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Mechanics of Microtubule
Buckling Supported by Cytoplasm
The cytoskeleton provides the mechanical scaffold and maintains the integrity of cells. It
is usually believed that one type of cytoskeleton biopolymer, microtubules, bears com-
pressive force. In vitro experiments found that isolated microtubules may form an Euler
buckling pattern with a long-wavelength for very small compressive force. This, however,
does not agree with in vivo experiments where microtubules buckle with a short-
wavelength. In order to understand the structural role of microtubules in vivo, we devel-
oped mechanics models that study microtubule buckling supported by cytoplasm. The
microtubule is modeled as a linearly elastic cylindrical tube while the cytoplasm is
characterized by different types of materials, namely, viscous, elastic, or viscoelastic. The
dynamic evolution equations, the fastest growth rate, the critical wavelength, and com-
pressive force, as well as equilibrium buckling configurations are obtained. The ability
for a cell to sustain compressive force does not solely rely on microtubules but is also
supported by the elasticity of cytoplasm. With the support of the cytoplasm, an individual
microtubule can sustain a compressive force on the order of 100 pN. The relatively stiff
microtubules and compliant cytoplasm are combined to provide a scaffold for compres-
sive force. �DOI: 10.1115/1.2966216�
Introduction
It is believed that the mechanical behavior of an eukaryotic cell

s primarily governed by a network of filament systems called the
ytoskeleton �1�. The cytoskeleton supports a large volume of
ytoplasm as well as provides the mechanical scaffold and main-
ains the integrity of cells �1–3�. Many cellular functions such as
ene expression, cell division, motility, signal transduction,
ound healing, and apoptosis are mediated by the physical prop-

rties of cytoskeleton. There are three major filamentous biopoly-
ers comprising the cytoskeleton: microtubules, actin filaments,

nd intermediate filaments. Each cytoskeleton filament has differ-
nt atomic structures and therefore has distinct mechanical func-
ions and properties. For example, a microtubule �Fig. 1�a�� is a
ong �up to 50 �m�, hollow cylindrical tube with inner and outer
iameters of 15.4 nm and 25 nm, respectively �1,4�. The tube wall
s formed from a dimerization of globular proteins ��-� tubulins�
ith one guanosine triphosphate �GTP� or guanosine diphosphate

GDP� nucleotide. Under the right conditions, tubulin het-
rodimers will polymerize to form long chained protofilaments
Fig. 1�b��, which bind to GDP in a circular arrangement to form
microtubule �1�.
Microtubules are the stiffest biopolymers in cytoskeleton, and

heir bending rigidity is about 100 times larger than that of actin
laments, and therefore it is believed that microtubules typically
arry most of the compressive forces �5–9�. Such large aspect
atio �25 nm in diameter /50 �m in length�, however, suggests
hat isolated microtubules will exhibit classic Euler buckling with
single long-wavelength buckling pattern, as shown in Fig. 2�a�.
sing the reported bending rigidity EMTI=2�10−23 N m2 �10�,

he critical load for Euler buckling of a microtubule is Pc

4�2EMTI /L2=0.3 pN, where EMT is Young’s modulus of micro-
ubules, I is the moment of inertia, and L�=50 �m� is the length of
microtubule. This critical load for buckling is even one order of
agnitude smaller than the microtubule polymerization force

�4 pN� measured in vitro �11�, which suggests that the microtu-
ules cannot sustain compressive force because they would
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buckle at a very small critical force. Another contradiction is that
the single long-wavelength buckling pattern �Fig. 2�a�� does not
agree with the highly curved microtubules observed in living cells
�11,12�, as illustrated in Fig. 2�b�.

In order to understand the structural role of microtubules in
living cells, Brangwynne et al. �13� conducted experimental stud-
ies on microtubule buckling in vivo. They found that individual
microtubules can bear compressive forces that are about 100 times
greater in vivo than they can in vitro. In vivo, microtubules also
buckle at short-wavelengths ��=3 �m�. The mechanism for short-
wavelength buckling was qualitatively explained by the lateral
mechanical reinforcement supported by the surrounding elastic
cytoskeleton. This study shed light on the mechanical role of mi-
crotubules in living cells although precise mechanics analysis is
still needed.

This paper presents a structured analysis of the quantitative
mechanics of microtubule buckling. In order to investigate the
effects of surrounding cytoplasm on the buckling of microtubules,
the cytoplasm is modeled using three different types of materials:
viscous, elastic, and viscoelastic. Each cytoplasm model displays
unique yet important results. This paper is organized as follows.
Section 2 describes the microtubule model that is applied for vari-
ous cytoplasm models. The analyses of microtubule buckling on
viscous, elastic, and viscoelastic cytoplasms are given in Secs.
3–5, respectively, along with the corresponding discussions. Sec-
tion 6 summarizes the results and discusses the importance of
this study to biological understanding of the structural role of
microtubules

2 Microtubule Modeling
The microtubule is modeled as an elastic cylindrical tube with

outer diameter Do�=25 nm� and inner diameter Di�=15.4 nm�. The
microtubule is embedded in a three-dimensional cytoplasm and
subject to an axial compressive force P��0� that leads to micro-
tubule buckling with a short-wavelength �Fig. 2�b��. The von Kar-
man theory �14� is used to account for the finite rotation effect in

the buckling analysis. The axial strain in the microtubule is
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�11 =
�u1

�x1
+

1

2
� �u3

�x1
�2

�1�

here u1 is the axial displacement and u3 is the vertical displace-
ent. The coordinate system is shown in Fig. 3, where x1 is in the

xial direction, x2 is in the diameter direction, and x3 is in the
ertical direction. The linearly elastic constitutive model gives the
xial force N11=EMTS�11, where S=� /4�Do

2−Di
2� is the cross-

ectional area of the microtubule. The shear traction T1 and nor-
al traction T3 at the microtubule/cytoplasm interface can be ob-

ained from the equilibrium of forces �14�

T1 =
�N11

�x1
�2�

nd

T3 = EMTI
�4u3

�x1
4 − N11

�2u3

�x1
2 −

�N11

�x1

�u3

�x1
�3�

here I=� /64�Do
4−Di

4� is the moment of inertia of microtubules.
he relatively stiff microtubule/compliant cytoplasm system has

ig. 1 The structure of a microtubule †1‡. „a… The microtubule
s a hollow cylindrical tube formed from 13 protofilaments
ligned in parallel. „b… One protofilament consists of a string
-� heterodimers.
egligible shear stress at the interface, i.e., T1�0 �15�. Equation
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�2� then gives constant axial force N11 and constant axial strain
�11.

The buckling profile of the microtubule can be expressed as

u3 = A cos�kx1� �4�
where the multiple short-wavelength buckling pattern is assumed,
the amplitude A and wave number k are to be determined, and
�=2� /k is the buckling wavelength. The constant axial strain �11
gives the axial displacement u1=kA2 sin�2kx1� /8, where the con-
dition 	0

2�/k��u1 /�x1�dx1=0 has been imposed to be consistent

Fig. 2 „a… Microtubule buckles to a single long-wavelength
pattern and „b… microtubule buckles to short-wavelength
pattern
Fig. 3 The coordinate system used in the analysis
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ith the overall cytoplasm deformation �16�. Due to axial com-
ressive force P, the axial strain then becomes

�11 =
1

4
A2k2 −

P

EMTS
�5�

nd the vertical traction T3 at the microtubule/cytoplasm interface
s

T3 = − � cos�kx1� �6�

here

� = − EMTIAk4 − EMTS�1

4
A2k2 −

P

EMTS
�Ak2 �7�

For the buckling profile in Eq. �4�, the bending energy per unit
avelength of the microtubule becomes

Ub =
k

2�



0

2�/k
1

2
EMTI� �2u3

�x1
2 �2

dx1 =
1

4
EMTIk4A2 �8�

he energy per unit wavelength due to axial strain is given by

Ua =
1

2
N11�11 =

1

2
EMTS�1

4
A2k2 −

P

EMTS
�2

�9�

Microtubule Buckling on Viscous Cytoplasm
We first model the surrounding cytoplasm as a three-

imensional viscous flow since the major element of cytoplasm,
ytosol, typically consists of fluid. Cytoplasmic streaming is such
three-dimensional viscous flow in the cells and surrounds the

ytoskeleton �17�. The viscous cytoplasm is assumed to be incom-
ressible, i.e.,

� · u̇ = 0 �10�

here u̇ is the velocity, i.e., u̇=du /dt; t is the time. Some bio-
ogical experiments have shown that upon forces �e.g., centrifugal
orces�, the cytoplasmic streaming becomes steady on the time
cale of minutes �e.g., Refs. �18,19��. Moreover, the biological
tudy used measured values to estimate the Reynolds number and
ound that the Reynolds number Re is very low for cytoplasmic
treaming, for instance, Re	10−3, as reported by Pickard �20�.

ith the conditions of steady state and low Reynolds number of
ytoplasmic streaming that surrounds the cytoskeleton, we model
he viscous cytoplasm as Stokes flow that is characterized by
tokes equation

− �P + 
�2u̇ = 0 �11�

here P is the pressure and h is the dynamic viscosity of cyto-
lasm. A vertical traction −T3=� cos�kx1� �where T3 is given in
q. �6�� is applied over the area ��x2��R ,x3=0� where the micro-

ubule contacts with the viscous cytoplasm. The traction −T3 is
ssumed to be uniform over the diameter of the microtubule �but
eriodic in the x1 direction�, which gives the following stress trac-
ion in the x3 direction within the three-dimensional viscous cyto-
lasm:

N33 = −
T3

2R
=

�

2R
cos�kx1� �12�

ver the diameter �2R= �Di+Do� /2� of the microtubules �Fig. 3�.
Instead of solving this three-dimensional Stokes equation with

tress traction N33 as a boundary condition for the area ��x2�
R ,x3=0� and traction free for the other areas, we use the solu-

ion of flow due to a point force. We now consider the flow due to
unit point force at a point of x0= �x1

0 ,x2
0 ,0� within the three-

imensional viscous cytoplasm. The Stokes equation with a sin-

ular point force term is then given by
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− �P + 
�2u̇ + e3��x − x0� = 0 �13�

where e3 is the unit vector in the x3 direction and � is the Dirac
delta function. Using the Stokes stream function method, the flow
due to a point force can be resolved and the details were given by
Pozrikidis �21�. The vertical velocity u̇3 at a point x= �x1 ,x2 ,0� is

given by 1 /8�
��x1−x1
0�2+ �x2−x2

0�2. Then for the distributed
stress traction N33 given by Eq. �12�, the vertical velocity u̇3 at a
point x= �x1 ,x2 ,0� is the integration over the area covered by
microtubule,

u̇3�x1,x2,0� =

−R

R 

−




� cos�kx1

0�
2R

1

8�


�
1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=

−R

R
� cos�kx1�

8�R

Y0�k�x2

0 − x2��dx2
0 �14�

where Y0 is the modified Bessel function of the second kind �22�.
Since the diameter of microtubules R�=12.5 nm� is much smaller
than the observed buckling wavelength ��=3 �m�, then k�x2

0−x2�
�2kR=4�R /��1. The velocity in Eq. �14� then can be approxi-
mately expressed as

u̇3�x1,x2,0� =

−R

R
� cos�kx1�

8�R

�ln

k�x2
0 − x2�
2

+ ��dx2
0

=
� cos�kx1�

8�R


2R�1 − �� + 2R ln 2 − �R + x2�ln�k�R

+ x2�� − �R − x2�ln�k�R − x2��� �15�

where

� = lim
n→


��
i=1

n
1

i
− ln�n�� = 0.577

is Euler’s constant.
The viscous cytoplasm and the buckled microtubule are

coupled through the continuity condition across the microtubule/
cytoplasm interface. Specifically, the vertical velocity u̇3 of the
viscous cytoplasm in Eq. �15� is continuous with the vertical ve-
locity of the microtubule resulted from the displacement in Eq. �4�
at the interface. We realize that the vertical velocity in Eq. �15�
also depends on the x2 direction so that this continuity is on the
average sense, i.e., the average vertical velocity of the viscous
cytoplasm over the diameter of the microtubule

u̇3
avg�x1� =

1

2R
−R

R

u̇3�x1,x2,0�dx2 =
� cos�kx1�

8�

�3 − 2� − 2 ln�kR��

�16�

is the same as the vertical velocity of the microtubule from the
displacement in Eq. �4�. Thus the continuity condition is

dA

dt
=

�

8�

�3 − 2� − 2 ln�kR�� �17�

We consider that the microtubule buckling originated from the
accumulation of small fluctuations, which consists of many small
perturbation components with each component expressed as a
sinusoidal form as in Eq. �4�. For small perturbation with vertical
displacement A, � in Eq. �7� is linearized by keeping the first-

order terms of A,
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� = EMTI� P

EMTI
− k2�k2A �18�

he linear ordinary differential equation for small perturbation A
hen becomes

dA

dt
=

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2A �19�

et A0=A�t=0� be the initial amplitude, the evolution of the ver-
ical displacement is

A�t� = A0 exp�EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2t�

= A0eGRviscoust �20�
here

GRviscous =
EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2 �21�

enotes the growth rate of the initial perturbation.
Figure 4 shows GRviscous versus wavelength for fixed bending

igidity EMTI=2�10−23 N m2 �10� and various axial compressive
orce P and viscosity 
. Figure 4�a� gives the growth rate

(a)

(b)
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ig. 4 The relationship of growth rate and wavelength for vis-
ous cytoplasm. „a… Growth rate versus wavelength for small
xial compressive force and „b… growth rate versus wavelength
or large axial compressive force.
Rviscous and wavelength relationship for small compressive force
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�P=0.3 pN� and low viscosity 
=1.5�10−3–7.5�10−3 Pa s to
model the fluid-phase cytosol that is only several times as viscous
as water �e.g., Refs. �23–25��. When GRviscous�0 for certain
wavelengths, the initial fluctuations characterized by these wave-
lengths grow in an exponential law �Eq. �20��, while when
GRviscous	0 for some wavelengths, the initial fluctuations associ-
ated with these wavelengths decay and the microtubules remain
straight. The critical condition GRviscous=0 gives the critical
wavelength

�viscous
c = 2��EMTI

P
�22�

The critical wavelength �viscous
c does not depend on viscosity 


and is 51.3 �m, shown in Fig. 4�a�. The initial fluctuations with
wavelengths greater than �viscous

c will grow; however, the fluctua-
tions with wavelengths smaller than �viscous

c will decay. Equation
�22� also indicates that no matter how small the force is, there
exists a critical wavelength �viscous

c to ensure growth from initial
fluctuations. In other words, dynamic growth is guaranteed to oc-
cur in viscous cytoplasm.

It is also noticed that the critical wavelength �viscous
c is identical

to the critical length for Euler buckling, which suggests that a very
small axial compressive force �on the order of 1 pN depending on
the microtubule length� may lead to microtubule buckling with a
large wavelength. However, the buckling of microtubules on vis-
cous cytoplasm due to a small compressive force does not indicate
that the microtubules cannot bear a compressive force. The
growth or decay in this section is just the initial stage, while the
compressive force that microtubule can sustain is determined by
final equilibrium stage as to be discussed in Sec. 4.

Each curve in Fig. 4�a� has a maximum �marked by � in Fig.
4�a��, which denotes the fastest growth rate. The corresponding
fastest growth wavelength is determined by �GRviscous /�k=0,

� = 2��EMTI

2P

5 − 4� − 4 ln�2�R/��
1 − � − ln�2�R/��

�23�

Numerical results show that 5−4�−4 ln�2�R /�� /1−�
−ln�2�R /���4 for all wavelengths, such that

�viscous
fastest growth � 2��2EMTI

P
�24�

Equation �24� clearly shows that the fastest growth wavelength is
independent of viscous cytoplasm, while the corresponding fastest
growth rate is inversely proportional to the viscosity. More impor-
tantly, the fastest growth rate is about 1 /s, which suggests that the
growth of initial fluctuation is on the order of seconds. This time
scale agrees well with in vivo experiments of Brangwynne et al.
�13�.

Corresponding to the force generated by optical and magnetic
tweezers, the growth rate GRviscous and wavelength relationship
for cells due to a large compressive force �P=70 pN� and moder-
ate viscosity �
=5–9 Pa s �25�� are shown in Fig. 4�b�. Similar
curves are shown and the critical and fastest growth wavelengths
are 3.3 �m and 4.8 �m, respectively.

The study for viscous cytoplasm shows the following.

�1� Any small fluctuations that have wavelength greater than
critical wavelength �Eq. �22�� will grow no matter how
small the compressive force P is.

�2� Cytoplasm viscosity only affects the growth rate; the
smaller the viscosity, the larger the growth rate; cytoplasm
viscosity cannot determine the occurrence of the growth.

�3� Critical wavelength and fastest growth wavelength do not
depend on viscosity.

�4� The compressive force that a microtubule can sustain be-
fore buckling is very small if the surrounding is a viscous

cytoplasm.
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It should be pointed out that the steadiness of cytoplasmic
treaming and small perturbation �Eq. �20�� are two distinct con-
epts. The former indicates that the cytoplasmic streaming is
teady upon external force/stress. While the latter, the small per-
urbation, evolves to respond to the steady cytoplasmic streaming,
hich is not steady, as shown in Eq. �20�.

Microtubule Buckling on Elastic Cytoplasm
The elasticity of the cytoplasm originated from the cytoskeleton

26�. The elastic cytoplasm stores the deformation energy to sta-
ilize the microtubules/cytoplasm system such that the equilib-
ium configuration �e.g., equilibrium wavelength� is determined
y the energetics of the system. In this section, we study the final
quilibrium stage by modeling the cytoplasm as a three-
imensional linearly elastic solid in this section. The shear modu-
us �e is used to characterize the incompressible elastic cyto-
lasm. The energetically favorable buckling pattern is determined
sing the energy method.

The three-dimensional elastic cytoplasm is subject to vertical
raction −T3 �where T3 is given in Eq. �6�� within the area ��x2�

R ,x3=0�. The normal traction −T3 is assumed to be uniform
ver the microtubule diameter 2R, which gives the nonvanishing
tress traction in the x3 direction N33=−T3 /2R=� cos�kx1� /2R the
ame as Eq. �12� in viscous analysis.

Based on Gaussian’s divergence theorem, the strain energy per
nit wavelength in the elastic cytoplasm is

Us =
k

2�
·

1

2

V

�:�dV =
k

4�



S�

N33u3
cytoplasmdS

=
k

4�



−R

R 

0

2�/k

N33u3
cytoplasmdx1dx2 �25�

here S� is the area ��x2��R ,x3=0� where the microtubule con-
acts with the cytoplasm and u3

cytoplasm is the displacement on the
rea S�, which is obtained analytically from Kelvin’s solution
27�.

For a unit normal point force at x0= �x1
0 ,x2

0 ,0� within a three-
imensional infinite elastic solid, Kelvin’s solution gives the ver-
ical displacement at the point x= �x1 ,x2 ,0� as

1 /8��e�1 /��x1−x1
0�2+ �x2−x2

0�2. For the distributed load N33,
he displacement at point x= �x1 ,x2 ,0� for elastic cytoplasm is the
ntegration over the entire microtubule diameter 2R,

3
cytoplasm�x1,x2,0� =


−R

R 

−




� cos�kx1

0�
16�R�e

�
1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=
� cos�kx1�

8�R�e

2R�1 − �� + 2R ln 2

− �R + x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2���
�26�

here the condition R /��1 has been used. Because the
icrotubule/elastic cytoplasm interface is replaced by the normal

raction in Eq. �6�, the above displacement for the elastic cyto-
lasm is continuous with the displacement in Eq. �4� for the buck-
ed microtubule only on the average sense.

The strain energy in the elastic cytoplasm is then obtained from

qs. �25� and �26� as
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Us =
k

4�



x2=−R

R 

x1=0

2�/k
�

2R
cos�kx1�

� cos�kx1�
8�R�e


2R�1 − �� + 2R ln 2

− �R + x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2���dx1dx2

=
�2

32��e
�3 − 2� − 2 ln�kR�� �27�

The total potential energy �tot of the system is the sum of
bending energy �Eq. �8�� and axial strain energy �Eq. �9�� in the
microtubule and the strain energy in the elastic cytoplasm �Eq.
�27��. However, for the microtubule vertical displacement in Eq.
�4� and the cytoplasm vertical displacement in Eq. �26�, which are
not continuous, the potential energy becomes

�tot = Ub + Um + Us −

S�

��u3 − u3
cytoplasm�dS �28�

where � is the Lagrange multiplier. The variation of the above
potential energy with respect to � requires u3=u3

cytoplasm and the
variation with respect to the displacement u3 or u3

cytoplasm gives �
to be the traction T3 �Eq. �6�� at the interface. In the following the
Lagrange multiplier � is replaced by the traction T3 in Eq. �6�.
The potential energy is then obtained as

�tot =
1

2
EMTS�1

4
A2k2 −

P

EMTS
�2

+
1

4
EMTIk4A2 +

1

2
�A −

�2

32��e
�3

− 2� − 2 ln�kR�� �29�

which depends on buckling amplitude A and wavelength �
=2� /k.

The minimization of potential energy �tot in Eq. �29� with re-
spect to the buckling amplitude A, ��tot /�A=0, gives

A = �2

k
�P − Pelastic

c

EMTS
, P � Pelastic

c

0, P 	 Pelastic
c � �30�

where

Pelastic
c =

8��e

k2

1

3 − 2� − 2 ln�kR�
+ EMTIk2 �31�

is the critical compressive force for buckling. Equation �30� sug-
gests that the buckling occurs only when the compressive force P
reaches a critical force Pelastic

c given by Eq. �31�, in which the
wave number k is to be determined.

The minimization of potential energy with respect to the wave
number, ��tot /�k=0, gives the following nonlinear equation for k:

k�EMTI

�e
�1/4

= �16��1 − � − ln�kR��
�3 − 2� − 2 ln�kR��2�1/4

�32�

For reported microtubule bending rigidity EMTI=2�10−23 N m2

�10� and the wide range of shear modulus of the surrounding �e
=1−1000 Pa �28�, the numerical results show that

kelastic
c �

5

4
� �e

EMTI
�1/4

�33�

or equivalently,

�elastic
c =

8�

5
�EMTI

�e
�1/4

�34�

At this critical wavelength, the amplitude A is

A =
8

5
�EMTI

�e
�1/4�P − Pelastic

c

EMTS
�35�

c
and the critical force Pelastic is
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Pelastic
c =

25

16
�EMTI�e�1 +

2048�

625�3 − 2� − 2 ln�2�R/�elastic
c ���

�36�
The buckling wavelength given by Eq. �34� is independent of

xial compressive force P and solely determined by the ratio of
hear modulus of the elastic cytoplasm and the bending rigidity of
icrotubules. Therefore, the buckling wavelength is an intrinsic

roperty of microtubules/elastic cytoplasm systems and com-
letely determined by their mechanical properties. Since the re-
orted shear modulus �e of cytoplasm has extremely large scat-
ering, ranging from 0.1 Pa to 1000 Pa �28�, the buckling
avelength also exhibits large scattering. The smallest wave-

ength is about 1.9 �m while the largest wavelength is 19 �m. If
median value of �e=200 Pa is used, the present analysis gives

.8 �m wavelength, which agrees very well with experiments of
rangwynne et al. �13�.
The critical axial compressive force Pelastic

c to buckle microtu-
ules �Eq. �36�� depends on both the bending rigidity of microtu-
ules and the shear modulus of the cytoplasm. Therefore, the
ompressive force that an individual microtubule can bear de-
ends on both the bending rigidity of microtubules and the shear
odulus of cytoplasm as well. Figure 5 shows the relationship

etween the compressive force P that an individual microtubule
ustains before buckling and the shear modulus of cytoplasm for a
iven bending rigidity of microtubules as EMTI=2�10−23 N m2

10�. The results show that the compressive force is on the order
f 100 pN, except when the shear modulus is less than 20 Pa. This
tudy clearly indicates that the ability of a cell to bear compres-
ive force depends on both microtubules and cytoplasm: The rela-
ively stiff microtubules are combined with the compliant cyto-
lasm to sustain the compressive force.

The main findings for microtubule buckling on elastic cyto-
lasm are the following.

�1� The buckling wavelength does not depend on the axial
force P but on the ratio of shear modulus of the elastic
cytoplasm and bending rigidity of the microtubules.

�2� The compressive force is on the order of 100 pN for most
cytoplasm with a shear modulus larger than 20 Pa.

�3� The ability to sustain compressive force is governed by
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Fig. 5 The relationship between the
microtubule bears before buckling
cytoplasm
both stiff microtubules and compliant cytoplasm.
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5 Microtubule Buckling on Viscoelastic Cytoplasm
In this section, we study microtubule buckling supported by the

viscoelastic cytoplasm. Cytoplasm exhibits both viscosity from
fluid and elasticity from solid cytoskeleton networks, which has
been shown in various experiments �29�.

The surrounding cytoplasm that consists of fluid and cytoskel-
eton is modeled as an isotropic linearly viscoelastic material. The
stress-strain relation is described in an integral form �30�

��t� = 2

−


t

��t − ��
�����

��
d� + �


−


t

��t − ��
���:��

��
d� �37�

where t is the time, ��t� and ��t� are time-dependent relaxation
moduli, and � is the second-order identity tensor. The equilibrium
equation without body force and inertia term is � ·�=0. The
strain-displacement relation is linear, i.e., �= ��u+u� � /2. Within
the three-dimensional viscoelastic cytoplasm, only the area ��x2�
�R ,x3=0� that contacts with the buckled microtubule has pre-
scribed traction −T3=� cos�kx1�, where T3 is given in Eq. �6�. We
also assume that the traction −T3 is uniformly distributed over the
diameter of microtubules, i.e., N33=−T3 /2R=� cos�kx1� /2R �Fig.
3�. A boundary value problem for viscoelastic cytoplasm is then
established.

This viscoelastic problem can be solved by the elastic-
viscoelastic correspondence principle �30�. The stress-strain rela-
tionship is given by Laplace transform of Eq. �37�,

�̄�s� = 2s�̄�s��̄�s� + s�̄�s���̄�s�:��� �38�
where a bar over a variable denotes its Laplace transformed form
and s is the transform variable. The nonvanishing stress traction in
Laplace transformed form is

N̄33 =
�̄ cos�kx1�

2R
, �x2� � R,x3 = 0 �39�

Equations �38� and �39� are identical to that of linear elasticity
if the transform of viscoelastic variables �e.g., �̄�s� and �̄�s�� are
associated with the corresponding elastic variables �e.g., � and ��
and the transformed moduli �e.g., s�̄�s� and s�̄�s�� are associated
with elastic moduli �e and �e. Thus the solution of the Laplace

600 800 1000

s of cytosol (Pa)

mpressive force P that an individual
the shear modulus of the elastic
lu

co
and
transformed viscoelastic problem can be directly obtained from
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he solution of the corresponding elastic problem by replacing �e

nd �e with s�̄�s� and s�̄�s�. The corresponding elastic problem
or Eqs. �38� and �39� has been resolved in Sec. 4 using Kelvin’s
olution �27�. Then the displacement at point x= �x1 ,x2 ,0� due to
distributed load �Eq. �39�� in viscoelastic cytoplasm is obtained

rom the corresponding elastic solution given by Eq. �26�,

ū3�x1,x2,0,s� =

−R

R 

−




�̄ cos�kx1

0�
16�Rs�̄�s�

1

��x1 − x1
0�2 + �x2 − x2

0�2
dx1

0dx2
0

=
�̄ cos�kx1�
8�Rs�̄�s�


2R�1 − �� + 2R ln 2 − �R + x2�ln�k�R

+ x2�� − �R − x2�ln�k�R − x2��� �40�
The viscoelasticity of cytoplasm is specifically modeled as a

elvin model �30�, i.e., the viscoelastic system is modeled as a
pring and a dashpot in parallel, and the shear relaxation modulus
s

��t� = �e + 
��t� �41�

here �e is the stiffness of the spring and 
 is the viscosity of the
ashpot. The spring is used to model the elastic cytoskeleton such
hat �e is the shear modulus in Sec. 4. The dashpot models the
iscous fluid and therefore 
 is the viscosity in Sec. 3. Here the
iscoelasticity analysis involves both elasticity through shear
odulus �e and viscosity 
, and therefore exhibits profound ef-

ects on the microtubule buckling, as shown in the following.The
aplace transform of the shear relaxation modulus is

�̄�s� =
�e

s
+ 
 �42�

ubstitute Eq. �42� into Eq. �40� and the inverse Laplace trans-
orm gives

u̇3�x1,x2,0� = −
�e



u3 +

� cos�kx1�
8�R



2R�1 − �� + 2R ln 2 − �R

+ x2�ln�k�R + x2�� − �R − x2�ln�k�R − x2��� �43�
Similar to viscous analysis in Sec. 3, the viscoelastic cytoplasm

s coupled with the buckled microtubule via the stress and velocity
ontinuity condition across the interface. To be specific, the ver-
ical velocity of the viscoelastic cytoplasm at the microtubule/
ytoplasm interface �Eq. �43�� is continuous with the microtubule
elocity derived from Eq. �4� on the average sense, i.e., the aver-
ge velocity of the viscoelastic cytoplasm over the microtubule
iameter 2R,

u̇3
avg�x1� =

1

2R
−R

R

u̇3�x1,x2,0�dx2 = −
�e



u3 +

� cos�kx1�
8�


�3 − 2�

− 2 ln�kR�� �44�
s the same as the microtubule velocity given by Eq. �4�. Thus the
ontinuity condition is

dA

dt
= −

�e



A +

�

8�

�3 − 2� − 2 ln�kR�� �45�

Here we only consider the initial growth of buckling from the
mall perturbation of A in Eq. �4� such that � is linearized �the
ame as Eq. �18��, and the linear ordinary differential equation for
mall perturbation A becomes

dA

dt
= �−

�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2�A

�46�

ompared with the differential equation of A in viscous analysis
Eq. �19��, �e /
 comes into play in viscoelastic analysis. �e /


0 corresponds to viscous cytosol presented in Sec. 3, while
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�e /
→
 denotes that the elasticity prevails in the viscoelastic
cytoplasm. Let the initial amplitude be A0, the evolution of the
amplitude is

A = A0 exp��−
�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2�t�

= A0eGRviscoelastict �47�

where

GRviscoelastic = −
�e



+

EMTI

8�

� P

EMTI
− k2��3 − 2� − 2 ln�kR��k2

�48�

is the growth rate for viscoelastic cytoplasm.
The stability of the perturbed microtubules depends on the sign

of the growth rate GRviscoelastic. When GRviscoelastic�0 for some
wavelengths, the initial fluctuations associated with these wave-
lengths grow in an exponential law with growth rate GRviscoelastic.
While when GRviscoelastic	0 for some wavelengths, the initial
fluctuations characterized by these wavelengths decay and the mi-
crotubules are stable. The critical condition is GRviscoelastic=0. The
three stages of evolution of perturbed microtubules are shown in
Fig. 6. The parameters used in Fig. 6 are bending rigidity EMTI
=2�10−23 N m2 �10�, P=40 pN, viscosity 
=10 Pa s, and shear
modulus �e=0−8.5 Pa. Compared with Fig. 4 for viscous cyto-
plasm, the introduction of shear modulus has important effects.

With the increase in shear modulus �e from 0 �corresponding to
viscous case� to finite value, the viscoelastic cytoplasm becomes
more “elastic” and all of the curves shift downward but do not
change shape, which leads to an increase in the critical wave-
length. For example, the critical wavelength for �e=2 Pa is
4.6 �m, while it is 4.9 �m for �e=4 Pa. The fastest growth
wavelength is determined by �GRviscoelastic /�k=0,

� = 2��EMTI

P

5 − 4� − 4 ln�2�R/��
3 − 2� − 2 ln�2�R/���1/2

�49�

with an approximated expression as

�viscoelastic
fastest growth � 2��2EMTI

P
�50�

which is independent of shear modulus �e and the same as that for
viscous analysis given by Eq. �24�. Equation �50� suggests that
once the dynamic growth occurs, the fastest growth wavelength is
completely determined by the axial compressive force P and the
bending rigidity EMTI of microtubules but does not depend on the

4 5 6 7 8 9 10 11 12

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�e = 8.5 Pa

�e = 4 Pa

�e = 2 Pa

�e = 1 Pa
�e = 0

P = 40 pN
� = 10 Pa·s

G
ro
w
th
ra
te
G
R v
isc
oe
la
sti
c
(1
/se
co
nd
)

Wavelength (�m)

Fig. 6 The relationship of growth rate and wavelength for vis-
coelastic cytoplasm with different shear moduli
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If shear modulus further increases, e.g., �e=8.5 Pa in Fig. 6,
he growth rate GRviscoelastic	0 for all wavelengths. This suggests
hat the buckling is suppressed by the viscoelastic cytoplasm. The
ritical shear modulus �e

c is determined by setting GRviscoelastic
0 and ��e

c /�k=0, which gives

�e
c =

P2

32�EMTI
�3 − 2� − 2 ln�� P

2EI
R�� �51�

or a given axial force P, cytoplasm with shear modulus larger
han �e

c prevents the growth for all wavelengths. The elasticity of
he cytoplasm allows the system the ability to block microtubule
uckling, while the viscosity of the cytoplasm does not block
icrotubule buckling and only affects the growth rate. In Fig. 6,

he growth rate GRviscoelastic is about 1 /s, which suggests that if
uckling process occurs, it occurs on the order of seconds.

Figure 7 shows the growth rate curve for different axial force P
ith shear modulus �e=200 Pa and viscosity 
=10 Pa s. The

ritical wavelength and fastest growth wavelength increase with
he decrease in the axial force P. When P=212 pN, the growth
ate is zero, which gives a critical axial compressive force

viscoelastic
c . If the axial compressive force is less than Pviscoelastic

c ,
he initial perturbation will decay and the microtubule buckling
oes not occur. The critical force Pviscoelastic

c is obtained by solving
Rviscoelastic=0 and �Pviscoelastic

c /�k=0,

Pviscoelastic
c =

25

16
�EMTI�e�1 +

2048�

625�3 − 2� − 2 ln�kR��� �52�

nd the corresponding critical wavelength is

�viscoelastic
c =

8�

5
�EMTI

�e
�1/4

�53�

he critical force and wavelength are identical to that for the
lastic cytoplasm, which indicates that the threshold for microtu-
ule buckling is completely governed by cytoplasm elasticity.
herefore, the discussion of the compressive force that an indi-
idual microtubule can bear in the elastic analysis also holds here.

Discussion and Concluding Remarks
In this study, mechanics models for the analysis of microtubule

uckling supported by cytoplasm have been reported. The micro-
ubule is modeled as a linearly elastic cylindrical tube while the
ytoplasm is characterized by viscous, elastic, or viscoelastic ma-
erial. The microtubule is coupled with the cytoplasm through
nterface continuity conditions. The dynamic evolution equations,
astest growth rate, critical wavelength, and critical compressive
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ig. 7 The relationship of growth rate and wavelength for vis-
oelastic cytoplasm with different axial compressive forces
orce, as well as equilibrium buckling configurations are obtained.
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To understand the process completely, one must not only con-
sider the energy of deformed configuration but also the dynamics.
The dynamic effect is due to the cytoplasm viscosity that affects
the growth rate, while the energetic process is governed by the
cytoplasm elasticity that determines the occurrence of buckling.
Once the buckling occurs, the final equilibrium configuration is
completely determined by the elasticity. These processes, namely,
dynamic growth and elastic equilibrium, are similar for the bilayer
structures that have been studied previously �31–37�. The ability
of a cell to sustain compressive force is not solely determined by
microtubules but also the elasticity of cytoplasm. With the support
of the cytoplasm, an individual microtubule can sustain a com-
pressive force on the order of 100 pN. The relatively stiff micro-
tubules and compliant cytoplasm are combined to provide a scaf-
fold for compressive force.

In addition to the mechanics explanation of microtubule buck-
ling supported by cytoplasm, the findings in this study can be
influential due to the concise analytical description of the critical
force and wavelength. For example, since the bending rigidity of
microtubules is well accepted on the range of 0.4�10−23–4
�10−23 N m2, the expression for critical wavelength provides a
means to measure the shear modulus of cytoplasm that is closely
related to many diseases, such as cancer �38�.

There exists some related works. For example, Liu et al. �39�
studied the buckling of a microtubule bundle in tubulin solution.
They observed a short-wavelength buckling pattern and obtained a
power law for buckling wavelength ��R�EMT /�e�1/4, which is
the same as the current analysis. Im and Huang �36� showed the
similar relation between buckling wavelength and ratio of thin
film and substrate for thin film buckling on an elastic-viscoelastic
bilayer. A recent work by Das et al. �40� studied the mechanism of
microtubule buckling in cells. Similar relations between buckling
profiles and substrate modulus were obtained. The main difference
is that the current analysis has a more quantitative mechanics
analysis.
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