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Stone–Wales transformation in boron nitride nanotubes
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A hybrid atomistic/continuum model is used to study the Stone–Wales transformation (90� rotation of an atomic bond) in boron
nitride nanotubes (BNNTs) subjected to tension. The critical strain for Stone–Wales transformation is 11.47% for (5,5) armchair
and 14.23% for (10,0) zigzag BNNTs, which agree well with the atomistic simulations. The critical strain depends on the BNNT
chirality for small tube radius, but this dependence gradually disappears with the increasing tube radius.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Boron nitride nanotubes (BNNTs) possess unique
mechanical, thermal, electrical and chemical properties,
and represent an important class of nanotubes. Their
tensile stiffness [1–6] is comparable to that of carbon
nanotubes. They have high thermal conductivity along
the nanotube [7], and good resistance to oxidation at
high temperature [8]. However, in contrast to carbon
nanotubes, BNNTs always have large band gaps, and
are therefore semiconductors, regardless of the chirality
and diameter [9].

Atomistic simulations [10–13] and experiments [14]
have shown topological defects (5775) in BNNTs which
correspond to the 90� rotation of a boron nitride bond.
This is called the Stone–Wales transformation, which
generates two unfavorable homoelemental (boron–
boron and nitrogen–nitrogen) bonds. Figure 1 shows
the schematic diagrams of 5775 defects in (n,n) armchair
BNNTs (Fig. 1a) and in (n, 0) zigzag BNNTs with clock-
wise (Fig. 1b) and counterclockwise (Fig. 1c) bond rota-
tion. In contrast to carbon nanotubes, the clockwise and
counterclockwise bond rotations in BNNTs give differ-
ent states of energy [11,12,15,16]. Only for (n,n) arm-
chair BNNTs do the clockwise and counterclockwise
bond rotations become the same.

Jiang et al. [17] and Song et al. [18] developed a
hybrid atomistic/continuum model based on the
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interatomic potential for carbon [19] to study the
Stone–Wales transformation in carbon nanotubes under
tension. The critical tensile strain for the Stone–Wales
transformation is about 5% for the (5, 5) armchair and
10% for the (10,0) zigzag carbon nanotubes, which agree
well with the atomistic simulations [20]. It is unclear
whether this hybrid atomistic/continuum model works
for other nanostructured materials such as BNNTs,
which involve two different atoms (boron and nitrogen).

The aim of this paper is to extend the hybrid atomis-
tic/continuum model for BNNTs and to study the
Stone–Wales transformation. For boron nitride, Albe
et al. [21] established an interatomic potential

V ðrij; hijkÞ ¼ V RðrijÞ � BijV AðrijÞ; ð1Þ
where VR and VA are the repulsive and attractive pair
terms that depend only on the distance rij between a pair
of atoms i and j, and Bij represents the multibody
coupling that depends on neighboring atoms through
bond angle. The detailed expressions for VR, VA and
Bij [21], as summarized in [6], are much more complex
than their counterparts for carbon nanotubes [19] since
the index pair i and j can be boron–nitrogen, nitro-
gen–nitrogen, and boron–boron.

This paper is summarized as follows. The hybrid
atomistic/continuum model is first developed for
BNNTs, based on the interatomic potential [21], to
study the Stone–Wales transformation in BNNTs under
tension. The model is compared with the limited
atomistic simulation results [10–12], and is then used
sevier Ltd. All rights reserved.
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Figure 1. Schematic diagrams of (a) a 5775 defect in an (n,n) armchair BNNT; (b) a 5775 defect induced by clockwise bond rotation in an (n, 0)
zigzag BNNT; (c) a 5775 defect induced by counterclockwise bond rotation in an (n, 0) zigzag BNNT. The solid and open circles represent boron and
nitrogen atoms, respectively.
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to systematically study the effect of BNNT diameter and
chirality on the Stone–Wales transformation.

Figure 2 shows a schematic diagram of the hybrid
atomistic/continuum model for the Stone–Wales trans-
formation in BNNTs. The 90� rotation of a boron–
nitrogen bond is highlighted in Figure 2.

The atoms on a BNNT are divided into two groups.
Group (i) contains atoms far away from the rotated
bond. Atoms in this group undergo relatively uniform
deformation since the effect of bond rotation is rather
localized. Their positions are determined by the contin-
uum model for BNNTs [6], as discussed below. Group
(ii) contains atoms in the vicinity of the rotated bond.
Atoms in this group undergo nonuniform deformation
due to bond rotation. Their positions are to be deter-
mined by molecular mechanics in order to minimize
the total energy of the system. The conjugate gradient
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Figure 2. A hybrid atomistic/continuum model for studying the Stone–Wa
rotated bond are highlighted.
method provided by the IMSL program [22] is adopted
to minimize the total energy.

For the relative uniform deformation of Group (i)
atoms, Song et al. [6] established a continuum theory
based on the interatomic potential [21]. A BNNT is
composed of a triangular lattice of boron atoms and an-
other of nitrogen atoms. The atoms in each lattice fol-
low Cauchy–Born rule [23,24], but two lattices may
undergo a shift vector f [6] in order to reach equilibrium.
The bond length and angle can be obtained in terms of
the Green strain E and shift vector f. The Cauchy–Born
rule then gives the strain energy density W in the contin-
uum analysis in terms of E and f via the interatomic
potential, i.e., W = W(E,f). The shift vector f plays
the role of relaxing atoms between two lattices in order
to ensure equilibrium of atoms via energy minimization,
oW/of = 0, which gives the shift vector f in terms of E,
les transformation in armchair BNNTs, where the atoms around the



(a) (5,5) BNNT (b) (10,0) BNNT 

Figure 4. Front and top view of 5775 defects in (a) an (5,5) armchair
BNNT and (b) a (10,0) zigzag BNNT with counterclockwise 5775
bond rotation.

Table 1. Effect of BNNT chirality and radius on the critical strain for
the Stone–Wales transformation

Armchair BNNT Zigzag BNNT

(n,n) Radius
(nm)

Critical
strain (%)

(n, 0) Radius
(nm)

Critical
strain (%)

(5,5) 0.354 11.47 (9,0) 0.367 14.36
(6,6) 0.423 11.72 (10,0) 0.409 14.23
(7,7) 0.492 11.89 (12,0) 0.488 14.04
(8,8) 0.561 12.08 (14,0) 0.568 13.87
(10,10) 0.700 12.35 (18,0) 0.728 13.53
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f = f(E). The strain energy density then becomes
W = W[E,f(E)]. The second Piola–Kirchhoff stress T is
the work conjugate of the Green strain, i.e., T = oW/oE.

The atom positions in Group (i) are imposed as the
boundary conditions for the determination of atom
positions in Group (ii). It is important to point out that,
even though atoms are divided to two groups, the total
energy of the system cannot be divided because of the
multibody nature of atomistic interactions. For exam-
ple, even though atoms A and B are both in Group
(i), as shown in Figure 2, the energy stored in the AB
bond depends on the position of atom C in Group (ii).
It is important to account for the energy stored in all
atomic bonds that is influenced by atoms in Group
(ii). In addition, there must be sufficient number of lay-
ers of atoms in Group (ii) (in the vicinity of the rotated
bond) to ensure the results are accurate.

Figure 3 shows the difference in energy with and with-
out bond rotation, DE, versus the tensile strain e for the
(5,5) armchair and (10,0) zigzag BNNTs. Around e = 0,
DE is positive such that the perfect BNNT is energeti-
cally favorable. As e increases, DE decreases and eventu-
ally reaches zero, at which the BNNT with a 5775 defect
becomes energetically favorable. For the (5, 5) armchair
BNNT, the critical strain at which DE = 0 is 11.47%,
which suggests that the Stone–Wales transformation
may occur once the tensile strain exceeds 11.47%. For
the (10,0) zigzag BNNT, the critical strain for the coun-
terclockwise 5775 defect (Fig. 1c) is 14.23%, which is
smaller than its counterpart 15.08% for the clockwise
5775 defect (Fig. 1b). This is consistent with the ab initio
calculations [11] and other molecular mechanics simula-
tions [16]. The critical strains for the Stone–Wales trans-
formation, 11.47% for the (5,5) armchair and 14.23%
for the (10, 0) zigzag BNNTs, agree well with ab initio
calculations [10–12] that reported 12% for (5,5) arm-
chair and 16% for (10, 0) zigzag BNNTs.
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Figure 3. The energy difference DE versus the tensile strain e for (5,5)
armchair and (10,0) zigzag BNNTs. Here DE = E � Eperfect is the
difference between the energy for systems with and without Stone–
Wales transformation.
The Stone–Wales transformation breaks the perfect
atomic structure of nanotubes, which may significantly
reduce their electrical and thermal conductivity and
other superior properties [25–28]. Figure 4 shows the
front and top view of 5775 defects in the (5,5) armchair
and (10,0) zigzag BNNTs (with counterclockwise bond
rotation). The boron and nitrogen atoms clearly do
not stay on a cylindrical surface anymore due to the
Stone–Wales transformation. The maximum displace-
ment of atoms (from the cylindrical surface) is
0.056 nm for the (5,5) armchair BNNT and 0.057 nm
for the (10, 0) zigzag BNNT.

Table 1 shows the effect of BNNT chirality and
radius on the critical strain for the Stone–Wales trans-
formation. At approximately the same BNNT radius,
the critical strain for armchair BNNTs is always smaller
than that for zigzag BNNTs. This dependence on the
BNNT chirality decreases as the tube radius increases.
For example, the difference between the critical strains
for (5, 5) and (9,0) BNNTs (approximately the same
radii) is 2.89%, while the difference decreases to 1.18%
between (10,10) and (18,0) BNNTs (approximately the
same radii).
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We have used a hybrid atomistic/continuum model to
study the Stone–Wales transformation in boron nitride
nanotubes subject to tension. It is shown that the
Stone–Wales transformation occurs and generates the
5775 defects when the tensile strain reaches 11.47% for
(5, 5) armchair and 14.23% for (10,0) zigzag BNNTs.
The critical strain depends on the BNNT chirality for
small tube radius but this dependence gradually disap-
pears with the increasing tube radius.
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[21] K. Albe, W. Möller, K.H. Heinig, Radiat. Eff. Defects

Solids 141 (1997) 85.
[22] IMSL Fortran 90 MP Library Version 4.01. McGraw-

Hill, San Ramon, 1999.
[23] M. Born, K. Huang, Dynamical Theory of the Crystal

Lattices, Oxford University Press, Oxford, 1954.
[24] F. Milstein, J. Mater. Sci. 15 (1980) 1071.
[25] H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Phys. Rev.

Lett. 84 (2000) 2917.
[26] D. Tekleab, D.L. Carroll, G. Samsonidze, B.I. Yakobson,

Phys. Rev. B 64 (2001) 035419.
[27] R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. Da Silva, A.

Fazzio, Phys. Rev. B 64 (2001) 085413.
[28] T.M. Schmidt, R.J. Baierle, P. Piquini, A. Fazzio, Phys.

Rev. B 67 (2003) 113407.


	Stone - Wales transformation in boron nitride nanotubes
	ack2
	References


