical studies and thus the effect
of its Poisson’s ratio has not been included. It is expected that
omitting the influence of Poisson’s ratio may lead to significant
error in practical measurements, especially when the width–
thickness ratio of the film is relatively large. In addition,
Tarasovs and Andersons [19] and Jiang et al [20] assumed
that the normal stress on the interface is uniform along the
width of the film. However, this is not the case in practice,
as will be shown in section 4.3. Quantitative analysis needs
to be performed to examine the validity of the assumption of
uniform interfacial stress distribution.

In this study, our attention is focused on developing
a fundamental solution with higher accuracy for the film-
buckling problem. In order to further illustrate the importance
of the accuracy of the fundamental solution, we take
equation (1) as an example. The elastic modulus of the film

from the measured wavelength is determined via the following
relation if equation (1) is used:

Ef

1 − ν2
f

= 3Es

1 − ν2
s

(
λ0

2πh

)3

. (2)

Equation (2) shows that the measured Ef is sensitive to the
errors in the wavelength, λ0; for instance, an error of 10% in
λ0 will lead to an error of more than 30% in Ef . The errors in
the wavelength may originate either from some uncertainties
in experiments or from the assumptions made in the derivation
of the fundamental relation. Here particular attention is paid
to the second aspect in order to develop more accurate and
simple relations correlating the buckling wavelength with
the film geometry and the material properties of the film
and the substrate. To this end, large-scale and fully three-
dimensional nonlinear finite element computations are carried
out to investigate, under the guideline of dimensional analysis,
the buckling of a film with a finite width lying on a compliant
substrate. The fundamental relations presented here are very
accurate in a broad range of the width–thickness ratio of the
film and can be easily used to determine the elastic modulus
of the film by the buckling-based measurement method.

2. Dimensional analysis

First, we apply the dimensional analysis method to the buckling
problem of a thin film with finite width ideally bonded to a
compliant substrate, as shown in figure 1(a). The dimensional
analysis can provide not only insights into the dependence
of the buckling wavelength on the geometry of the film and
material properties, but also a guideline for the finite element
computations described in the following.

Assume the film/substrate system illustrated in figure 1(a)
is subjected to an externally applied compressive strain, εa,
along the length direction of the film. The film may buckle
when εa exceeds a critical value. Its buckling wavelength, λ,
may be a function of the following independent parameters

λ = f (εa, Ef , vf , Es, vs, w, h), (3)

where w and h represent the width and thickness of the film,
respectively, E is Young’s modulus and ν is Poisson’s ratio.

This problem involves two-dimensionally independent
quantities. Without loss of generality, we take them as
Es and h. The remaining variables are then dimensionally
dependent. Consequently, applying the Pi theorem of
dimensional analysis [21] to equation (3) gives

λ = h�

(
εa,

Ef

Es
, vf , vs,

w

h

)
. (4)

For infinitesimal strain problems [2, 20, 22], the dimensionless
function � is independent of εa, and equation (4) reduces to

λ = h�

(
Ef

Es
, vf , vs,

w

h

)
. (5)
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Figure 1. (a) Schematic diagram of a buckled film with a finite
width lying on a compliant substrate subjected to compression,
(b) the boundary conditions applied in the finite element analysis.

For an infinite substrate, introduce the plane-strain modu-
lus as [15, 19, 20, 22]

E∗
s = Es

1 − v2
s

. (6)

Then equation (5) is further simplified as

λ = h�

(
Ef

E∗
s

, vf ,
w

h

)
. (7)

For the system in figure 1(a), when the film is treated as a
plate, the effect of the film’s Poisson’s ratio will be reflected
in the bending stiffness [15, 22, 23]. Thus equation (7) can be
re-expressed as

λ = h�1

(
E∗

f

E∗
s

,
w

h

)
, (8)

where E∗
f = Ef/(1 − v2

f ).
When the film is simplified as a beam [1, 19, 20], the effect

of the Poisson’s ratio of the film will not come into play and
equation (7) reduces to

λ = h�2

(
Ef

E∗
s

,
w

h

)
. (9)

Figure 2. Part of the deformed mesh of finite element model in the
computation.

It is expected that the effect of the Poisson’s ratio of the film
will depend on the ratio w/h. For larger values of w/h, the
film may be postulated as a plate while for smaller values
of w/h it may be better to treat the film as a beam. In the
following section, systematic finite element simulations will be
performed to examine the role which the Poisson’s ratio plays
in the buckling of the film. By supposing the film as a beam,
Jiang et al [20] recently reported an expression for equation (9).
They assumed that the interfacial stress is uniform along
the width of the film, which is distinctly different from the
actual distribution, as will be shown in section 4.3. Hence,
another purpose of our finite element analysis is to examine the
error caused by the uniform interfacial stress assumption and
to further determine explicit and more accurate expressions
of the dimensionless functions �1 and �2 appearing in
equations (8) and (9).

3. Computational model

We performed a large number of three-dimensional finite
element computations to study the buckling behaviour of the
film/substrate system shown in figure 1(a). The computational
model for the finite element simulation is schematized in
figure 1(b). Refer to a Cartesian coordinate system (o-xyz).
The system is symmetric with respect to the y–z coordinate
plane and then, for the sake of simplicity, only a half of the
model is simulated in the FEM analysis. The symmetric
boundary condition is specified on the symmetric surface. The
end of z = 0 is fixed and a given displacement is added to
the opposite end. The bottom surface is constrained in the y

direction, and all the other boundaries are traction-free.
Although the strains in the system are small, the problem is

geometrically nonlinear and the film undergoes finite rotation.
The analysis is carried out by using the commercial finite
element software, ABAQUS (Version 6.8.1). The film is
perfectly bonded to the substrate using ‘tie’ constraints in the
ABAQUS software. C3D20R element is used for the film,
C3D4 and C3D8R elements are used to model the substrate.
The modelling system contains nearly 600 000 degrees of
freedom. Figure 2 represents the mesh of the computational
model.
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Figure 3. The variation of the normalized dimensionless function �
with respect to the Poisson’s ratios of the film. � is normalized by
�0.27, which represents the value of � under νf = 0.27.

Convergence analysis is carried out for each given width–
thickness ratio w/h of the film. We carefully examine the
effects of the substrate dimensions, which are chosen to be
sufficiently large (e.g. more than 50 times the film thickness)
such that the solutions are insensitive either to the substrate
sizes or to the external boundary conditions. In the FEM
analysis, the compressive strain is controlled along the z

direction such that the assumption of infinitesimal deformation
holds.

For each group of geometric and material parameters, only
the wavelengths that are homogeneous along the z direction are
considered to be effective in data analysis. The wavelengths
near to the two ends are ruled out in the analysis due to the
boundary effects.

4. Results and discussions

4.1. Effects of the Poisson’s ratio of the film on the buckling
wavelength

The analysis in section 2 shows that the Poisson’s ratio of
the film does not come into play when the film is simplified
as a beam, and its influence is represented in the plane-
strain modulus when the film is modelled as a plate. In this
section, we examine the effect of the Poisson’s ratio of the
film via fully three-dimensional finite element simulations. In
the computations, the Young’s modulus and Poisson’s ratio
of the substrate are taken as 10 MPa and 0.45, respectively.
The Young’s modulus of the film is set as 130 GPa, and
its Poisson’s ratio varies from 0.1 to 0.5. We take several
representative width–thickness ratios of the film, w/h = 2,
10, 20, 40 and 100.

For some representative values of the width/thickness
ratio w/h and Poisson’s ratio νf , the normalized dimensionless
function � in equation (7) is calculated and given in figure 3,
where �0.27 represents the value of � at vf = 0.27. It is seen
from the figure that the error in the wavelength λ induced by
neglecting the effect of Poisson’s ratio νf for w/h = 40 is
around 5%. This could produce an error up to 15% in the
measurement of Young’s modulus Ef of the film, since Ef is

proportional to the cube of λ in the approximate expression
in equation (2). Therefore, it may be concluded that only
when the ratio w/h is small, it is reasonable to neglect the
effect of Poisson’s ratio and to treat the film as a beam, as in
the theoretical analyses of Jiang et al [20] and Tarasovs and
Andersons [19]. For larger w/h, figure 3 shows that the effects
of vf are pronounced, especially for nearly incompressible or
incompressible films (e.g. vf > 0.4). In this case, it is better
to model the film as a plate to account for the effect of vf ,
which can be represented in the plane-strain modulus, as given
in equation (8). This point will be further validated in what
follows.

4.2. Dependence of the wavelength on the film’s geometry
and material properties

As described in section 1, the accuracy of the fundamental
relation is crucial for determining the film’s elastic modulus in
the use of the buckling-based measurement method [2] from
the viewpoint of inverse analysis. For the buckling of a film
with finite width bonded to a compliant substrate, it is difficult
to derive an analytical solution correlating the wavelength
with the film geometry and material properties. Thus we
will determine the explicit expressions of the dimensionless
functions �1 in equation (8) and �2 in equation (9) via
systematic finite element computations. In our analysis, the
width–thickness ratio of the film, w/h, varies from 2 to 200,
and the detailed values of w/h used in the examples are listed
in table 1. The Young’s modulus of the film varies from 7.5
to 480 GPa, as shown in table 1, while its Poisson’s ratio vf

is kept as 0.27. The Young’s modulus and Poisson’s ratio of
the substrate are fixed as Es = 10 MPa and vs = 0.45 in
all the examples. The above parameters lead to the variation
of E∗

f /E∗
s in the range from 700 to 48 000. More than

100 examples of time-consuming large scale simulations are
carried out by using ABAQUS.

Inspired by equation (1) and based on the computational
results of the large number of examples, we find that the
dimensionless function �1 in equation (8) can be given by

�1 = 2π

(
E∗

f

3E∗
s

)p1

, (10)

where the exponent p1 is a function of the width–thickness
ratio, w/h. When w is much larger than h, the value of p1

approaches 1/3 and then the result degenerates to the classical
solution given by equation (1). The exponent p1 is determined
by fitting the computational results using equation (10) for the
ratio w/h larger than 20. Figure 4 shows the computational
results and the curve-fitting results for the ratio w/h = 40 and
100, respectively. The exponent p1 corresponding to different
values of w/h is given by the following Prony series (figure 5):

p1 = A1e[−w/(ht1)] + A2e[−w/(ht2)] + A3e[−w/(ht3)] + A0, (11)

where A0, A1, A2, A3, t1, t2 and t3 are all constants and given in
table 2. It is noted that in the determination of �1, the Poisson’s
ratio is taken as vf = 0.27 and its effects are represented in the
plane-strain modulus. Furthermore, we calculate and compare
�1 corresponding to different values of Poisson’s ratio vf in
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Table 1. The values of the width/thickness ratio w/h and Young’s modulus Ef of the film used in the finite element analysis.

Parameters Values

w/h 2 10/3 5 20/3 10 20 200/7 40 100 200
Ef (GPa) 480 340 255 190 130 75 38.5 20 7.5 —

Figure 4. Variation of the normalized wavelength λ/h with respect
to the modulus ratio E∗

f /(3E∗
s ): (a) w/h = 40, (b) w/h = 100,

where E∗
s = Es/(1 − v2

s ) and E∗
f = Ef/(1 − v2

f ).

the range from 0.1 to 0.5. The results are also given in figure 4
and magnified in the inset. The numerical results match the
fitting curve very well, implying that the effect of Poisson’s
ratio of the film can be well represented by the plane-strain
modulus.

According to our above analysis on the effects of the
Poisson’s ratio of the film, the film can be assumed to be a
beam and equation (9) works provided that the ratio w/h is
not very large, e.g. w/h � 20. The computational results
show that �2 can be described by

�2 = 2π

(
Ef

3E∗
s

)p2

. (12)

It has a similar form as equation (10) except that the plane-
strain modulus E∗

f in equation (10) has been replaced by the
elastic modulus of the film Ef in equation (12). The exponent
p2 is also a function of the film’s width–thickness ratio, w/h.
The dependence relationship of p2 on w/h is determined by

Figure 5. Dependence of the exponent p1 on the ratio w/h.

fitting the finite element numerical results using equation (12),
as shown in figure 6. The value of p2 can be well fitted by the
following Prony series (figure 7):

p2 = B1e[−w/(hs1)] + B2e[−w/(hs2)] + B3e[−w/(hs3)] + B0, (13)

where B0, B1, B2, B3, s1, s2 and s3 are all constants and their
values are given in table 3. In selecting the fitting functions
of p1 and p2, the following requirements should be satisfied:
(i) they approach 1/3 when w is much larger than h and (ii) the
functions fit the numerical results with high accuracy in the
whole range of w/h. It is pointed out that fitting functions
in other simple forms are also thinkable provided that the
above requirements can be satisfied. The difference between
equations (10) and (12) lies in the effects of the Poisson’s ratio
of the film. Figure 3 shows that for a smaller ratio of w/h,
the effects of Poisson’s ratio vf are negligible; however, vf

begins to influence the buckling wavelength obviously with
the increase in w/h. The difference between vf = 0.1 and
vf = 0.5 comes to about 5% for w/h = 40, which will be
magnified up to 15% in determining the elastic modulus in the
inverse problem. Consequently, significant errors will occur
if one applies equation (10) for a smaller ratio of w/h. For a
larger ratio of w/h, the effect of vf will become remarkable
and should be taken into account. Therefore, equation (10)
should be employed for wide films while equation (12) is valid
for narrow films.

4.3. Validity of the interfacial stress assumption

Based on the theoretical analysis, Jiang et al [20] gave a
theoretical solution for equation (9) as well as a form of the
dimensionless function �2. They assumed that the interfacial
normal stress σy between the film and the substrate is uniform
along the width direction of the film. However, figure 8
shows that this is not the case especially when the film
width is comparable to its thickness. The magnitude of σy
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Table 2. Coefficients in equation (11).

Coefficients A0 A1 t1 A2 t2 A3 t3

Values 1/3 −0.015 06 116.048 65 −0.042 40 14.652 46 −0.013 96 116.048 20

Figure 6. The variation of the normalized wavelength λ/h
with respect to the modulus ratio Ef/(3E∗

s ), (a) w/h = 5; and
(b) w/h = 10, where E∗

s = Es/(1 − v2
s ).

near the edge may have a big difference from that in the
middle. Therefore, it is of interest to carefully examine the
applicability of the assumption of the uniform interfacial stress
σy. Our computational results permit us to undertake such a
quantitative examination.

The interfacial normal stress along the width is highly
nonuniform, as shown in figure 8, especially for a smaller
value of w/h. We compare the computational results with
the theoretical solution of Jiang et al [20]. It is found that
under the given material properties and film geometry, the
wavelengths predicted by using Jiang et al’s solution is in
good agreement with the present computational results and
the difference is within 5%. Figure 6 gives two typical plots
for such a comparison. In figure 6(a), the difference between
the numerical and theoretical solutions is less than 3% and in
figure 6(b), the difference is smaller than 2%. This indicates
that although the actual interfacial stress distribution is not
uniform, the uniform assumption in the theoretical analysis is
reasonable in most situations.

Figure 7. Dependence of the exponent p2 on the ratio of w/h.

Considering its good agreements with the computational
results, the theoretical solution of Jiang et al [20] is still
used here to show the applicability of the function form of
equation (12). The data points in figure 9 represent the
theoretical solution of Jiang et al [20] under some typical ratios
of w/h and the curves are the numerical fitting results by using
equation (12). It is seen that equation (12) can indeed capture
the prominent features of the theoretical solution.

5. Conclusions

Using the dimensional analysis and large-scale three-
dimensional nonlinear finite element computations of about
200 examples, we studied the buckling of a film with a finite
width bonded on a compliant substrate. In summary, the
following conclusions have been made.

First, it is shown that the effect of Poisson’s ratio depends
on the width–thickness ratio of the film. For a smaller ratio
of w/h (e.g. w/h < 20), this effect is negligible and the
fundamental relation can be given by equation (9). For larger
ratios of w/h, the Poisson’s ratio effect can be represented
by the plane-strain modulus and the fundamental relation is
formulated in equation (8).

Second, it is demonstrated that the fundamental relations
given by equations (8) and (9) can be unified to a simple form,
i.e. λ = 2πh(rE)pn , where rE = E∗

f /(3E∗
s ) for equation (8) and

rE = Ef/(3E∗
s ) for equation (9). The exponent pn (n = 1, 2)

is not a constant but a function of w/h, which has been
determined for equations (8) and (9), respectively, by using
finite element computations. The results reported here may
serve as the fundamental solutions to determine the Young’s
modulus of the film with a finite width. These relations are
convenient and accurate to be used in practical measurements
since solving the nonlinear equation is not necessary and a
pocket calculator is sufficient.

Additionally, we addressed the effectiveness of the
assumption about the interfacial normal stress distribution
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Table 3. Coefficients in equation (13).

Coefficients B0 B1 s1 B2 s2 B3 s3

Values 0.299 66 1.412 77 2.988 43 −0.718 98 2.543 96 −0.769 26 3.590 32

Figure 8. Variation of the normalized normal stress σy on the
film–substrate interface with the normalized distance from the
boundary, where σy is normalized by its value at the centre of the
film. The distance is measured from the edge of the film to its
central line and is normalized by the film width.

Figure 9. Comparison of the theoretical solution of Jiang et al [20]
and the fitting results by equation (12) for four representative values
of the film’s width/thickness ratio, w/h = 4, 8, 12 and 18.

made in some recent theoretical analyses. Although the
practical interfacial normal stress is not uniform along the
width direction of the film, the assumption of the uniform
distribution may lead to reasonable results.

Finally, it is worth mentioning that this study is limited
to the buckling of a single film with finite width bonded
to a soft elastic substrate. In some practical circumstances,
multiple strips with finite width on the compliant substrate
are used. In recent theoretical work by Jiang et al, [20], the
buckling of multiple strips with finite width on the elastomeric
substrate has been addressed. They concluded that for the
wide film, the effect of film spacing is almost negligible, while

for narrow thin films, the effect of film spacing is significant.
Only when the film spacing reaches about three times the
width the effect of film spacing disappears. Further numerical
investigation on the interactions among the strips is necessary,
which will be considered in the future.
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