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We establish an analytic approach to determine the tensile and bending stiffness of a hexagonal
boron-nitride (h-BN) monolayer and single- and multi-wall boron-nitride nanotubes (BNNTSs) directly
from the interatomic potential. Such an approach enables one to bypass atomistic simulations and
to give the tensile and bending stiffness in terms of the parameters in the potential. For single- and
multi-wall BNNTs, the stiffness also depends on the (inner most or outer most) wall radius and the
number of the walls. The thickness of h-BN monolayer is also discussed.
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1. INTRODUCTION

Boron-nitride nanotubes (BNNTSs) possess unique struc-
tural, mechanical, thermal, electrical and chemical proper-
ties, and represent an important class of nanotubes. The
tensile stiffness of BNNTs!~ is comparable to that of carbon
nanotubes. The thermal conductivity along the nanotube is
very high.* However, contrary to carbon nanotubes, BNNTSs
always have large band gaps regardless of the chirality
and diameter,” and are therefore semiconductors. They also
have good resistance to oxidation at high temperature.®

There are limited experimental”® and atomistic
studies'*'* of BNNT mechanical properties. Song
et al."” established a continuum theory for BNNTs from
the interatomic potential for boron nitride.'® " The tensile
stiffness given by this atomistic-based continuum theory
agrees well with the atomistic simulation results. However,
both atomistic and continuum studies can determine the
BNNT stiffness E# only, which is the product of Young’s
modulus £ and BNNT thickness i. One needs to assume
a thickness / in order to determine its Young’s modulus,
even though it is ambiguous to define the thickness for
a single layer of atoms. One assumption is to take the
interlayer spacing of hexagonal boron nitride (h-BN) 2 =
0.34 nm as the BNNT thickness. %1113

Yakobson et al.'® adopted a different approach to deter-
mine the Young’s modulus and thickness of single-wall
carbon nanotubes by modeling them as linear elastic thin
shells and fitting them to the atomistic simulation results

*Author to whom correspondence should be addressed.
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of tensile stiffness £k and bending stiffness EA*/12. Such
an approach gives much smaller carbon nanotube thick-
ness from 0.06 to 0.09 nm, depending on the interatomic
potential and simulation details.

Huang et al.!'® established an analytic method that
bypasses atomistic simulations to determine the tensile
and bending stiffness of a single layer of carbon atoms
(i.e., graphene) directly from the interatomic potential.
Analytical expressions of tensile and bending stiffness of
graphene are obtained in terms of parameters in the inter-
atomic potential. Its bending stiffness clearly results from
the multi-body atomistic interaction in carbon, i.e., a pair
potential would give a vanishing bending stiffness. Fur-
thermore, the thickness defined from the tensile and bend-
ing stiffness!® is not strictly a constant for each interatomic
potential since it depends on the stress state (e.g., uniaxial
tension, uniaxial stretching, biaxial stretching).

The purpose of this paper is to extend Huang et al.’s"
approach and study the BNNT tensile and bending stiff-
ness. The formulation of multi-body interatomic potential
for boron nitride is given in Section 2. This potential has
been used to study BNNT and hexagonal boron nitride
(h-BN),13-15:17:20-22 and the latter can be viewed as a
BNNT unfolded to planes of boron and nitrogen atoms.
The tensile and bending stiffness of an h-BN monolayer
are given analytically in Section 3 in terms of parameters
in the interatomic potential. The thickness of h-BN mono-
layer is studied in Section 4. The results for BNNTs are
given in Section 5, in which the bending stiffness associ-
ated with a BNNT wall and that associated with a BNNT
tube are clearly distinguished.

1533-4880/2008/8/3774/007 doi:10.1166/jnn.2008.015
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2. FORMULATION OF MULTI-BODY
INTERATOMIC POTENTIAL FOR
BORON NITRIDE

The interatomic potential for boron nitride can be gener-
ally written as

V= V(rij; 0ijlu k#i,j)= V(rij; €Os oijk’ k#i,j) (1)

for boron and nitrogen atoms i and j, where r;; is the
bond length, 6, is the bond angle between i—; and
i—k bonds, and k (#i,j) represents atoms in the vicinity.
The 6, term, or equivalently, cos 6, term represents the
multi-body atomistic interactions in boron nitride. For the
unstrained, equilibrium state (i.e., strain & = 0), the equi-
librium bond length and angle are denoted by (r;;), and
(cos B, ), respectively.

For an infinitesimal strain &, the changes of bond length
r;; — (r;;)o and bond angle 6,;, — (6,;), are also infinites-
imal such that the interatomic potential in (1) can be
expanded to the Taylor series. We use an h-BN mono-
layer (a layer of boron and nitrogen atoms) shown in
Figure 1 to illustrate this, where the solid and open circles
represent the boron and nitrogen atoms, respectively. The
unit cell containing a boron atom and a nitrogen atom is
shown by the shaded area. The bond angle for h-BN at the
unstrained, equilibrium state is (6, ), = 120°. The equilib-
rium length 7, of boron-nitrogen bond is to be determined
by minimizing the potential V at the fixed bond angle
120°, i.e.,

v

; =0 (2)

Tij 1 r=ro. 8, =120°

Unit cell

Boron
Nitrogen

Fig. 1. A unit cell for a hexagonal boron-nitride monolayer.
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For an infinitesimal strain &, r; —r, and cos 6, +1/2
are also infinitesimal. The Taylor expansion of (1) for the
h-BN monolayer is

v 1 1/9*V
V=V 6.. — = —
ot Z.(acos()ijk)o(cos "k+2)+2(5r§ )o

k#i, j

(= + X (=) (= 1)
r;— — ) (r;; =1,
gooro drydcos ), Y 0

k#i, j
| 1 ’v
0. 4+~ )+= dcos. dcos0,
) (COS ikt 2) % k,g.j(acos B0 cos 0"1’)0
1 1
x| cos B, + 7 )\ cos 0+ 3 (3)

where the subscript “0” denotes the values at the
unstrained, equilibrium state, r; =T, and 0,-jk = 120°; and
the terms higher than the second order are neglected since
they do not contribute to the tensile and bending stiffness
which are defined at the infinitesimal strain. Equation (3)
holds for both boron and nitrogen atoms at the unstrained,
equilibrium state since all bond lengths are the same, and
all bond angles equal to 120°. It involves five constants of
the interatomic potential, namely the first-order derivative
(dV/dcos B, )o, and second-order derivatives (4 V/arfj)o,
(8°V/dr;dcosby,),,  (8°V/dcosB,,dcosb,,),  and
(8*V /dcos 0,ixdcos b)), (k #1). These five constants at
the unstrained, equilibrium state (¢ = 0) can be analyti-
cally obtained for any interatomic potential. The tensile,
bending stiffness and thickness of h-BN monolayer will
be given in terms of these five constants in Sections 3
and 4.
An example of the interatomic potential for boron
nitride!® is in the form of the Tersoff formulism
V(r;;cosb;,) = VR(rij)_BijVA(rij) (4)

i 1

where Vi and V, are the repulsive and attractive pair terms
(depending only on r;;) given by

V() = 2 exp~BVIS(r — )] felr)
©
Vo) = 5o expl—BY2/S(r = )] felr)

D, and ry are the dimmer energy and separation, respec-
tively, given in Table I together with constants S and S.
These constants depend on the index pair (boron—nitrogen,
nitrogen—nitrogen, and boron-boron). The cutoff function
fc in (5) limits the interaction shell on the next neighbors
inside the radius R, and is given by

1 r<R-D

1 1sin[w(r—R)

fe(r) = 372 @Dy [r—R| <D (6)

0 r>R+D
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Table I. Parameters in the boron-nitride interatomic potential.
BN-interaction NN-interaction BB-interaction

D, (eV) 6.36 991 3.08

v (A) 1.33 1.11 1.59

S 1.0769 1.0769 1.0769

B (A™) 2.043057 1.92787 1.5244506

R(A) 2.0 2.0 2.0

D (A) 0.1 0.1 0.1

n 0.364153367 0.6184432 3.9929061

Y 0.000011134 0.019251 0.0000016

AR 1.9925 0 0

c 1092.9287 17.7959 0.52629

d 12.38 5.9484 0.001587

h* —0.5413 0 0.5

Source: Reprinted with permission from [16], K. Albe et al., Radiat. Eff. Defects
Solids 141, 85 (1997a). © 1997, Taylor and Francis Ltd.

where R=2 A and D= 0.1 A for all index pairs (i.e.,
boron-nitrogen, nitrogen-nitrogen and boron—boron) as
shown in Table I. The multi-body coupling term B,; in (4)
results from the interaction between atoms i, j and their
local environment, and is given by

B;=(1+v"x}) =
Xij = Z G(Gijk)fc(rik)eXP[)\3(rij —7)’]
k#, j (7)

2 2

G(O,)=1+5 ¢
w2 d*>+ (h* —cosf,,;)?

where k denotes atoms other than i and j, 6, is the angle
between bonds i—j and i—k, and the constants n, v, A,
¢, d and h* depend on the index pair as shown in Table L.

The equilibrium bond length r, can be solved analyti-
cally from (2) as

Rp=ry—= In B, (8)

where B, is the multi-body coupling term B;; in (7) eval-
uated at §,; = 120°, and is given by

By =[1+(2yGy)") > 9)

and G, is the function G in (7) evaluated at 6, = 120°,

C2 C2
Gy=l4+—-—
=R 2+ (h*+1/2)2
For the constants given in Table I, G, = 1.09, B, = 0.97,
and the equilibrium bond length r, = 0.146 nm. The other
first-order derivative can also be obtained analytically as

v SD, , (h+1/2)
P — - C
dcosOy )y S—1 [t + 1727

(10)

2""’.3%

x(2yGo)"'B, (11)

which gives
reflects  the

(0V/dcosb; ), = 1.18 eV, and it
multi-body atomistic interactions. The
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analytical expressions of the second-order derivatives
are given in the appendix, which give (8°V/drl), =
3570.84 eV/nm?®, (9*V /dr;0cos6,,), = —32.91 eV/nm,
(9°V /905 0,3, cos B, )g = 27.12 eV, and (9*V /d cos 6,0
c0s8;;) (k #1)=—1.49 eV.

3. TENSILE AND BENDING STIFFNESS OF
A HEXAGONAL BORON-NITRIDE
MONOLAYER

We first study an h-BN monolayer subject to uniform in-
plane normal strains &;, and &,, and shear strain &,,,
as shown in Figure 2(a). The atom positions are nonuni-
form even for a uniform strain because the h-BN mono-
layer does not have a simple Bravais lattice. The h-BN
monolayer is decomposed to a simple Bravais sub-lattice
of boron atoms (solid circles) and another of nitrogen
atoms (open circles) as shown in Figure 2(a). A shift
vector between two sub-lattices is introduced to ensure
equilibrium of atoms via energy minimization.'®>?*?* The
distance r; between the boron and nitrogen is given by

(2) T

S b
= -
. -

Fig. 2. A schematic diagram of a hexagonal boron-nitride monolayer

subject to (a) in-plane strain and (b) curvature.

J. Nanosci. Nanotechnol. 8, 3774-3780, 2008
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=15 (8,p+28,5)(n, +x,)(ng+xg), where r, and n are
the bond length and bond direction prior to deformation,
8,p is the second-order identity tensor, and x =x(g) is the
shift vector (normalized by r;) to be determined analyti-
cally via energy minimization.

We now consider the h-BN monolayer subject to com-
bined in-plane strain e,5 (@, 8 = 1,2) and curvature &,
K,, and k,, (Fig. 2), which cause stretching and bending of
the h-BN monolayer, respectively. The distance between
the boron and nitrogen atoms now becomes

rii‘ = roz(aaﬁ+28a5)(” +x,)(ng+xg)
—ry[x ap(Mg + X )(”/3+x5)] /12 (12)

where the first term on the right hand side is due to the
in-plane strain, the second term represents the bond length
reduction due to the curvature, and the shift vector x =
x(&, k) is to be determined analytically via energy min-
imization. The bond angle 6, between bonds i—; and
i—k can be similarly obtained as

2
cos by = ——(n +x,)(n +x,)
ijTik

2

r
X [6,1,\ +2&,,+ I—OZKQBKM X [3(ng) —i—xB)
x(n? +x,)— 2(n +x/3)(n(2)+x )

—2(n;3)—|—xﬁ)(n$)+xy)]} (13)

where n'" and n® represent the directions of i—; and
i—k bonds prior to deformation, respectively.

The substitution of (12) and (13) into the Taylor expan-
sion (3) gives the bond energy V as a quadratic function
of strain &, shift vector x and curvature . The energy
associated with each pair of boron and nitrogen atoms is
D= Z;l V(r;;cos8,,, k #1i, j), where the summation is
for three nearest-neighbor atoms. The shift vector is deter-
mined analytically from energy minimization d®/dx, =0
as

2
X, = gAgaﬁZnaanA (14)

where the summation is for three bonds of nearest-
neighbor atoms, and

*v Y
A= 1-(8rg(—2) +12r0(7> )/
‘9”1-,- 0 6rij8c050ijk 0
2 &Y +4r; rv +l8 ————62
r
dcos,;;, o\ ar2 dcosB,, dcosb,
ik /0 ij 4

ijk
PV v
N +t12r| (15)
dcosf deosbyy / dr,0cosby /¢

is a constant given in terms of the five derivatives of the
interatomic potential and the equilibrium bond length r,.
The shift vector in (14) depends on the in-plane strain &

J. Nanosci. Nanotechnol. 8, 3774-3780, 2008

but not curvature . In fact, it depends only on the devi-
atoric strain &,5 = £,5 — (&) + £5,)8,5/2 since the equi-
biaxial strain &,; = £3,5 gives a vanishing shift vector
x, =0.

The strain energy density (energy per unit area of the
h-BN monolayer) is ®/(3+v/3r2/2), where 3+/3r2/2 is the
area of the unit cell in Figure 1. The strain energy density
becomes a quadratic function of & and x once the shift
vector x is substituted by (14). The derivative of the strain
energy density with respect to & gives the stress

1 /0*V
% 52 (11 t &)
0

i

(o —0n)h B &1 =& 16
{ o,h }_m{ €5 ’ (16)

where the stress appears together with the “thickness” A
of the h-BN monolayer since the strain energy density is
the energy per unit area (instead of volume), and

3(1—A) av v
) o)
r dcosby /, dcos dcosby /

PV PV
i | | 4(1+A
(Bcose,jkﬁcosﬂ )i|+ 1+ ) <3r,/)o

_12(1—A2)( *v ) (17)

¥ dr;;0cos b,

(ot o)k =

The tensile stiffness Eh of the h-BN monolayer is the ratio
of o,,h/&,, for uniaxial tension o}, # 0 and 0y, =0, and
is given analytically by

= 2 \wlo (18)

For Albe et al’s'® potential, the tensile stiffness is Eh =
2364.21 eV/nm?. The in-plane shear stiffness o,h/(2¢,,)
18 Minpune?t = B/ (16+/3), where Minplane Tepresents the
equivalent in-plane shear modulus.

The derivative of strain energy density with respect to
the curvature i gives the bending moment,
V3 ( v

M, +M,= T _BCOS—OU,) (k) +Ky)

{Mll _M22 ) -0
M12

The biaxial bending stiffness (ratio of M,, +M,, to k,; +
Koy ) is +/3(3V /3 cos 6:i)o/2, which reflects the multi-body
atomistic interactions, and equals to 1.02 eV for Albe
et al.’s'® potential. The h-BN monolayer cannot be subject
to any torsion (since M,, = 0), and the bending moment is
equi-biaxial, M|, = M,,, regardless of the curvature. Sim-
ilar observations have been made for graphene.'

(19)
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4. THICKNESS OF THE h-BN MONOLAYER

The moment—curvature relation for a thin layer of contin-
uum solid®® with thickness h is M,, + M,, = ER*(k,, +
K2)/[12(1=»)], My, = My = ER* (K, — k) /[12(1 + )]
and M,, = ER’k,/[12(1 +v)]. The in-plane stress—strain
relation is oy, + 04, = E(e,, + €2)/(1 —v), gy,
E(e;; — €5)/(1+v) and o, = Eg,/(1 + v). Therefore,
the ratio of bending stiffness to tensile stiffness is always
h?/12 for different loadings, including
(i) the ratio of biaxial bending stiffness (M, +
My, /(K| +Ky) = ER?/[12(1 —v)] to biaxial tensile stiff-
ness (0, +0p)h/(e +83) = Eh/(1—);
(ii) the ratio of uniaxial bending stiffness M,,/k,, =
ERh’/12 (My, = 0) to uniaxial tensile stiffness o i/e, =
Eh (0, =0), and
(iii) the ratio of
ER /24010 + v)] to
En/[2(14+7v)].

Based on the above observations, Yakobson et al.'®

defined the thickness of single-wall carbon nanotubes from
the ratio of bending stiffness to tensile stiffness,

— 0y =

stiffness
stiffness

torsion
shear

M3/ (2ky) =
o,h/(2e) =

b \/ 12xbending stiffness

20
tension stiffness (20)

Such a thickness, however, may not be well defined for the
h-BN monolayer. For example, the ratio of biaxial bending
stiffness in (19) to biaxial tensile stiffness in (16) gives

v
2(&&)5 [ )0
a4
( 8ri2j )0

but the ratio of torsion stiffness in (19) to shear stiffness
(16) gives a vanishing thickness

hshear =0 (22)

Byiia = 3 (21)

biaxial

Furthermore, the uniaxial bending stiffness cannot even be
defined since M,, always equals to M;, from (19) for an
h-BN monolayer, i.c., it cannot be subject to uniaxial bend-
ing M,, = 0. Therefore, the thickness defined by (20) is
not a constant and depends on the type of loading. Huang
et al.'”” made similar observations for the graphene, and
explained the Yakobson’s paradox®® on the scatterness of
carbon nanotube thickness and Young’s modulus resulting
from the use of (20).

5. RESULTS FOR BORON-NITRIDE
NANOTUBES

Following the same approach we have studied the single-
wall BNNTs subject to uniaxial tension. Instead of present-
ing the Young’s modulus £ and thickness # which depend
on the type of loading, we show their well-defined product
Eh versus radius R in Figure 3 for armchair and zigzag
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Fig. 3. The product of Young’s modulus E and nanotube thickness &
versus the nanotube radius R.

BNNTs. For R > 0.6 nm, E# is essentially independent
of the nanotube radius and chirality, and is the same as
its counterparts in (18) for the h-BN monolayer. There-
fore, the tensile stiffness FA of a single-wall BNNT can
be approximated by E# in (18) multiplied by the perimeter
of BNNT, i.e.,

a2v
— ) B
TR <a2)0

u

(EA) F(aw) Ay

\=Eh-27R= (23)

single-wal

The bending stiffness £7 for a single-wall BNNT can be
obtained from the thin shell model®® with Young’s modu-
lus E and thickness 4, i.e.,

&2V
7TR (r)r >OB

W)

(E[)single~wa]l =Eh- 7TR3 (24)

ar;;

The BNNT bending stiffness results from FEk, and
is therefore very different from the bending stiffness
V3(8V /dcos ,1)o/2 for an h-BN monolayer which
results from the multi-body atomistic interactions. In fact,
the bending stiffness in (24) for a BNNT is much larger
than the bending stiffness /3(dV/dcos 81)o/2 for an
h-BN monolayer multiplied by the BNNT perimeter 27 R.
Their ratio is 144 for the (5,5) armchair BNNT and 572
for (10, 10) armchair BNNT using Albe et al.’s!'® potential.

For multi-wall BNNTs with radii R, R,, ... and R, the
tensile stiffness is

+) B
0

g

where n is the number of walls. Similarly, the bending
stiffness is given by

HZ

N
S|

(EA) —(R,+R,+---+R,) (25)

%

multi-wall —
2[

o0 |y
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2v % e
<} B 2 ST
(), (27) —apvun "
(ED mutiowan = m(R?‘FR;‘F' "‘I‘R:)m (20) 0rj; )
Brl_z/- 0 8
2 *
Let d denote the equilibrium distance between BNNT ( v ) _ B\/ZSDO , (" +1/2)
walls, which is around 0.34 nm.>’*?® For van der waals drydcos 0, /g §S—1 (@ + (k= +1/2))
interactions between nanotubes, Lu et al.*® showed that the el 2t e
wall spacing d is the same as the equilibrium distance o x(2yGo)"™ By (A2)
in the Lennard-Jones potential U = 4¢[(a/r)"? = (a/r)°]. R
The inner most and outer most wall radii are then related ( Fv ) (k #1)
by R,.— R, = (n— 1)d. Equations (25) and (26) then dcos b dcosb, /)
become _ sp, » (h*+1/2)?
PV T 2 * 274
o - (E)OB S—17 " [d+ (h*+1/2)?]
(EA)mulli-wall - T = Rin + d 5 n—-2 4”+% n
24/3 2 (ﬂaV) +8 x(2yGo)"" By T '[3(2yGy)" —2(n—1)] (A3)
Tilo
>V 2
N n—ld (?,2/)03 @) (__(9—1/_)
NG ) (azy) Lz dcosbdcosby, /
oy Jo 8 Pv SD,
() kED- oy
and dcos B dcosby /, S—-1
nmR} 3(n—-1) & (n—-1)(2n—1) d* 3(h*+1/2)* —d* g S
El i = ] - — n—1 p2hts=
( )mulu-wa}l 4\/§ [ 2 Rin 2 Ri2n x [d2 + (h* + 1/2)2]g (2')’G0) BO o (A4)

2
(55),5
ﬂrij 0
2y B
7_2) T3
/o

(n—1)(2n-1) d°
2 R?

out
PV
a1 & (@)OB

4 Rgut] ("Z_Y) +§
0

_l2d'3
1y @
4 Rin (

out
2 R

_ nmR] [1_3(11—1) d
43

out

(28)

6. CONCLUDING REMARKS

The tensile and bending stiffness of a hexagonal boron-
nitride (h-BN) monolayer are obtained analytically in
terms of the parameters in the interatomic potential such
that one can bypass molecular dynamics simulations to
determine the stiffness directly. The h-BN monolayer
thickness previously defined from the bending to tensile
stiffness ratio is not a constant and depends on the type
of loading. This conclusion also holds for boron-nitride
nanotubes (BNNTSs). The tensile and bending stiffness
of single-wall and multi-wall BNNTs are also obtained
analytically in terms of the interatomic potential, BNNT
(inner most or outer most) radius, and the number of
walls.

APPENDIX

The second-order derivatives in (3) can be analytically
obtained for Albe et al.’s'® potential as
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