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A continuum mechanics model is established for hydrogen storage in single- and multi-

wall carbon nanotubes (CNTs) and the bundle of single-wall CNTs. The model accounts

for the deformation of CNTs, and van der Waals interactions among hydrogen molecules

and between hydrogen and carbon atoms. The analytical expressions of hydrogen

storage (number of hydrogen molecules per unit volume) in CNTs are obtained, and are

validated by atomistic simulations. CNTs are categorized as tiny, small, medium and

large CNTs; tiny CNTs cannot achieve the goals of hydrogen storage (62 kg/m3 and

6.5 wt% of hydrogen set by the US Department of Energy) without fracture; small CNTs

are strained during hydrogen storage; medium CNTs can achieve the above goals

without the strain and do not self collapse; and large CNTs may self collapse upon the

release of hydrogen.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Hydrogen is the cleanest vector of energy. Vehicles propelled by electric motors supplied by hydrogen fuel cells may
reach zero emission, and therefore do not cause urban pollution. One challenge in this development is the storage and
release of hydrogen.

Carbon nanotubes (CNTs) display superior mechanical properties and have many potential applications. One of them is
the hydrogen storage (Darkrim et al., 2002) because
(i)
 carbon is a good adsorbent for gases; and

(ii)
 CNTs are microporous carbon macromolecules with high specific surface, and have the potential to adsorb hydrogen in

their nanostructures (Darkrim et al., 2002).
Dillon et al. (1997) measured the hydrogen adsorption in CNTs in order to evaluate the hydrogen adsorption amount
delivered during the gas desorption, and concluded that CNTs were promising for hydrogen storage. Liu et al. (1999)
investigated the hydrogen adsorption in CNTs at room temperature and reached the same conclusion. Darkrim and
Levesque (1998, 2000) computed hydrogen adsorption in opened CNTs for a wide range of pressure and temperature, and
optimized the tube diameters and the inter-tube spacing to achieve high adsorptive property.

The adsorption is expressed as a unit of quantity of gas with respect to a unit of quantity of adsorbent. Experiments have
shown large scatting in the achievable hydrogen storage, ranging from 0.25 to 11 wt% (e.g., Dillon et al., 1997; Liu et al.,
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1999; Ye et al., 1999; Rajalakshmi et al., 2000; Wu et al., 2000; Dai et al., 2002). Multi-wall CNTs doped with Li, Kt and Pd
may achieve higher hydrogen storage, ranging from 1.8 to 20 wt% (e.g., Chen et al., 1999; Yang, 2000; Mu et al., 2006). Many
factors may be responsible for the large scatting in experimental data, such as the defects in CNTs, and opened or closed
CNTs. The goals of hydrogen storage set by the US Department of Energy are 62 kg H2/m3 and 6.5 wt% (Dillon et al., 1997).

The purpose of this paper is to establish a simple mechanics model of hydrogen storage in CNTs. The model provides the
analytical relation between the hydrogen storage (number of hydrogen molecules per unit volume) and the internal
pressure in the CNT for single-, double- and triple-wall CNTs and bundle of single-wall CNTs. For each type (single-, double-
, triple-wall, and bundle), CNTs can be categorized as tiny, small, medium and large CNTs, which, upon reaching the above
goals of hydrogen storage (and then release of hydrogen), will experience fracture, strain, no strain (and do not self
collapse) and self collapse, respectively. The model, which is validated by atomistic simulations, also provides the analytical
relation between the maximum hydrogen storage and CNT radius.

The paper is structured as follows. The interatomic potentials for carbon and for van der Waals interactions are given in
Section 2. The mechanics models of hydrogen storage are established in Sections 3–5 for single-wall CNTs, their bundles,
and multi-wall CNTs, respectively, and are validated by atomistic simulations. The goals of hydrogen storage in CNTs are
discussed in Section 6.

2. Interatomic potentials

Brenner et al. (2002) established the second-generation interatomic potential for carbon as

Vðrij; yijk; kai; jÞ ¼ VRðrijÞ � BijVAðrijÞ, (2.1)

where rij is the distance between atoms i and j, VRðrÞ ¼ 1þ Q=r
� �

Ae�arf cðrÞ and VAðrÞ ¼
P3

n¼1Bne�bnrf cðrÞ are the repulsive
and attractive pair terms (i.e., depending only on rij), A, Q, a, Bn and bn are constants, fc is the cut-off function, and the multi-
body coupling parameter Bij ¼ ½1þ

P
kðai;jÞGðcos yijkÞf cðrikÞ�

�1=2 depends on the bond angle yijk between i–j and i–k via the
function G.

The van der Waals interactions between a carbon atom and a hydrogen molecule or between two hydrogen molecules
are characterized by the Lennard–Jones 6-12 potential

VLJ ¼ 4�
s12

r12
ij

�
s6

r6
ij

 !
, (2.2)

where rij is the distance between atoms (and molecules), s12=r12
ij and s6=r6

ij represent the repulsive and attractive terms,
respectively. For hydrogen molecules, �H2�H2

¼ 3:11� 10�3 eV and sH2�H2
¼ 0:296 nm (Gu et al., 2001). For a carbon atom

and a hydrogen molecule, the Lorentz–Berthelet mixing rule (e.g., Allen and Tildesley, 1987) gives �C2H2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C2C � �H22H2

p
¼

2:73� 10�3 eV and sC2H2
¼ 1

2ðsC2C þ sH22H2
Þ ¼ 0:319 nm, where �C2C ¼ 2:39� 10�3 eV and sC2C ¼ 0:342 nm (Gu et al.,

2001; Frankland et al., 2003).

3. Hydrogen storage in single-wall CNTs

3.1. Atomistic model of hydrogen storage in single-wall CNTs

Fig. 1(a) shows the atomistic model used in the prior molecular dynamics simulations of hydrogen storage in single-wall
CNTs (e.g., Cheng et al., 2001, 2004; Gu et al., 2001; Dodziuk and Dolgonos, 2002). The covalent bonds between carbon
atoms on the CNT are characterized by the interatomic potential in Eq. (2.1). The carbon atoms interact with the hydrogen
molecules inside the CNT via the van der Waals forces obtained from Eq. (2.2) with �C2H2

¼ 2:73� 10�3 eV and
sC2H2

¼ 0:319 nm, while hydrogen molecules also interact via the van der Waals forces with �H22H2
¼ 3:11� 10�3 eV and

sH22H2
¼ 0:296 nm. Both carbon atoms and hydrogen molecules are discrete in the atomistic model.

The atomic-scale finite element method (AFEM) (Liu et al., 2004a, 2005), which is an effective and robust atomistic
simulation method based on the second-generation interatomic potential for hydrocarbons (Brenner et al., 2002), is
adopted. It models each atom or molecule as a node, and accurately describes the C–C covalent bonds, and C–H2 and H2–H2

van der Waals interactions. The hydrogen molecules are randomly added inside the CNT. The system is then relaxed to
minimize the total energy (in the covalent bonds and due to van der Waals interactions), which determines the positions of
carbon atoms and hydrogen molecules.

Fig. 2 shows the internal pressure p in the CNT versus the percentage of change of CNT radius, DR/R, for a (5,5) CNT. Here
the new radius of CNT R+DR is obtained by averaging the positions of carbon atoms in the radial direction. The pressure is
the ratio of total force (in the radial direction) of all carbon atoms to the current area of the CNT surface. The nonlinear
p�DR/R relation results from the nonlinear atomistic interactions. The peak pressure corresponds to the CNT fracture
(breakage of a C–C bond). The maximum hydrogen storage at the peak pressure is 25.6 hydrogen molecules/nm3. This gives
85.0 kg H2/m3 and 3.75 wt% for the (5,5) CNT, which exceeds the goal 62 kg H2/m3 but falls short to reach the other goal
6.5 wt% of hydrogen storage [set by the US Department of Energy, see Dillon et al. (1997)]. Therefore, large CNTs
(large radius) are needed for hydrogen storage.
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Fig. 1. Schematic diagrams of hydrogen storage in single-wall carbon nanotubes: (a) atomistic model (AFEM), in which carbon atoms and hydrogen

molecules are discrete; (b) continuum model, in which carbon nanotubes are represented by a continuum shell, while hydrogen molecules are

represented by the internal pressure.
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Fig. 2. The pressure inside the single-wall (5,5) carbon nanotube versus the percentage change of nanotube radius for the atomistic (AFEM) and

continuum models. The peak pressure is denoted.
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3.2. Continuum model of hydrogen storage in single-wall CNTs

For large CNTs the atomistic model becomes less effective. The continuum model is developed in this section to
establish a simple, analytical expression for hydrogen storage in single-wall CNTs. Fig. 1(b) shows the continuum model in
Section 3.2.1 to represent the CNT as a continuum shell. The hydrogen molecules in the CNT are represented by the internal
pressure p. A simple analytical relation is established in Section 3.2.2 to give the average spacing between hydrogen
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molecules in the CNT in terms of the internal pressure p. A similar relation is established in Section 3.2.3 to
relate the average spacing between the CNT wall and nearest hydrogen molecules to the internal pressure p. As p increases,
the H2–H2 spacing and C–H2 spacing decrease, but the CNT radius increases, which lead to the increasing hydrogen storage
in Section 3.3.4.

3.2.1. Continuum modeling of the CNT

The CNT is modeled as a nonlinear continuum thin shell (Fig. 1(b)), where the nonlinearity results from the large stretch
of C–C bonds due to hydrogen storage, as characterized by the interatomic potential, Eq. (2.1). Zhang et al. (2002, 2004) and
Wu et al. (2008) established a continuum theory for CNTs directly from the interatomic potential, similar to the previously
developed Virtual-Internal-Bond model for cohesive fracture (Gao and Klein, 1998) but accounting for the atomic structure
and multi-body atomistic interactions. This atomistic-based continuum theory is briefly summarized in the following.

The Cauchy–Born rule (Born and Huang, 1954) equates the strain energy at continuum level to the energy stored in
atomic bonds. The atoms subjected to a homogeneous deformation move according to a single mapping F ¼ qx/qX
from the initial, undeformed to the current, deformed configurations, where X and x denote positions of a material
point in the initial and current configurations, respectively. A bond between a pair of atoms i and j in the initial
configuration is described by a vector r 0ð Þ

ij ¼ r0n, where r0 is the initial bond length and n is the unit vector along the
initial bond direction. For a simple Bravais lattice, the deformed bond is rij ¼ F � rð0Þij , which has the length

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð0Þij � ðI þ 2EÞ � rð0Þij

q
¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � ðI þ 2EÞ � n

p
, where E ¼ 1

2ðF
T � F � IÞ is the Green strain tensor and I is the second-order

identity tensor. The single mapping F ensures the equilibrium of atoms for a simple Bravais lattice.
A CNT, however, is a Bravais multi-lattice that can be decomposed into two simple Bravais sub-lattices as shown by the

open and solid circles in Fig. 3. Each sub-lattice follows the single mapping F, but the two sub-lattices may have a shift f

(Fig. 3) to be determined from the equilibrium of atoms. The deformed bond (between atoms from two different sub-
lattices) then becomes

rij ¼ F � rð0Þij þ f. (3.1)

This gives the bond length rij and angle yijk in terms of the Green strain E as

r2
ij ¼ r2

0ðdab þ 2EabÞðna þ ZaÞðnb þ ZbÞ, (3.2)

cos yijk ¼
r2

0

rijrik
ðdal þ 2EalÞðn

ð1Þ
a þ ZaÞðn

ð2Þ
l þ ZlÞ, (3.3)

where g ¼ ð1=r0ÞF
�1 � f, and the superscripts 1 and 2 denote the two bonds in a bond angle.

The strain energy density W in the continuum theory is obtained from the interatomic potential V via the
Cauchy–Born rule,

W ¼
1

2

P
Vðrij; yijk; kai; jÞ

A0
, (3.4)

where the summation is for three nearest-neighbor atoms, the factor one half results from the equi-partition of bond
energy, and A0 is the area of CNT per atom. It is important to point out that the above equation accounts for the effect of
second-nearest-neighbor atoms via the bond angle yijk. The shift vector f (or g) is determined numerically from the
'A
A

D

B

Cz
�

�

Fig. 3. The decomposition of a hexagonal lattice to two triangular sub-lattices. A shift vector f between two sub-lattices is introduced to ensure the

equilibrium of atoms.
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equilibrium of atoms as

qW

qf
¼
qW

qg
¼ 0. (3.5)

The second Piola–Kirchhoff stress T is related to the Green strain E by

Tt ¼
qW

qE
, (3.6)

where the stress appears together with the CNT thickness t since the strain energy density W in Eq. (3.4) is the strain
energy per unit area, and is also obtained numerically. The pressure in the current configuration is obtained from the
equilibrium as

p ¼
Tyyt

R 1þ �zzð Þ
, (3.7)

where the (nominal) strain ezz in the axial direction is determined numerically from Tzz ¼ 0.
Fig. 2. shows the internal pressure p in the CNT versus the percentage of change of CNT radius, DR/R, for the (5,5) CNT.

The continuum model gives the same curve as the atomistic model, which means that the CNT can indeed be represented
by a thin shell in the continuum model. Only the peak pressure (after which the stress–strain curve displays the softening
behavior) given by the continuum model is slightly higher than the atomistic model. This is because the CNT is subjected to
the uniform internal pressure in the continuum model, while the atomistic model is nonuniform (due to hydrogen
molecules), which may trigger earlier bond breakage.

For small deformation the above continuum model becomes linear elastic isotropic, and therefore simple, analytical
solution. Its constitutive model becomes (Huang et al., 2006)

ðsyy þ szzÞt ¼
1ffiffiffi
3
p

q2V

qr2
ij

 !
0

ð�yy þ �zzÞ,

ðsyy � szzÞt ¼
B

8
ffiffiffi
3
p ð�yy � �zzÞ, (3.8)

where V is the interatomic potential in Eq. (2.1), the subscript ‘‘0’’ denotes the values at the initial equilibrium state, rij ¼ r0

and yijkE1201, B is given in terms of the derivatives of the interatomic potential at the initial equilibrium state as

B ¼
3ð1� AÞ2

r2
0

4
qV

q cos yijk

� �
0

þ 6
q2V

q cos yijk q cos yijk

 !
0

� 3
q2V

q cos yijk q cos yijl

 !
0

" #

þ 4ð1þ AÞ2
q2V

qr2
ij

 !
0

� 12
ð1� A2

Þ

r0

q2V

qrij q cos yijk

 !
0

, (3.9)

and

A ¼ 1�

8r2
0

q2V
qr2

ij

� �
0

þ 12r0
q2V

qrij q cos yijk

� �
0

12 qV
q cos yijk

� �
0
þ 4r2

0
q2V
qr2

ij

� �
0

þ 18 q2V
q cos yijk q cos yijk

� �
0
� 9 q2V

q cos yijk q cos yijl

� �
0
þ 12r0

q2V
qrij q cos yijk

� �
0

. (3.10)

The equilibrium bond length is obtained by minimizing the potential qV=qrij

		
rij¼r0 ; yijk�120�

¼ 0 as r0 ¼ 0.142 nm for the
second-generation interatomic potential (Brenner et al., 2002). The Young’s modulus E of the CNT is obtained from
Eq. (3.8) as

Et ¼
2=

ffiffiffi
3
p

1
ðq2V=qr2

ij
Þ0
þ 8

B

, (3.11)

where the Young’s modulus appears together with the CNT thickness t since the strain energy density W in Eq. (3.4) is the
strain energy per unit area. For small deformation, Eq. (3.7) gives the following approximate but analytical relation
between the change of CNT radius DR and the internal pressure p (e.g., Timoshenko and Goodier, 1969)

DR �
pR2

Et
¼

ffiffiffi
3
p

2
pR2 1

ðq2V=qr2
ijÞ0

þ
8

B

2
4

3
5. (3.12)

The above equation is approximate but analytical, contrary to the numerical but accurate solution in Eq. (3.7). Similarly,
both the numerical (but accurate) and analytical (but approximate) solutions are also obtained for continuum models in
the following.
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3.2.2. Continuum modeling of hydrogen molecules

The average spacing between hydrogen molecules, which is an important parameter in hydrogen storage, is obtained
analytically in terms of the pressure p in this section. The Virial stress widely used in molecular dynamics simulations gives
the stress tensor at the location ri of particle i as (McLellan, 1974; Tsai, 1979; Rowlinson and Widom, 1982)

s ¼ 1

O
�mi _ui _ui þ

1

2

X
j aið Þ

rijf ij

0
@

1
A, (3.13)

where O is average volume per particle, mi and _ui are the mass and velocity of particle i, respectively, rij ¼ rj�ri is the
interatomic relative position vector in the current configuration, fij is the interparticle force applied on particle i by particle
j, and the summation is for all particles interacting with particle i. For the pair potential such as Lennard–Jones potential in
Eq. (2.2) that depends only on the length rij ¼ rij

		 		,
f ij ¼

qVLJ

qrij
¼

dVLJ

drij

rij

rij
, (3.14)

which is parallel to rij. For the system at relatively low temperature, the kinetic energy can be omitted, and the Virial stress
in Eq. (3.13) then becomes

s ¼ 1

2O

X
j aið Þ

1

rij

dVLJ

drij
rijrij. (3.15)

The internal pressure is

p ¼ �
1

6O

X
j aið Þ

rij
dVLJ

drij
. (3.16)

For the limit of most closely packed hydrogen (AB stacking) illustrated in Fig. 4, there are 12 molecules surrounding each
molecule, and their spacing is denoted by dH2�H2

. The volume per hydrogen molecule is

O ¼
ffiffiffi
2
p

2
d3

H22H2
. (3.17)

For the Lennard–Jones potential, Eq. (3.16) gives the following analytical relation to determine the spacing between
hydrogen molecules dH2�H2

in terms of the internal pressure p:

p ¼
48

ffiffiffi
2
p
�H22H2

s3
H22H2

2
sH22H2

dH2�H2

� �15

�
sH22H2

dH22H2

� �9
" #

. (3.18)

The spacing dH2�H2
is

ffiffiffi
26
p

sH2�H2
at the vanishing pressure p ¼ 0, and decreases as the pressure p increases, as shown

in Fig. 5 for the (5,5) CNT. The atomistic model, also shown in Fig. 5, agrees very well with Eq. (3.18), and therefore validates
this relation established from the Virial stress.

Eq. (3.18) cannot be solved analytically to give the spacing dH2�H2
in terms of the pressure. An approximate but analytical

expression can be obtained by neglecting ðsH22H2
=dH22H2

Þ
9 in Eq. (3.18) since the repulsive term ðsH22H2

=dH22H2
Þ
15

dominates as the internal pressure increases. The spacing dH2�H2
can then be approximated by

dH22H2
�

96
ffiffiffi
2
p
�H22H2

s12
H22H2

p

 !1=15

. (3.19)
Fig. 4. Schematic diagrams of closely packed hydrogen molecules.
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3.2.3. Continuum model of interactions between the CNT and hydrogen molecules

The average spacing dC2H2
between the CNT wall and nearest hydrogen molecules, which is another important

parameter in hydrogen storage, is obtained analytically in terms of the pressure p in this section. Jiang et al. (2006)
established a cohesive law between a CNT and polymer molecules due to van der Waals interactions. By replacing polymer
molecules with H2, it is also applicable to interactions between a CNT and hydrogen molecules

p ¼ 2pO�1rC�C2H2
s2

C2H2

2

5

sC2H2

dC2H2

� �10

�
sC2H2

dC2H2

� �4
" #

, (3.20)

where rC is the number of carbon atoms per unit area of the CNT, and is related to the equilibrium bond length of carbon
r0 ¼ 0.142 nm by rC ¼ 4=ð3

ffiffiffi
3
p

r2
0Þ R=ðRþ DRÞ

 �2

. The above equation then becomes

p ¼
8
ffiffiffi
2
p

p
3
ffiffiffi
3
p

R

Rþ DR

� �2 �C2H2
s2

C2H2

r2
0d3

H22H2

2

5

sC2H2

dC2H2

� �10

�
sC2H2

dC2H2

� �4
" #

, (3.21)

where the change of CNT radius DR and the spacing between hydrogen molecules dH22H2
are obtained from Eqs. (3.7) and

(3.18), respectively, or from Eqs. (3.12) and (3.19) for small deformation. The spacing dC2H2
is

ffiffiffiffiffiffiffiffiffi
2=56

p
sC2H2

at the vanishing
pressure p ¼ 0, and decreases as the pressure p increases, as shown in Fig. 6 for the (5,5) CNT. The atomistic model, also
shown in Fig. 6, agrees well with Eq. (3.21) and therefore provides validation.

Eq. (3.21) cannot be solved analytically to give the spacing dC2H2
in terms of the pressure. An approximate but analytical

expression can be obtained by neglecting ðsC2H2
=dC2H2

Þ
4 in Eq. (3.21) since the repulsive term ðsC2H2

=dC2H2
Þ
10 dominates as

the internal pressure increases. The spacing dC2H2
can then be approximated by

dC2H2
�

16
ffiffiffi
2
p

p
15

ffiffiffi
3
p

R

RþDR

� �2 �C2H2
s12

C2H2

r2
0d3

H2�H2

1

p

" #1=10

. (3.22)

3.2.4. Concentration of hydrogen molecules in a single-wall CNT

For the CNT of radius R+DR, the hydrogen molecules can only be stored within the volume of radius RþDR� dC2H2
. The

number of hydrogen molecules per unit length of the CNT is pðRþDR� dC2H2
Þ
2O�1. The number of hydrogen molecules per

unit volume of the single-wall CNT is then

NH ¼
pðRþDR� dC2H2

Þ
2O�1

pðRþ DRÞ2
¼

RþDR� dC2H2

RþDR

� �2 ffiffiffi
2
p

d3
H22H2

, (3.23)

where DR, dH22H2
and dC2H2

are obtained numerically from Eqs. (3.7), (3.18) and (3.21), respectively. As shown in Fig. 7 for
the (5,5) CNT, NH increases as the internal pressure p increases. The curve stops at the peak pressure pmax ¼ 73.7 GPa
obtained from Fig. 2. This gives the maximum hydrogen storage 31.3 nm�3 in the (5,5) CNT. As shown in Fig. 7, the
continuum model agrees reasonably well with the atomistic model, but the latter gives a smaller maximum hydrogen
storage 25.6 nm�3 denoted by the rightmost data point.
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are shown for the continuum model, atomistic model (AFEM) and (approximate) analytical solution [Eq. (3.26) for single-wall carbon nanotubes and Eq.

(4.2) for their bundles]. The peak pressure is obtained from Fig. 2 as 73.7 GPa.
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For (n,n) armchair CNTs, the CNT radius R is given by

R ¼ 0:0678n ðnmÞ. (3.24)

Similar to Fig. 2, the peak pressure pmax for (n,n) armchair CNTs is also obtained and shown versus the CNT radius R in Fig. 8.
It is inversely proportional to R, and is well approximated by

pmax ¼
25:6

R
GPa � nm. (3.25)

The maximum hydrogen storage for the above peak pressure is shown versus the CNT radius R in Fig. 9. It initially increases
with R, reaches the peak 65.7 nm�3 at the (31,31) CNT (R ¼ 2.1 nm), and then decreases gradually. This maximum hydrogen
storage (65.7 nm�3) is more than twice of that for the (5,5) CNT, and exceeds the goals of hydrogen storage, as to be
discussed in Section 6. However, single-wall CNTs larger than (30,30) may self collapse due to van der Waals interactions
(Liu et al., 2004b). Therefore, for hydrogen storage in single-wall CNTs, it is optimal to use the largest one [i.e., (30,30)]
without self collapse.
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continuum model and (approximate) analytical solution [Eq. (3.27) for single-wall carbon nanotubes and Eq. (4.3) for their bundles].
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3.2.5. Analytical solution

The substitution of approximate but analytical relations (3.12), (3.19) and (3.22) into Eq. (3.23) gives the following
analytical expression for the number of hydrogen molecules per unit volume of the CNT:

NH ¼
p

24�H22H2
s12

H22H2

 !1=5

1�

2ffiffiffi
3
p

� �17=50 p
5r2

0

 !1=10
ð�C2H2

s12
C2H2
Þ
1=10

ð�H22H2
s12

H22H2
Þ
1=50

p2=25R 1þ
pR

Et

� �6=5

2
666664

3
777775

2

¼ 45:0p1=5 1�
0:270

p2=25Rð1þ 0:00267pRÞ6=5

" #2

, (3.26)

where Et is given in Eq. (3.11), and the units of p, R and NH are GPa, nm and nm�3, respectively. The above analytical
expression, also shown in Fig. 7 for the (5,5) CNT, agrees well with the continuum and atomistic models. [Here, as well as
the rest of the paper, ‘‘continuum model’’ refers to the numerical but accurate solution, while ‘‘analytical relation’’ refers to
the approximate solution.] The curve also stops at the peak pressure pmax ¼ 73.7 GPa obtained from Fig. 2, which gives the
maximum hydrogen storage 24.2 nm�3 in the (5,5) CNT. It is smaller than 31.3 nm�3 given by the continuum model, but is
very close to 25.6 nm�3 given by the atomistic model.
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For other (n,n) armchair CNTs, the substitution of peak pressure in Eq. (3.25) into the above equation gives the
maximum hydrogen storage

NH ¼
86:1

R1=5
1�

0:193

R23=25

� �2

, (3.27)

where the units of R and NH are nm and nm�3, respectively. The above equation gives a maximum hydrogen storage
60.5 nm�3 at the CNT radius R ¼ 2.1 nm. As shown in Fig. 9, it is slightly lower than the results from the continuum model,
but may have better agreement with the atomistic model.

4. Hydrogen storage in the bundle of single-wall CNTs

The hydrogen storage in single-wall CNTs involves many tubes, which may form CNT bundles. Fig. 10 shows a schematic
diagram of an idealized CNT bundle. For relatively large tubes, the equilibrium spacing between CNTs is approximately the
same as the characteristic length sC2C for the van der Waals interactions (Huang et al., 2006; Lu et al., 2007). The number of
hydrogen molecules per unit volume of the CNT bundle is then obtained by modifying the volume in Eq. (3.23) as

NH ¼
pðRþ DR� dC2H2

Þ
2O�1

2
ffiffiffi
3
p

Rþ DRþ
sC2C

2

� �2
¼

p
2
ffiffiffi
3
p

RþDR� dC2H2

RþDRþ
sC2C

2

0
B@

1
CA

2 ffiffiffi
2
p

d3
H22H2

. (4.1)

It is shown versus the internal pressure p in Fig. 7 for the bundle of (5,5) CNTs. The curve stops at the
peak pressure pmax ¼ 73.7 GPa. This gives the maximum hydrogen storage in the bundle of (5,5) CNTs as 13.9 nm�3,
which is much smaller than 31.3 nm�3 for the (5,5) CNT, and does not reach the goals of hydrogen storage set
by the US Department of Energy. As shown in Fig. 7, the continuum model above agrees well with the atomistic model, but
overestimates the maximum hydrogen storage since the atomistic model gives 11.0 nm�3 denoted by the rightmost data
point. The curves for the CNT bundle are lower than those for single-wall CNTs in Fig. 7 because of the spacing between
CNTs in the bundle, which increases the volume for the same number of hydrogen molecules inside CNTs.

Fig. 9 shows the maximum hydrogen storage versus the radius R of the (n,n) armchair CNTs in the bundle. The curve
reaches the peak 53.9 nm�3 for the bundle of (55,55) CNTs (R ¼ 3.73 nm), which exceeds the goals of hydrogen storage, as
to be discussed in Section 6. Since single-wall CNTs larger than the (30,30) CNT may self collapse (Liu et al., 2004b), it is
optimal to use the bundle of largest CNTs [i.e., (30,30), R ¼ 2.1 nm] without self collapse. The corresponding maximum
hydrogen storage is only slightly smaller, 51.9 nm�3.

The substitution of approximate but analytical relations (3.12), (3.19) and (3.22) into Eq. (4.1) gives the following
analytical expression for the number of hydrogen molecules per unit volume of the bundle of CNTs:

NH ¼

p
2
ffiffi
3
p

p
24�H22H2

s12
H2 2H2
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1þ pR
Et þ
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, (4.2)
Fig. 10. Schematic diagram of the bundle of single-wall carbon nanotubes.
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where Et is given in Eq. (3.11), and the units of p, R and NH are GPa, nm and nm�3, respectively. The above analytical
expression, also shown in Fig. 7 for the bundle of (5,5) CNTs, agrees well with the continuum and atomistic models. The
curve also stops at the peak pressure pmax ¼ 73.7 GPa (from Fig. 2) to give the maximum hydrogen storage 10.1 nm�3 in the
bundle of (5,5) CNTs, which is smaller than 13.9 nm�3 from the continuum model but is close to 11.0 nm�3 given by
the atomistic model.

For the bundle of (n,n) armchair CNTs, the substitution of peak pressure in Eq. (3.25) into the above equation gives the
maximum hydrogen storage

NH ¼
78:1

R1=5
1�

0:206R2=25
þ 0:171

1:07Rþ 0:171

 !2

, (4.3)

where the units of R and NH are nm and nm�3, respectively. Eq. (4.3) gives a maximum hydrogen storage 49.0 nm�3 for the
bundle of CNTs with radii R ¼ 3.6 nm. As shown in Fig. 9, it is slightly lower than the results from the continuum model, but
has better agreement with the atomistic model. For the maximum CNT (30,30) (R ¼ 2.1 nm) without self collapse, Eq. (4.3)
gives 47.4 nm�3, which is close to 51.9 nm�3 given by the continuum model.

5. Hydrogen storage in multi-wall CNTs

5.1. Double-wall CNTs

Fig. 11(a) shows the atomistic model for hydrogen storage in double-wall CNTs of radii R1 and R2. The covalent bonds
between carbon atoms on the same CNT wall are characterized by the interatomic potential in Eq. (2.1). The carbon atoms
from different CNT walls have the van der Waals interactions in Eq. (2.2), and so do carbon atoms and hydrogen molecules
inside the CNT.

Fig. 11(b) shows the continuum model to represent the inner and outer CNTs by thin shells of radii R1 and R2. The
hydrogen molecules are still represented by the internal pressure p (on the inner shell). The van der Waals interaction
between shells is characterized by the cohesive law for multi-wall CNTs (Lu et al., 2007), which gives the force–separation
relation between two CNT walls from the van der Waals interactions. The equilibrium spacing between CNT walls is the van
der Waals parameter sC2C, i.e., R2 ¼ R1 þ sC2C. Let R1 þDR1 and R2 þ DR2 denote the radii of inner and outer walls after the
internal pressure p is imposed. The energy (per unit length of the CNT) stored between two CNT walls due to van der Waals
interactions is (Lu et al., 2007)

2p2ðR2 þ DR2 þ R1 þDR1ÞrC1
rC2
�C2Cs2

C2C

2

5

sC2C

R2 þDR2 � R1 � DR1

� �10

�
sC2C

R2 þ DR2 � R1 �DR1

� �4
" #

, (5.1)

where rC1
and rC2

are the numbers of carbon atoms per unit area of the inner and outer CNTs, respectively, and are related
to the equilibrium bond length of carbon r0 ¼ 0:142 nm by

rCi
¼

4

3
ffiffiffi
3
p

r2
0

Ri

Ri þDRi

� �2

ði ¼ 1;2Þ:

The energy stored in each CNT wall is obtained in the same way as described in Eqs. (3.1)–(3.6). The total energy is the
sum of energy in each CNT and the energy between CNT walls in Eq. (5.1) due to van der Waals interactions. The
minimization of total energy gives the change of inner and outer CNT radii DR1 and DR2 in terms of the internal pressure p.

Fig. 12 shows the internal pressure p in the CNT versus the percentage of change of CNT radii, DR1=R1 and DR2=R2,
obtained from both atomistic and continuum models for the (5,5)(10,10) double-wall CNT. The curve for the inner (5,5) CNT
is higher than that for the (5,5) single-wall CNT in Fig. 2 due to van der Waals interactions between two CNT walls. The
peak pressure for the (5,5)(10,10) double-wall CNT is 89.3 GPa (at which the inner CNT starts to display softening behavior),
which is significantly larger than pmax ¼ 73.7 GPa for the (5,5) single-wall CNT (Fig. 2). The continuum model agrees
well with the atomistic model. Only the peak pressure given by the continuum model is slightly higher than the atomistic
model.

The analyses in Sections 3.2.2 and 3.2.3 still hold. The spacing between hydrogen molecules dH22H2
is determined from

Eq. (3.18) [or Eq. (3.19)]. The spacing between the inner CNT wall and nearest hydrogen molecules dC2H2
is obtained from

Eq. (3.21) [or Eq. (3.22)] with R and DR replaced by R1 and DR1, respectively.
For the inner CNT of radius R1 þ DR1, the hydrogen molecules can only be stored within the volume of radius

R1 þ DR1 � dC2H2
. The number of hydrogen molecules per unit length of the CNT is pðR1 þ DR1 � dC2H2

Þ
2O�1. The number of

hydrogen molecules per unit volume of the double-wall CNT is then

NH ¼
pðR1 þ DR1 � dC2H2

Þ
2O�1

p R2 þDR2ð Þ
2

¼
R1 þ DR1 � dC2H2

R2 þDR2

� �2 ffiffiffi
2
p

d3
H2�H2

, (5.2)

where DR1 and DR2 are determined from the minimization of total energy, and dH22H2
and dC2H2

are obtained numerically
from Eqs. (3.18) and (3.21), respectively. As shown in Fig. 13 for the (5,5)(10,10) double-wall CNT, NH increases
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molecules are discrete; and (b) continuum model, in which carbon nanotubes are represented by a continuum shell, while hydrogen molecules are

represented by the internal pressure.
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as the internal pressure p increases. The curve stops at the peak pressure 89.3 GPa. This gives the maximum
hydrogen storage in the (5,5)(10,10) double-wall CNT as 11.0 nm�3, which is significantly smaller than 31.3 nm�3 for
(5,5) single-wall CNT and also smaller than 13.9 nm�3 for the bundle of (5,5) single-wall CNTs (Fig. 7), and does not
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reach the goals of hydrogen storage. Fig. 13 also shows the results from the atomistic model, which agree
well with the continuum model but give a smaller maximum hydrogen storage 9.0 nm�3 denoted by the rightmost
data point.

For (n,n)(n+5,n+5) double-wall CNTs, the radii R1 and R2 of inner and outer CNTs are still given by Eq. (3.24),
and their spacing is approximately sC2C. The peak pressure pmax for double-wall CNTs is shown versus
the radius R1 of the inner CNT in Fig. 8. It is approximately proportional to the inverse of average radius
R̄ ¼ ðR1 þ R2Þ=2,

pmax ¼
48:8

R̄
GPa � nm: (5.3)

For the above pmax, Fig. 14 shows the maximum hydrogen storage versus the inner radius R1 of double-wall CNT. The curve
reaches the peak 63.8 nm�3 at the (70,70)(75,75) double-wall CNT (R1 ¼ 4.7 nm). This maximum hydrogen storage is
almost six times 11.0 nm�3 for the (5,5)(10,10) double-wall CNT, and exceeds the goals of hydrogen storage, as to be
discussed in Section 6. However, double-wall CNTs larger than the (36,36)(41,41) CNT may self collapse due to the van der
Waals interactions (Xiao et al., 2007). Therefore, for hydrogen storage in double-wall CNTs, it is optimal to use the largest
one [i.e., (36,36)(41,41)] without self collapse.

Similar to Section 3.2.1, the change of inner and outer CNT radii DR1 and DR2 can be obtained analytically for small
deformation as

DR1

DR2

( )
¼

1

1þ lðR1 þ R2Þ
2

1þ lðR1 þ R2ÞR2

lðR1 þ R2ÞR2

( )
pR2

1

Et
, (5.4)

where l ¼ 128p�C2C=ð9r4
0EtÞ and Et is given in Eq. (3.11). The substitution of the analytical but approximate relations (5.3),

(5.4), (3.19) and (3.22) into Eq. (5.2) leads to the following analytical expression for the number of hydrogen molecules per
unit volume of double-wall CNT:

NH ¼ 97:9
ðR1w6=5 � 0:198R̄

2=25
Þ
2

R2
2R̄

1=5w2=5 1þ 0:0294R2
1=ð1þ 0:448R̄

2
Þ

h i2
, (5.5)

where R̄ ¼ ðR1 þ R2Þ=2 is the average radius, w ¼ 1þ 0:130ðR1=R̄Þð1þ 0:224R2R̄Þ=ð1þ 0:448R̄
2
Þ, and the units of R1, R2, R̄ and

NH are nm, nm, nm and nm�3, respectively. Eq. (5.5) gives a maximum hydrogen storage 58.2 nm�3 for the inner CNT radius
R1 ¼ 4.3 nm. As shown in Fig. 14, it is slightly smaller than that for the continuum model.

5.2. Multi-wall CNTs

The equilibrium spacing between CNT walls is the van der Waals parameter sC2C, i.e., R2 ¼ R1 þ sC2C, R3 ¼ R2 þ sC2C, y
Let R1 þ DR1, R2 þDR2, R3 þDR3, y denote the radii of CNT walls after the internal pressure p is imposed. The energy
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(per unit length of the CNT) stored between CNTs walls due to van der Waals interactions is
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C�C

X
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� 2
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where rCi
¼ 4= 3

ffiffiffi
3
p

r2
0

� �
Ri=ðRi þ DRiÞ

 �2

.
The energy stored in each CNT wall is obtained in the same way as described in Eqs. (3.1)–(3.6). The total energy is the

sum of energy in each CNT and the energy between CNT walls given in Eq. (5.6) due to van der Waals interactions. The
minimization of total energy gives the change of CNT radii DRi (i ¼ 1, 2, 3, y) in terms of the internal pressure p.

The analyses in Sections 3.2.2 and 3.2.3 still hold. The number of hydrogen molecules per unit volume of the CNT is

NH ¼
pðR1 þDR1 � dC2H2

Þ
2O�1

p Rm þ DRmð Þ
2

¼
R1 þDR1 � dC2H2

Rm þDRm

� �2 ffiffiffi
2
p

d3
H22H2

, (5.7)

where Rm is the radius of outermost CNT. It is shown in Fig. 13 versus the internal pressure p for the (5,5)(10,10)(15,15)
triple-wall CNT. The peak pressure 90.8 GPa is very close to 89.3 GPa for the (5,5)(10,10) double-wall CNT, which means that
the CNTs beyond the innermost two have essentially no effect. The maximum hydrogen storage in the (5,5)(10,10)(15,15)
triple-wall CNT is only 5.1 nm�3.

For (n,n)(n+5,n+5)(n+10,n+10) triple-wall CNTs, the peak pressure pmax is shown versus the radius R1 of the innermost
CNT in Fig. 8. It is approximately proportional to the inverse of average radius R̄ ¼ ðR1 þ R2 þ R3Þ=3

pmax ¼
77:3

R̄
GPa � nm. (5.8)

Fig. 14 shows the maximum hydrogen storage versus R1. The curve reaches the peak 63.2 nm�3 at the
(110,110)(115,115)(120,120) triple-wall CNT (R1 ¼ 7.5 nm). This exceeds the goals of hydrogen storage, as to be discussed
in Section 6. However, triple-wall CNTs larger than the (42,42)(47,47)(52,52) CNT may self collapse due to the van der
Waals interactions (Xiao et al., 2007). Therefore, for hydrogen storage in triple-wall CNTs, it is optimal to use the largest one
[i.e., (42,42)(47,47)(52,52)] without self collapse.

The curve for triple-wall CNTs is lower than its counterpart for double-wall CNTs at the small radius R1 in Fig. 14, but this
trend is reversed at relatively large radius. This is due to two competing effects as the number of walls increases. One is the
volume increase (for the same number of hydrogen molecules), which reduces the maximum hydrogen storage. The other
is that the peak pressure in the inner(most) wall increases with the increase of number of walls, which allows more
hydrogen molecules inside the inner(most) wall. These two effects dominate at small and large radii, respectively, which is
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why the curves in Fig. 14 cross. In fact, the comparison of the curve for single-wall CNT in Fig. 9 with the curves for double-
and triple-wall CNTs shows the same trend.

6. Discussion and concluding remarks

The maximum hydrogen storage shown in Figs. 9 and 14 corresponds to the limit state at which the (inner or innermost)
CNT starts to fracture (or exhibit softening behavior). The strain (in the circumferential direction) is about 16.6%. The cyclic
storage and release of hydrogen in CNTs requires the strain be significantly less than this level.

One goal of hydrogen storage set by the US Department of Energy is 62 kg H2/m3 of hydrogen (Dillon et al., 1997), which
can be converted to NH ¼ 18:7 nm�3 using the atomic weights. This requires the internal pressure p ¼ 35.5 GPa from Fig. 7
for the (5,5) CNT, which corresponds to the strain in the circumferential direction � ¼ DR=R ¼ 4:4%. For the bundle of (5,5)
CNTs shown in Fig. 7 as well as (5,5)(10,10) double-wall and (5,5)(10,10)(15,15) triple-wall CNTs shown in Fig. 13, the
required hydrogen storage 18.7 nm�3 can never be reached even when the (inner or innermost) CNT fractures. Fig. 15 shows
the strain (in the circumferential direction) in the CNT to achieve 62 kg H2/m3 of hydrogen versus n for (n,n) single-wall
CNTs and their bundles, (n,n)(n+5,n+5) double-wall and (n,n)(n+5,n+5)(n+10,n+10) triple-wall CNTs. As the CNT radius
increases, the strain in the CNT to achieve 62 kg H2/m3 decreases. The strain is zero for single-wall CNTs larger than (14,14),
which means single-wall CNTs between (14,14) and (30,30) can achieve 62 kg H2/m3 without the strain and do not self
collapse. For the bundle of CNTs, the strain is zero for CNTs larger than (22,22) such that any bundle of CNTs between
(22,22) and (30,30) can achieve 62 kg H2/m3 without the strain and do not self collapse. For double-wall CNTs,
this range becomes (25,25) to (36,36) (for the inner CNT), while for triple-wall CNTs this range is (37,37) to (42,42) (for the
innermost CNT).

For the other goal 6.5wt% of hydrogen storage set by the US Department of Energy (Dillon et al., 1997), the
corresponding NH can be similarly obtained using the atomic weights and CNT radius. Fig. 16 shows the strain (in the
circumferential direction) to achieve 6.5 wt% H2 versus n for (n,n) single-wall CNTs, which is also the same as the bundle of
CNTs, and for (n,n)(n+5,n+5) double-wall and (n,n)(n+5,n+5)(n+10,n+10) triple-wall CNTs. As the CNT radius increases, the
strain in the CNT to achieve 6.5 wt% H2 decreases. It is zero for single-wall CNTs (and their bundles) larger than (19,19) such
that single-wall CNTs between (19,19) and (30,30) can achieve 6.5 wt% H2 without the strain and do not self collapse. For
double-wall CNTs, this range becomes (32,32) to (36,36) (for the inner CNT), while for triple-wall CNTs this range does not
exist anymore.

In order to achieve both goals of 62 kg H2/m3 and 6.5 wt% H2 for hydrogen storage, CNTs display different behavior
depending on their radii, as shown in Table 1.
(1)
Fig.
The

carb
tiny CNTs fracture to reach the goals of hydrogen storage (2nd column);

(2)
 small CNTs experience strains upon hydrogen storage (3rd column);

(3)
 medium CNTs have no strain and do not self collapse (4th column); and

(4)
 large CNTs may self collapse upon the release of hydrogen (5th column).
The corresponding ranges of radii are also shown in Table 1.
For the ‘‘small’’ CNTs in the 3rd column of Table 1, even though the strains are below the fracture strain of CNTs

(�16.6%), defects may nucleate in the form of Stone–Wales transformation (901rotation of a C–C bond) at a much smaller
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The strain is shown versus n for single-, double- and triple-wall carbon nanotubes and their bundles, where (n,n) represent the charality of armchair

carbon nanotubes.

Table 1
Behavior of different carbon nanotubes to achieve the goals of hydrogen storage (62 kg H2/m3 and 6.5 wt%)

Ranges of CNT charality and radius

Fracture Strained No strain or self

collapse

Self collapse

Single-wall CNTs (7,7) and down (8,8) to (18,18) (19,19) to (30,30) (31,31) and up

o0.47 nm 0.54–1.2 nm 1.3–2.0 nm 42.1 nm

Bundle of single-wall CNTs (7,7) and down (8,8) to (21,21) (22,22) to (30,30) (31,31) and up

o0.47 nm 0.54–1.4 nm 1.5–2.0 nm 42.1 nm

Double-wall CNTs (inner tube) (11,11) and down (12,12) to (31,31) (32,32) to (36,36) (37,37) and up

o0.75 nm 0.81–2.1 nm 2.2–2.4 nm 42.5 nm

Triple-wall CNTs (innermost

tube)

(16,16) and down (17,17) to (41,41) – (42,42) and up

o1.1 nm 1.2–2.8 nm – 42.8 nm
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strain, around 5% (Nardelli et al., 1998a, b; Jiang et al., 2004; Song et al., 2006). Therefore, in order to avoid defect
nucleation and self collapse, the suitable ranges for hydrogen storage are (10,10) to (30,30) for single-wall CNTs and
their bundles, (17,17) to (36,36) for (the inner tube of) double-wall CNTs, and (24,24) to (41,41) for (the innermost tube of)
triple-wall CNTs.

The hydrogen storage in zig–zag and chiral CNTs is also studied. The peak pressure is essentially independent
of the charality, and is given by Eqs. (3.25), (5.3) and (5.8) for single-, double- and triple-wall (zig–zag and chiral)
CNTs, respectively. For CNTs of the same radius, the maximum hydrogen storage in zig–zag CNTs is a few
percent (o5%) higher than that in armchair CNTs, while the results for chiral CNTs are between those for armchair and
zig–zag CNTs.

The effect of ‘‘caps’’ at the two ends of the CNT is negligible. The peak pressure for CNTs with closed caps is slightly
smaller (less than 1.5%) than that without caps, while the maximum hydrogen storage is less than 0.3% smaller.

Hydrogen adsorption on the exterior surface of CNT is studied by modifying the model shown in Fig. 1 to introduce
one layer of hydrogen molecules outside the CNT. The distances between this layer of hydrogen and the CNT and
between hydrogen molecules are obtained from Eqs. (3.21) and (3.18) as dC2H2

		
p¼0
¼

ffiffiffiffiffiffiffiffiffi
2=56

p
sC2H2

¼ 0:274 nm and
dH22H2

		
p¼0
¼

ffiffiffi
26
p

sH22H2
¼ 0:332 nm, respectively. Fig. 17 shows the maximum hydrogen storage NH (at the peak internal

pressure), with and without surface absorption, versus the CNT radius R for single-wall CNTs. The maximum hydrogen
storage with surface absorption is in fact smaller than that without surface absorption because the former occupies a larger
volume (corresponding to the radius Rþ DRþ dC2H2

, as opposed to Rþ DR for the latter). This volume increase overwhelms
the increase in the number of hydrogen molecules due to surface adsorption, and therefore leads to smaller maximum
hydrogen storage.
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Heterogeneous carbon nanostructures, such as nanotube-derived carbon foam (Ding et al., 2007), CNTs doped by metals
(Krasnov et al., 2007), and carbon nano-framework (Weck et al., 2007), have also been studied for hydrogen storage, and so
has fullerene (Pupysheva et al., 2008). These heterogeneous carbon nanostructures and fullerene have shown improved
hydrogen storage, but are beyond the scope of the present study.

In summary, the following conclusions on hydrogen storage in CNTs are established in this paper.
(1)
 The continuum models for hydrogen storage in CNTs have been established to account for the deformation of CNTs, the
van der Waals interactions between hydrogen molecules and between hydrogen and CNTs. The continuum models
agree well with the atomistic simulations without parameter fitting.
(2)
 For single-, double- and triple-wall CNTs and bundles of single-wall CNTs, the continuum models give analytical
expressions of hydrogen storage (number of hydrogen molecules per unit volume) in terms of the CNT radius and
pressure. The maximum hydrogen storage corresponding to the peak pressure far exceeds the goals of hydrogen storage
(62 kg H2/m3 and 6.5wt% H2) set by the US Department of Energy.
(3)
 Each type of CNTs (single-, double- and triple-wall, and bundle) can be categorized as tiny, small, medium and large
CNTs as shown in Table 1. Tiny CNTs cannot achieve the above goals of hydrogen storage without fracture; small CNTs
are strained during hydrogen storage; medium CNTs can achieve the above goals without the strain and do not self
collapse; and large CNTs may self collapse upon the release of hydrogen.
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