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Abstract

We have established the cohesive law for interfaces between a carbon nanotube (CNT) and

polymer that are not well bonded and are characterized by the van der Waals force. The tensile

cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and

volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an

infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on

the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains

the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the

tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the

interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer

surface roughness on the cohesive law is also studied.
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1. Introduction

Carbon nanotubes (CNT) display superior mechanical properties, and have been used as
reinforcements in polymer matrix composites (e.g., Thostenson et al., 2001, 2005;
Maruyama and Alam, 2002; Deepak et al., 2003; Breuer and Sundararaj, 2004; Harris,
2004). Carbon nanotubes usually do not bond well to polymers (Schadler et al., 1998;
Ajayan et al., 2000; Lau and Shi, 2002) such that their interaction is the van der Waals
force (Liao and Li, 2001; Frankland et al., 2002; Li and Chou, 2003; Wong et al., 2003;
Gou et al., 2004), which is much weaker than covalent bonds. This leads to sliding of CNT
in polymer matrix when subjected to loading.

Continuum models have been developed for CNT-reinforced polymer matrix
composites (e.g., Odegard et al., 2002, 2003; Liu and Chen, 2003; Li and Chou, 2003;
Thostenson and Chou, 2003; Shi et al., 2004). As compared to atomistic simulations such
as molecular dynamics, continuum models are not constrained on the length and time
scales, and are suitable for the study of nanocomposites. However, modeling of CNT/
polymer interfaces has always been a challenge because it is difficult to account for the van
der Waals force in continuum models.

Cohesive zone models have been widely used in the continuum study of interface
debonding and sliding in composites (e.g., Needleman, 1987; Camacho and Ortiz, 1996;
Geubelle and Baylor, 1998). A cohesive zone model assumes a relation between the normal
(and shear) traction(s) and the opening (and sliding) displacement(s). When implemented
in the finite element method, the cohesive zone model is capable of simulating interface
debonding and sliding (e.g., Huang and Gao, 2001; Zhang et al., 2002; Kubair et al., 2002,
2003; Samudrala et al., 2002, 2003; Thiagarajan et al., 2004a, b; Tan et al., 2005a, b, 2006).
The existing cohesive models are all phenomenological because it is difficult to measure
directly the cohesive laws for interfaces. There are some recent experimental studies of
microscale cohesive laws (e.g., Li et al., 1987; Guo et al., 1999; Mohammed and Liechti,
2000; Bazant, 2002; Elices et al., 2002; Hong and Kim, 2003; Tan et al., 2005b), but none
on nanoscale cohesive laws such as the CNT/polymer interfaces.

The purpose of this paper is to establish a cohesive law for CNT/polymer interfaces
directly from the van der Waals force. It focuses on the van der Waals force, and does not
consider the possible chemical bonding even though the latter may contribute to CNT/
polymer interactions (e.g., Namilae and Chandra, 2005; Thostenson et al., 2005). The
energy between two atoms of distance r due to van der Waals force is usually represented
by the Lennard–Jones 6–12 potential,

V ðrÞ ¼ 4�
s12

r12
�

s6

r6

� �
, (1.1)

where
ffiffiffi
26
p

s is the equilibrium distance between the atoms, e is the bond energy at the
equilibrium distance, and they take the values e ¼ 0.004656 eV and e ¼ 0.3825 nm for
carbon atoms of the CNT and the –CH2– units of polyethylene (Frankland et al., 2003). In
Section 2.1, we establish a cohesive law for a graphene and polymer molecules based on the
van der Waals force in (1.1). We extend such an approach to a CNT in an infinite polymer
in Section 2.2. The effect of finite polymer boundary (e.g., traction-free surface) is studied
in Section 3. These analytical cohesive laws are suitable for the study of CNT-reinforced
polymer matrix composites. In Section 4, we derive the cohesive law for an arbitrary pair
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potential which includes the Lennard–Jones 6–12 potential (1.1) as a special case. The
effect of CNT and polymer surface waviness is discussed in Section 5.

2. The cohesive law for a carbon nanotube in an infinite polymer matrix

2.1. Graphene/polymer

We first neglect the effect of CNT radius and study the interaction between a graphene (i.e.,
an infinite plane of carbon atoms) and polymer. The graphene is parallel to the polymer
surface, and h denotes their equilibrium distance (Fig. 1a). In order to establish a continuum
cohesive law, we homogenize carbon atoms on the graphene and represent them by an area
density rc, where rc is related to the equilibrium bond length l0 of graphene prior to
deformation by rc ¼ 4

�
3
ffiffiffi
3
p

l20
� �

. The effect of homogenization to represent discrete carbon
atoms by the area density is discussed in Section 6. The number of carbon atoms over an area
dA on the graphene is rc dA. Similarly, the volume density of polymer molecules is denoted
by rp, and the number of polymer molecules over a volume dV is rp dV.
The distance between a point (0,0) on the graphene and a point (x, z) (xp�h, zX0) in the

polymer (Fig. 1a) is r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

. The energy due to the van der Waals force is given by V(r)
in (1.1). For an infinitesimal area dA, the energy stored due to the van der Waals force is

rc dA

Z
Vpolymer

V ðrÞrp dVpolymer ¼ 2prprc dA

Z �h

�1

dx

Z 1
0

V ðrÞzdz: (2.1)

The cohesive energy F is the energy per unit area, and is given by

F ¼ 2prprc

Z �h

�1

dx

Z 1
0

V rð Þzdz ¼
2p
3
rprc�s

3 2s9

15h9
�

s3

h3

� �
, (2.2)

where
ffiffiffi
26
p

s is the equilibrium distance in the van der Waals force and e is the corres-
ponding bond energy. The equilibrium distance h is determined by minimizing the energy,
qF=qh ¼ 0, as

h ¼
2

5

� �1=6

s ¼ 0:858s. (2.3)
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Fig. 1. A schematic diagram of a graphene parallel to the surface of an infinite polymer: (a) the distance between

the graphene and polymer surface is h; (b) the graphene is subjected to the opening and sliding displacements.
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For the opening displacement v and sliding displacement u beyond the equilibrium distance h,
as shown in Fig. 1b, the cohesive energy can be similarly obtained as

F ¼
2p
3
rprc�s

3 2s9

15ðhþ vÞ9
�

s3

ðhþ vÞ3

� �
, (2.4)

which can also be obtained from (2.2) by simply replacing h with hþ v. Eq. (2.4) is
independent of the sliding displacement u because sliding does not change the van der Waals
force for infinite graphene and polymer. This leads to a vanishing shear cohesive stress

tcohesive ¼
qF
qu
¼ 0. (2.5)

The tensile cohesive stress is obtained from (2.4) as

scohesive ¼
qF
qv
¼ 2prprc�s

2 s4

ðhþ vÞ4
�

2s10

5ðhþ vÞ10

� �
. (2.6)

Eqs. (2.5) and (2.6) give the cohesive law for graphene/polymer based on the van der Waals
force. Such a cohesive law gives the following cohesive properties:

(1) initial slope ðdscohesive=dv at v ¼ 0Þ ¼ 30 2
5

� �1=6prprc�s;
(2) cohesive strength (maximum cohesive stress) smax ¼

6p
5
rprc�s

2;

(3) critical separation d0 ¼ s� h ¼ 1� 2
5

� �1=6h i
s at which the cohesive strength is reached;

and
(4) total cohesive energy (area underneath the scohesive�v curve) Ftotal ¼

4p
9

ffiffi
5
2

q
rprc�s

3.

The cohesive law in (2.4) and (2.6) can be rewritten in terms of the cohesive strength smax

and total cohesive energy Ftotal as

F ¼
Ftotal

2

1

1þ 0:682 smax

Ftotal
v

h i9 � 3

1þ 0:682 smax

Ftotal
v

h i3
8><
>:

9>=
>;, (2.7)

scohesive ¼ 3:07smax
1

1þ 0:682 smax

Ftotal
v

h i4 � 1

1þ 0:682 smax

Ftotal
v

h i10
8><
>:

9>=
>;. (2.8)

The initial slope and critical separation are given in terms of smax and Ftotal by
12:6s2max=Ftotal and 0:242Ftotal=smax, respectively.

2.2. Carbon nanotube/polymer

We now account for the effect of CNT radius and study a CNT embedded in an infinite
polymer matrix. Let h now denote the equilibrium distance between the CNT and polymer
surface (Fig. 2). We homogenize carbon atoms on the CNT and represent them by an area
density rc (which may be slightly different from the area density of graphene due to the
effect of CNT radius). The volume density of polymer molecules is still denoted by rp.
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The cylindrical coordinates (R, y, z) are used, where z denotes the central axis of the
CNT. Without losing generality, we take a point (R, 0, 0) on the CNT and a point (z, y, z)
(zXR+h) in the polymer, where R is the CNT radius. The distance between these two

points is r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2Rz cos yþ R2 þ z2

p
. The energy due to the van der Waals force is still

given by V(r) in (1.1).
We examine a section of CNT and polymer with height dz. The energy stored in this

section due to the van der Waals force is

rc2pRdz

Z
Vpolymer

V ðrÞrp dVpolymer ¼ 2prprcRdz

Z 1
Rþh

zdz
Z 2p

0

dy
Z 1
�1

V ðrÞdz0, (2.9)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2Rz cos yþ R2 þ z02

p
. The cohesive energy F is the energy per unit area,

and is given by

F ¼
2prprcRdz

R1
Rþh

zdz
R 2p
0

dy
R1
�1

V ðrÞdz0

2p Rþ h
2

� �
dz

¼
rprcR

R1
Rþh

zdz
R 2p
0

dy
R1
�1

V ðrÞdz0

Rþ h
2

,

(2.10)

where 2pðRþ h=2Þdz is the average of CNT area 2pRdz and polymer surface area
2pðRþ hÞdz. The above triple integral can be simplified to a single integral in Appendix A.
Fig. 3 shows the cohesive energy, normalized by the total cohesive energy for graphene

Ftotal ¼
4p
9

ffiffi
5
2

q
rprc�s

3, versus the distance h between the CNT and polymer surface for

several CNT radii, where h is normalized by its equilibrium value 2
5

� �1=6s in (2.3) for

graphene, and s ¼ 0:3825 nm is the characteristic length in the van der Waals force. The
curves for different CNTs are very close, and they are all close to that for graphene. This
suggests that the CNT radius has little effect on the cohesive energy. Each curve has a
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Fig. 2. A schematic diagram of a carbon nanotube (CNT) in a polymer matrix. The CNT radius is R, and the

distance between the CNT and polymer surface is h.
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minimum, corresponding to the equilibrium distance between the CNT and polymer

surface, and this distance is very close to 2
5

� �1=6s.
Similar to graphene, the cohesive energy for a CNT in an infinite polymer matrix is

independent of the sliding displacement u such that the shear cohesive stress vanishes.
Since the effect of CNT radius is small as shown in Fig. 3, the cohesive energy and tensile
cohesive stress are still given approximately by (2.4) and (2.6), respectively, and the
cohesive law in (2.7) and (2.8) also holds. Fig. 4 shows the tensile cohesive stress scohesive,
normalized by the cohesive strength smax, versus the normalized opening displacement
v=d0, where d0 ¼ 0:242Ftotal=smax is the critical separation at which the cohesive strength is
reached, and d0 ¼ 0:0542 nm for CNTs/polyethylene. The cohesive stress increases rapidly
at small opening displacement, and gradually decreases after the cohesive strength is
reached.

3. The cohesive law for a carbon nanotube in a finite polymer matrix

We first study the interaction between a graphene and polymer that overlap over a
length L, as shown in Fig. 5. The distance between the graphene and polymer surface is h.
The area density of the graphene and volume density of polymer molecules are rc and rp,
respectively.

Fig. 5 shows the Cartesian coordinates (x, y, z), where x is the direction normal to the
graphene (and polymer surface), and y is along the graphene free edge. The graphene free
edge is represented by (0, y, 0) while the free edge of polymer surface is (�h, y, L). Without
losing generality we consider a point (0, 0, zc) (zcX0) on the graphene, and a point (x, y, zp)
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Fig. 3. The cohesive energy, normalized by the total cohesive energy Ftotal for graphene, versus the distance h

between the carbon nanotube (CNT) and polymer surface for several CNT radii and graphene, where h is

normalized by its equilibrium value 2
5

� �1=6s for graphehe, and s ¼ 0.3825 nm is the characteristic length in the van

der Waals force.
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(xp� h, zppL) in the polymer (Fig. 5). The distance between these two points is

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zp � zc

� �2q
. The energy due to van der Waals force is given by V(r) in (1.1).

Unlike the analysis in Section 2, the deformation for finite graphene and polymer is non-
uniform. We define the energy per unit thickness Fline (along the free edge) stored due to
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Fig. 4. The tensile cohesive stress scohesive, normalized by the cohesive strength smax, versus the normalized

opening displacement v=d0, where d0 ¼ 0:242Ftotal=smax is the critical separation at which the cohesive strength is

reached, and d0 ¼ 0.0542 nm for carbon nanotubes/polyethylene.

Fig. 5. A schematic diagram of a graphene parallel to the surface of a semi-infinite polymer; the graphene/

polymer overlap length is L, and the distance between the graphene and polymer surface is h.
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van der Waals forces as

Fline ¼

Z 1
0

rc dzc

Z
Vpolymer

V ðrÞrp dVpolymer

¼ rprc

Z 1
0

dzc

Z �h

�1

dx

Z 1
�1

dy

Z L

�1

V ðrÞdzp, ð3:1Þ

which can be integrated analytically to give

Fline ¼
2p
3
rprc�s

3

s9

15h9

L 1þ h9

8L9

	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ L2

p
1þ 5h2

128L2 �
3h4

64L4 þ
h6

16L6 �
h8

8L8

	 


� 69h2

128
ffiffiffiffiffiffiffiffiffiffi
h2þL2
p � 15h4

128

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þL2ð Þ

3
p � 9h6

128

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þL2ð Þ

5
p

2
664

3
775

� s3

2h3
L 1þ h3

2L3

	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ L2

p
1� h2

2L2

	 
h i

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
.

(3.2)

For the overlap length L (Fig. 5) larger than h, the Taylor expansion of (3.2) with respect
to h/L gives

FlineðL; hÞ ¼
2p
3
rprc�s

3 2s9

15h9
�

s3

h3

� �
L 1þO

h3

L3

� �� �
, (3.3)

where 2p
3
rprc�s

3 2s9

15h9
� s3

h3

	 

is identical to (2.2) for infinite graphene and polymer matrix;

the terms neglected are on the order of h3/L3, and therefore are very small. The equilibrium
distance h determined from qFline=qh ¼ 0 is

h ¼ 0:858s 1þO
s3

L3

� �� �
, (3.4)

which is essentially the same as (2.3) for infinite graphene and polymer. Fig. 6 compares
the energy Fline given by the exact solution (3.2) and approximate solution (3.3), where
Fline is normalized by Ftotalh, and the equilibrium distance h is taken as 0.858s. For length
L4h, (3.3) is an excellent approximation of the exact solution (3.2).

For the opening displacement v and sliding displacement u beyond the equilibrium
distance h, Fline is obtained from (3.2) by replacing L and h with L� u and hþ v,
respectively, i.e.,

Fline ¼ FlineðL� u; hþ vÞ. (3.5)

It depends on the sliding and opening displacements through the current overlap length
L� u and distance hþ v between the graphene and polymer surface. For L� ubhþ v, the
Taylor expansion in (3.3) becomes

FlineðL; hÞ ¼
2p
3
rprc�s

3 2s9

15ð0:858sþ vÞ9
�

s3

ð0:858sþ vÞ3

� �
ðL� uÞ, (3.6)

where h has been replaced by 0.858s.
The tangential and normal forces (per unit thickness along the graphene free edge) are

F tangent ¼
qFline

qu
�

2p
3
rprc�s

3 s3

ð0:858sþ vÞ3
�

2s9

15ð0:858sþ vÞ9

� �
, (3.7)
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Fnormal ¼
qFline

qv
� 2prprc�s

2 s4

ð0:858sþ vÞ4
�

2s10

5ð0:858sþ vÞ10

� �
ðL� uÞ. (3.8)

We define the average shear and tensile cohesive stresses over the current overlap length
L � u as

tcohesive ¼
F tangent

L� u
�

2p
3
rprc�s

2 s3

ð0:858sþ vÞ3
�

2s9

15ð0:858sþ vÞ9

� �
s

L� u
, (3.9)

scohesive ¼
Fnormal

L� u
� 2prprc�s

2 s4

ð0:858sþ vÞ4
�

2s10

5ð0:858sþ vÞ10

� �
, (3.10)

where the terms neglected are on the order of s=ðL� uÞ
� �3

.
Eqs. (3.9) and (3.10) give the cohesive law for a finite graphene/polymer based on the

van der Waals force. The average tensile cohesive stress scohesive is identical to (2.6) for an
infinite graphene/polymer, and does not depend on the sliding displacement u. Therefore
the tensile cohesive law (2.8) given in terms of the cohesive strength smax and total cohesive
energy Ftotal still holds. The average shear cohesive stress tcohesive in (3.9) is much smaller
than scohesive because L � ubs, and it depends on both sliding and opening displacements,
u and v, i.e., tension/shear coupling in the cohesive law. The shear cohesive law (3.9) can be
rewritten in terms of the cohesive strength smax and total cohesive energy Ftotal as

ARTICLE IN PRESS

Fig. 6. The energy Fline, normalized by Ftotal h, versus the normalized overlap length L/h, where Ftotal is the total

cohesive energy for graphene and h is the distance between graphene and polymer surface.
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tcohesive ¼
smax

2

3

1þ 0:682 smax

Ftotal
v

h i3 � 1

1þ 0:682 smax

Ftotal
v

h i9
8><
>:

9>=
>;

Ftotal

smaxðL� uÞ
. (3.11)

Fig. 7 shows the average shear cohesive stress tcohesive normalized by the current overlap
length L�u and total cohesive energy Ftotal, ðL� uÞtcohesive=Ftotal, versus the normalized
opening displacement v=d0, where d0 ¼ 0:242Ftotal=smax is the critical separation at which
the tensile cohesive strength is reached, and d0 ¼ 0:0542 nm for CNTs/polyethylene. The
average shear cohesive stress is not zero even at v ¼ 0, because the two sides of the overlap
length L are not symmetric such that the tangential force does not vanish. In fact, at v ¼ 0
tcohesive has a zero slope and a maximum Ftotal=ðL� uÞ, which is much smaller than smax,
and tcohesive decreases monotonically as v increases.

Similar to Section 2.2, the effect of CNT radius is small such that the analytical
expressions of the cohesive law for graphene/polymer can be effectively used for CNT/
polymer.

4. The cohesive law for an arbitrary pair potential

In this section, we extend the cohesive laws in Sections 2 and 3 for an arbitrary pair
potential V(r), which includes the Lennard–Jones 6–12 potential (1.1) as a special case. For
an infinite matrix as in Section 2, the cohesive energy in (2.2) or (2.10) for an arbitrary pair
potential V(r) becomes
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Fig. 7. The average shear cohesive stress tcohesive, normalized by the current overlap length L� u and total

cohesive energy Ftotal, versus the normalized opening displacement v=d0, where d0 ¼ 0:242Ftotal=smax is the

critical separation at which the tensile cohesive strength is reached, and d0 ¼ 0.0542 nm for CNTs/polyethylene.

L.Y. Jiang et al. / J. Mech. Phys. Solids 54 (2006) 2436–2452 2445



F ¼ 2prprc

Z �h

�1

dx

Z 1
0

V ðrÞzdz ¼ 2prprc

Z 1
h

V ðrÞrðr� hÞdr, (4.1)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

, and we have exchanged the order of integrations to give the single
integral in (4.1). The equilibrium distance h is determined from energy minimization
qF=qh ¼ 0, which gives

R1
h

V ðrÞrdr ¼ 0. For the opening displacement v beyond the
equilibrium distance h, the cohesive energy is obtained by simply replacing h with hþ v,

F ¼ 2prprc

Z 1
hþv

V ðrÞrðr� h� vÞdr, (4.2)

which gives vanishing shear cohesive stress tcohesive ¼ qF=qu ¼ 0 and a finite tensile
cohesive stress

scohesive ¼
qF
qv
¼ �2prprc

Z 1
hþv

V ðrÞrdr. (4.3)

Eqs. (4.2) and (4.3) give the cohesive law for an arbitrary pair potential V(r).
For a finite matrix with the overlap length L as in Section 3, the energy per unit thickness

Fline ¼ rprc
R1
0 dzc

R�h

�1
dx
R1
�1

dy
R L

�1
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zp � zc

� �2q� �
dzp in (3.1) can be re-

written via the change of integration variables x ¼ zp– zc and Z ¼ zp+zc as

Fline ¼ rprc

Z �h

�1

dx

Z 1
�1

dy

Z L

�1

ðL� xÞV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ x2

q� �
dx. (4.4)

By further change of integration variables r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ x2

q
and y ¼ tan�1y=x, (4.4) can

be expressed as

Fline ¼ 2rprc

Z 1
h

V ðrÞr f ðr; h;LÞdr, (4.5)

where

f ðr; h;LÞ ¼

Z min
ffiffiffiffiffiffiffiffiffi
r2�h2
p

;L
� �

�

ffiffiffiffiffiffiffiffiffi
r2�h2
p ðL� xÞcos�1

hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p dx,

and min stands for the minimum between two variables. For Lbh, f ðr; h;LÞ approaches
pðr� hÞL such that (4.5) becomes

Fline � 2prprc

Z 1
h

V ðrÞrðr� hÞdr L, (4.6)

where 2prprc
R1

h
V ðrÞrðr� hÞdr is identical to (4.1). For the opening displacement v and

sliding displacement u beyond the equilibrium distance h, Fline is obtained from (4.6) by
simply replacing L and h with L� u and hþ v, respectively,

Fline � 2prprc

Z 1
hþv

V ðrÞrðr� h� vÞdrðL� uÞ. (4.7)

The tangential and normal forces (per unit thickness along the graphene free edge)

are F tangent ¼
qFline

qu
� �2prprc

R1
hþv

V ðrÞrðr� h� vÞdr and Fnormal ¼
qFline

qv
� �2prprcR1

hþv
V ðrÞrdrðL� uÞ. The average shear cohesive stress over the current overlap length
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L� u is

tcohesive � �
2prprc
L� u

Z 1
hþv

V ðrÞrðr� h� vÞdr. (4.8)

The average tensile cohesive stress is the same as (4.3). Eqs. (4.3) and (4.8) give the cohesive
law for a finite matrix based on an arbitrary pair potential V(r).

5. Polymer surface roughness

The polymer surface is assumed to be flat in Sections 2–4, which neglects the polymer
surface roughness. Polymer of chain molecules exhibits irregular surface structure and
roughness (e.g., Lordi and Yao, 2000; Frankland et al., 2002, 2003; Rapaport, 2004). We
use the simple model shown in Fig. 8 to estimate the effect of polymer surface roughness
on the cohesive law. The polymer surface is wavy in z direction, and has an amplitude D
and wavelength l. The average distance between the polymer surface and graphene is still
denoted by h. Let x be the coordinate along the normal direction of the graphene. The
distance between a point (0, 0, zc) on the graphene and a point (x, y, zp) in the polymer

(Fig. 8) is r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zp � zc

� �2q
, where xp� h� D cos

2pzp
l

	 

. The average cohesive

energy for an arbitrary pair potential V(r) is given by

F ¼ rprc
1

l

Z l=2

�l=2
dzc

Z
Vpolymer

V ðrÞdVpolymer

¼
rprc
l

Z l=2

�l=2
dzc

Z 1
�1

dy

Z 1
�1

dzp

Z �h�D cos
2pzp
l

�1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zp � zc

� �2q� �
dx, ð5:1Þ

ARTICLE IN PRESS

Fig. 8. A schematic diagram of a graphene on a wavy polymer surface that has the amplitude D and wavelength l.
The average distance between the graphene and polymer surface is denoted by h. The graphene is subjected to the

opening and sliding displacements.
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where 1
l

R l=2
�l=2 dzc represents the average over the wavelength l. For the opening

displacement v and sliding displacement u (along the wavy direction x) as shown in
Fig. 8, the cohesive energy can be similarly obtained by replacing x with x – v and zp � zc
with zp � zc � u, respectively

F ¼
rprc
l

Z l=2

�l=2
dzc

Z 1
�1

dy

Z 1
�1

dzp

Z �h�D cos
2pzp
l

�1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� vÞ2 þ y2 þ zp � zc � u

� �2q� �
dx

¼
rprc
l

Z l=2

�l=2
dzc

Z 1
�1

dy

Z 1
�1

dz0
Z �h�v�D cos

2p z0þzcþuð Þ
l

�1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y2 þ z02

q� �
dx0, ð5:2Þ

where the integration variables have been changed to z0 ¼ zp � zc � u and x0 ¼ x� v.

The shear cohesive stress is given by tcohesive ¼ qF
qu
¼ 2pD rprc

l2
R l=2
�l=2 dzc

R1
�1

dy

R1
�1

V r0ð Þ sin 2p z0þzcþuð Þ

l dz0, where r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ vþ D cos 2p z0þzcþuð Þ

l

h i2
þ y2 þ z02

r
. This integral

can be evaluated analytically to give

tcohesive ¼ 0, (5.3)

i.e., the shear cohesive stress vanishes for a wavy polymer surface and flat graphene. In
fact, such a conclusion of vanishing shear cohesive stress also holds for

(1) an arbitrary periodic polymer surface and flat graphene, and

(2) an arbitrary polymer surface and wavy graphene that have the same period.

The tensile cohesive stresses is given by scohesive ¼ qF
qv
¼ �

rprc
l

R l=2
�l=2 dzc

R1
�1

dy
R1
�1

V r0ð Þdz0,
where r0 is given above. This integral can also be evaluated analytically to give

scohesive ¼ �2prprc

Z 1
hþv�D

V ðrÞrdr�
1

p

Z hþvþD

hþv�D
V ðrÞrcos�1

r� h� v

D
dr

� �
. (5.4)

Since the amplitude D of polymer wavy surface must be less than hþ v (otherwise the
polymer surface penetrates the graphene), the Taylor expansion of (5.4) with respect to D
gives

scohesive ¼ �2prprc

Z 1
hþv

V ðrÞrdrþ
p
2
rprc V ðhþ vÞ þ ðhþ vÞV 0ðhþ vÞ½ �D2 þO D3

� �
.

(5.5)

Its difference with the tensile cohesive stress in (4.3) for a flat polymer surface is on the
order of D2.

6. Concluding remarks and discussion

We have obtained the cohesive law for the carbon nanotubes/polymer interfaces based
on the van der Waals force. The cohesive law is governed by two parameters, namely the
tensile cohesive strength smax and cohesive energy Ftotal which are given in terms of the
area density of carbon nanotubes and volume density of polymer, as well as the parameters
in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress
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tcohesive vanishes, and the tensile cohesive stress scohesive depends only on the opening
displacement v. For a CNT in a finite polymer matrix, scohesive remains the same, but
tcohesive depends on both opening displacement v and sliding displacement u, i.e., the
tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to
study the interaction between CNTs and polymer, such as in CNT-reinforced composites.
The effect of polymer surface waviness on the interface cohesive law is also studied. The
above approach can also be applied to other not well-bonded interfaces for which the van
der Waals force is the dominating mechanism of interaction.

The present analysis involves several approximations. First, the carbon atoms and
polymer molecules are homogenized and represented by the area and volume densities in
Sections 2–4. We have developed a simple model shown in Fig. 9 and Appendix B to
demonstrate that such an approximation indeed captures the average behavior of CNT/
polymer interfaces.

Another approximation is to neglect any chemical bonding between CNTs and polymer.
Even though CNTs are generally not well bonded to polymer, small amount of chemical
bonding may contribute to the interface strength, particularly the shear resistance against
interface sliding.
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Appendix A

Eq. (2.10) can be expressed as

F ¼ prprc�s
3 R

2Rþ h

Z 2p

0

s9j9 � s3j3

� �
dy, (A.1)

where

ARTICLE IN PRESS

Fig. 9. A simple one-dimensional model of carbon atoms and polymer molecules interacting via the van der

Waals force.
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j9 ¼
7

32R9
h

þ
R cos y

R9
h Rh þ R0h
� �5 4

5
R4

h þ
65

32
R3

hR0h þ
69

32
R2

hR0
2
h þ

35

32
RhR0

3
h þ

7

32
R0

4
h

� �
,

j3 ¼
1

R3
h

þ
R cos y

R3
h Rh þ R0h
� �2 2Rh þ R0h

� �
; Rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ hÞ2 þ R2 � 2RðRþ hÞ cos y

q
,

and R0h ¼ Rþ h� R cos y.

Appendix B

For simplicity we use the one-dimensional model in Fig. 9, but the approach also holds
for two- and three-dimensional analyses. Let h denote the equilibrium distance between
two planes, and lc and lp the spacing between carbon atoms and between polymer
molecules, respectively. The distance between each carbon atom and a representative

polymer molecule (sitting at the origin, Fig. 9) is rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ lþ nlcð Þ

2
q

, where n ¼ 0, 71,

72,73,y represent all carbon atoms, l is the projected distance on the plane between the
representative polymer molecule and nearby carbon atom (Fig. 9), and it is a random
number between 0 and lc since carbon atoms and polymer molecules do not form bonds
and interact only through the van der Waals force. The energy of the representative

polymer molecule is 1
2

P1
n¼�1V rnð Þ. Its average (with respect to l) is 1

lc

R lc
0

1
2

P1
n¼�1V rnð Þdl,

which becomes 1
2lc

P1
n¼�1

R nþ1ð Þlc
nlc

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ l02

p	 

dl0 ¼ 1

2lc

R1
�1

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ l02

p	 

dl0 after the

change of integration variable to l0 ¼ lþ nlc. The ratio of this average energy to the
spacing lp between polymer molecules gives the average energy in polymer per unit length

(for this one-dimensional model) as 1
2lplc

R1
�1

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ l02

p	 

dl0. Similarly, it can be shown

that the average energy in carbon per unit length is the same such that the cohesive energy
is

F ¼
1

lplc

Z 1
�1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
þ l02

q� �
dl0. (B.1)

It is identical to the results obtained by homogenizing the carbon atoms and polymer
molecules first and then representing them by the length densities (for this one-dimensional
model) rc ¼ 1=lc and rp ¼ 1=lp.
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