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Carbon nanotubes have been studied extensively due to their unigue properties, ranging from elec-
tronic, mechanical, optical, to thermal properties. The coupling between the electronic and mechan-
ical properties of carbon nanotubes has emerged as a new field, which raises both interesting
fundamental problems and fantastic application potentials. In this article, we will review our recent
work on the theoretical modeling on mechanical-electrical coupling of carbon nanctubes subject
to various loading conditions, including tension/compression. torsion, and squashing. Some related

work by other groups will be also mentioned.

Keywords: Carbon Nanotubes,
Transition.
CONTENTS
L IEEOOVOIRG0 e & o e e o smonmse 3 3 st 0 % 0% s @ B s B 6 X D R 440
2. Uniform Deformation: Tension/Compression and
ORI, & siisas o com o @ s © om0 6 R ¥ & PN N G R F 6 WS 450
3 Non-Uniform Deformation: Squashing . .. .. .. ... ... 454
o, ol IDES OB s o m soms 5 2 s % 0 omn & waEs B 6 o o 434
3.2 Finite Size Effcet in Squashing SWCNTs and
SWONT-Based Structures and Devices Desien . .-, 459
ACKIOWICHBRTENY o & v std v 2 559 5 0 53 5 2 tome o movn o o oe o 462
References. . .. ... .. .. 462

1. INTRODUCTION

Since the first discovery of carbon nanotubes (CNTs).!
they have been attracting significant attention due to their
superior advantages. including mechanical properties, low
mass density. and especially electrical properties. The fas-
cinating electrical properties of carbon nanotubes result
from their high-symmetrical crystal structures. A single
wall CNT (SWCNT) can be imaginarily formed by cut-
ting a honeycomb lattice of graphite sheet followed by
rolling it up in certain direction on a cylindrical surface.
The cutting and rolling direction of CNTSs can be expressed
by the standard notation of one pair of integers (i.m).
which is called the chirality of the CNT. Several special
cases are: (n.0) and (n.n) are called zigzag and armchair
CNTs, respectively. while the general case n > |m| > 0 is
called a chiral CNT. For a given (nun) CNT. if n—m is
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a multiple of 3, then the CNT is metallic: otherwise the
CNT is a semiconductor. More interesting. the electrical
properties ol carbon nanotubes can be altered by mechan-
ical deformation in experiments. Those mechanical defor-
mations can be divided into (1) bending: (2) stretching:
(3) squashing (radial deformation): and (4) torsion,

For bending deformation, Tombler et al.” investigated
the electrical conductance change for a single wall CNT
due to mechanical bending. The CNT was bent mechani-
cally by the tip of an atomic force microscope (AFM) and
the electrical conductance change was measured simulta-
neously upon mechanical deformation. It was found that

the clectrical conductance may change by two orders of

magnitude upon mechanical deformation. Minot et al.’
conducted the similar experiments and found the same
trend that the bending strain can open a band gap in a
metallic CNT and modity the band gap in a semiconduct-
ing CNT. Semet ¢t al.' studied the conductance change
of multi-wall CNTs due o bending and observed that the
nonlincar change of conductance is reversible.

For stretching. Cao et al.” designed a MEMS-based test
stage to measure the electric-mechanical properties for
CNTs under uniform tensile stretching. They found that
the armchair CNTs exhibit least sensitivity to lensile strain
characterized by very small band gap opening: while other
metallic CNTs (0 —m is a multiple of 3 but not 0) are
sensitive Lo the tensile strain by large band gap opening.
Those observations qualitatively agree with other theoret-
ical studies.® "
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For squashing or radial deformation. Gomez-Navarro
et al.'"! used AFM tip to generate radial deformation. In
their experiments, a sample ol random distributed single
wall CNTs were deposited on an insulating substrate. Once
the position along the length of the CNT was selected. the
AFM tip was placed on top of this position and the sample
started to move towards the AFM tip. For cach step of the
movement, a ramp of voltage to the AFM tip was applicd
and the loading force. the clectrical current. and the differ-
ential conductance were simultaneously measured. They
found that the band gap was openced before the tube was
tully collapsed and that open-close cycles of the band cap
were present during the radial deformation.

In a recent publication, Cohen-Karni et al.'’ measured
the conductance change due to torsional deformation.
A MEMS-based torsion experimental stage was designed.
where a suspended multiwalled CNT is mechanically and
electrically connected to a pair of electrodes and a small
pedal in the middle of CNT. The multiwalled CNT was
twisted by pressing against the pedal with an AFM tip, and
the conductance across the multiwalled CNT was simulta-
neously measured through the two electrodes. By pressing
the pedal with the AFM tip, the chirality of CNT will
change continuously and periodically and so that the tor-
sional deformation will induce conductance oscillations.
which was also observed in the experiments,

All the above mentioned experiments indicate that the
mechanical deformation can significantly affect the clec-
trical properties. which makes CNTs excellent candidates
for nano-devices such as nanoscale field-elfect transis-
tors, nanoscale sensors and nano-electro-mechanical sys-
tems (NEMS). 12
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[n this review. we will review some recently progress of
the theoretical modeling on mechanical-electrical coupling
ol CNTs subject to various loading conditions. including
tension/compression. torsion. and squashing. For uniform
deformation as tensionfcompression and torsion, the peri-
odic crystal structure will remain. while the squashing
deformation will alter the periodic crystal structure sinee
the deformation is non-uniform. In the following. we will
summarize the theoretical modeling efforts according to
uniform and non-uniform deformation.

2. UNIFORM DEFORMATION:
TENSION/COMPRESSION AND TORSION

The first step on mechanical-electrical coupling analysis is
o determine the atom positions upon deformation. which
can be done by many means, such as molecular mechan-
ics (MM). molecular dynamics (MD). tight-binding simu-
lations (TB). and a«b initio. etc. MM, MD determine the
atom positions upon mechanical deformation by following
cach atom and therefore they are computational expensive.
Given the nature of uniform deformation, a representalive
element can be selected and the entire deformation of the
CNT can be studied in the continuum point of view.
The nanoscale continuum theory for CNT was devel-
oped by Zhang. Jiang and co-workers,'" ' based on the
interatomic potential for carbon.™ Unlike MD simulations
that keep tracking of every atom. the proposed nanoscale
continuum theory represents the collective behavior of 4
few atoms based on the modified Cauchy-Born rule.?! The
Cauchy-Born rule equates the struin energy on the con
tinuum level to the bond potential enerey on the atomic

levels: electromechanical properties of carbon nanotubes and semiconductor nanostructures
polyphenylene-based molecular electronics and device designs: and spintronics. He received
the National Excellent Doctoral Dissertation Award from the Ministry of Education, Ching
in 2005.
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level and also states that all atoms (on the atomic level) are
subject to a4 homogeneous deformation and move accord-
g to a single mapping from the undeformed to the
deformed configurations. In other words. the Cauchy-Born
rule enforces a simple deformation pattern for all atoms
in the system. For a centrosymmetric atomic structure
with pair of bonds in the opposite dircctions around cach
atom, the forces due (o deformation are in the opposite
direction with same magnitude and can be cancelled so
that the cquilibrium of atoms can be uchieved by the
Cauchy-Born rule. I the atomic structure is not centrosym-
metric, such as CNTs with hexagonal lattice. the forces
do not appear in opposite direction and cannot be can-
celled; thercfore Cauchy-Born rule cannot ensure the equi-
librium for CNTs. Despite that the simple mapping from
undeformed to deformed configurations cannot ensure the
equilibrium, some rescarchers™™ still used it to determine
the atom position and the induced electrical properties
changes. which will lead to significant difference as 1o be
shown.

In order (o ensure the equilibrium for non-
centrosymmetric structure, the Cauchy-Born rule must be
modified. Zhang, Jiang and co-workers'™™" have modified
the Cauchy-Born rule to ensure the equilibrium for non-
centrosymmetric atomic structures. A hexagonal lattice
structure of CNT can be decomposed into two triangular
sub-lattices, as shown in Figure 1. Each sub-lattice has
the centrosymmetric structure and thercfore follows the
Cauchy-Born rule. However. the two sub-lattices may
undergo a relative shift £ to release the enerey due (o
the assumption of single mapping. This shifl £ represents
an internal degree of freedom for the hexagonal lattice
structure and remains (o be determined by entorcing the
equilibrium of atoms. The shift vector ¢ is determined
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Fig. 1. The decomposition of a hexagonal lattice of earbon nanotube.

imaginarily formed from a planar sheet of graphite, 10 two trianaular

sub-lattices. There is & shift vector £ between two sub-lattices (o ensure
the equilibrium of atoms. The solid and dashed lines denote the lattice
structures with and without the shilt vector . respectively. Reprinted
with permission from [22]. B. Liu et al.. /. Mech. Phvs. Solids 52, 1
(2004). © 2004. Elsevier.
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by minimizing the strain energy density W with respect
¥ £ 1

=0 (1)

which is equivalent to the equilibrium of each atom in the
hexagonal lattice structure possessing no centrosymmetry.
Then the bond length in the same sub-lattice (e.g., distance
from atoms B and C in Fig. 1) is given by

(h ()

e = \-"‘!""H(' A +2E) -ry (2)

and the bond length between two atoms from different
sub-lattices (c.g.. atoms A and B) after deformation is
given by

(0)

Fan = \g L2 -F-r'\”'i & "[:]Ji,' (f+2E) "ri\l‘t (3)
where F = dx/aX is the deformation gradient and char-
acterizes the deformation on the continuum level: x
and X denote the positions of a material point in the
deformed and undeformed configurations. respectively:
E=(1/2)(F'-F—1I)is the Green strain and F7 and T are
the transpose of F and the second order identity tensor:
rfi” is the vector from atoms i to j before the deformation.

The atom positions then can be determined for specific
loading. Tor tensionfcompression, the strain (E,») in the
axial direction is given and the strain in the circumferen-
tial dircction (£,,) and the shilt vector ¢ can be obtained
by using vanishing circumferential stress condition and
the energy minimization with respect to shift vector £.
For torsion, once the torsional angle is given. the similar

method can be conducted to obtain the atom position alter

deformation. For example. a bond parallel 10 the tension
dircetion will change from 0.146 nm before deformation
o 0.159 nm after deformation for 10% tensile strain. The
results of the atom positions using the nanoscale con-
tunuum theory is as accurate as molecular mechanics. as
shown in Liu et al.** Compared with the Cauchy-Born rule
where all atoms follow the same deformation pattern, the
same bond becomes 0.161 nm long for the same 10% ten-
sile strain. Although the dilference in bond length is very
small, as shown in the following. the difference in clectri-
cal properties is signilicant.

Once the atom positions are determined. the tight-
binding method will be used to study the clectrical prop-
erties of the deformed CNT under tension/compression,
torsion, and combined tension and torsion. Since these
deformations are uniform. ic.. the deformed CNT still
possess translational symmetry. the &-space tight-binding
method can be used. which significantly reduces the com-
putational cfforts by using the translational symmetry, The
k-space tight-binding method has been used to study the
electrical property of undeformed CNTs.*' The unit cell
used in A-space tight-binding method is shown in Figure 2,
where cach unit cell has two inequivalent atoms (A and B).
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Fig. 2. The representative atom A aid its three nearest neighhor atoms
B. C and D for the k-space tight-binding caleulation. (a) Unit cells and
(b) atom positions. Reprinted with permission from [22]. B, Liu et al..
Jo Mech. Plivs. Solids 3201 (2004). @ (2004). Elsevier.

and d,, d.. d, arc used to characterize the deformation
for each unit cell. Remarkably. those three vectors depend
on deformation gradient F and shift vector £, The tight-
binding Hamiltonian is an 8 x 8 matrix since there are two
atoms in each unit cell and is given by

H(k)=
re 0 0 0 HY HY HY H*T
0 = 0 0  —H" H“ H» H

0 0 g, 0 —HY HY HY g
0 0 0 g, —H¥" HY H* H=
HY —H“ —HY —H" ¢ 0 0 0
HY HY HY HY 0 g, 0 0
B O get o e 0O 0 &, 0

LHS HY HY HT 0 00 e

where only the near-neighbor interaction is considered: k

is the wave veclor: £, and &, are the orbital energies of

;
s and p orbitals. respectively: H*® terms represent inter-
actions between a orbital and 8 orbital ol neighboring
atoms. where @ and B can be s and p orbitals: H*?
are the complex conjugate of H”. H*# tcrms depend on
wave vector k and the specific expression was given by
Xu et al. ™

The wave vector k in the Hamiltonian matrix (4) is
quantized because of the periodic boundary condition in
the circumferential direction for a CNT. and is given by

K
szx,——f—,u,Kl(,(,L:().....:\"—]‘zmd

|j{2|
7 P A ; i ) (
|rlv L O |T|

where &, is the translational (axial) component of the wave
vector k: N is the number of the hexagons in the area
of |C, x k|, K, =(27wC,)/|C,|* and K, = 2w T)/|T|’ are
the reciprocal lattice vectors. €, and T are the chiral and
translational vectors of the deformed CNT.

N
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Fig. 3. The energy dispersion relations for a zigzag (10.0) curbon nan
twbe prior o delormation, Reprinted with permission from [22]. B. Lit
et al. Lo Mech. Phyy, Solids 52,1 (2004). © (2004). Elsevier.

For each wave vector & 1n (3). the energy cigenstates can
be solved by diagonalizing the Hamiltonian matrix in (3);
Once the energy eigenstates are determined [or all wav
vectors, the energy dispersion relations for o and 7 bands
arc obtained. which give the band gap of the deforme
CNT. Figure 3 shows an example ol the energy dispersio
relations for a zigzag (10.0) CNT prior to deformation,
The energy states are shown versus the axial componel
k, of the wave vector k for all quantized w in (5). Here th
band gap is an indicator of whether the CNT is electricall
conducting: zero band gup corresponds to electrically con
ducting materials, while a non-vanishing. linite band gy
generally corresponds to semi-conducting materials.

As mentioned before. the small difference in atom pos
tion between the original and the modified Cauchy-Bo
rule will induce significant difference in electrical proper
ties. Figure 4 shows the band gap versus the engineerin
tensile strain & (=F,, — 1) for a (9.0) CNT under tensi
with and without shift vector £. It is clearly shown th
the band gap exhibits differently although the trend is th
same. For example. when the strain 1s 10%. the band g
based on the original Cauchy-Born rule that has no shi
vector is significantly overestimated by a factor of 6]
Therefore. the shift vector £ plays an important role |
electrical properties.

Figure 5 shows the band gap versus the engineeri
strain & for (5.5). (9.0). (9.6). (10.0). and (6.4) CNTs
investigate how the tensile deformation allects the elec
cal properties. The band gap lor the armchair (5.5) C
does not change with tensile strain and keeps zero. In fa
this conclusion has been confirmed by other (s.0) ar
chair CNTs. ie., they remain conducting under tensi
For the conducting zigzag (9.0) and chiral (9.6) CNI
the band gap generally increases with tensile strain, whi

i
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Fig. 4. The band gap versus the tensile strain & for 4 (9.0) carbon nano-
tbe under tension, The results are shown for calculations with and with-
out the shifl vector £. Reprinted with permission from [22]. B, Liu el al..
S Mech. Phvs. Solidy 52,1 (2004). @& (2004). Elsevier

suggests that the conducting CNTs may become semi-
conducting upon tensile deformation. However, the band
gap for the semi-conducting zigzag (10.0) and chiral (6.4)
CNTs, remains large despite that it displays some variation

upon deformation. This suggests that the tensile deforma-

tion cannot alter a semi-conducting CNT 1o conducting
CNT. The tensile deformation induced electrical proper-
ties change, especially the change from a conducting CN'T
o semi-conducting, is both theoretically and practically
important. In theoretical point of view. the widely aceepted
eriterion (1 —sm is multiply of 3) for conducting ONT
does not hold anymaore once upon the tensile deformation.
In practical application. this conducting/semi-conducting
transition can be applied 1o design mechanical-clectrical
Sensors.

0.9+ Carbon Nanotubes under Tension
i {10.0)
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.'Fig. 5. The band gap versus the tensile strain & accounting for the shift
veetor for various carbon nanotubes under tension, Reprinted with per-
mission from [22]. B, Liu et al. £ Mech. Phvs. Solids 32, 1 (2004).
© (2004), Elsevier.
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Fig. 6. The band gap versus the normalized twist g & accounting tor
the shilt vector for various carbon nanotubes (CNTL where 1 s the 1wist
(rotation per unit length) and R is the radius of the CNT. The results wre
shown Tor caleutations with and without the shift vector, Reprinted with
permission from [22]0 B. Liv et ale o Mech, Phys. Solidy 52,1 (2004),
& 2004, lsevier,

The similar studies were also conducted for torsion.
Figure 6 shows the band gap versus the normalized twist.
kR, for (5.5). (9.0), (9.6). (10.0), and (6.4) CNTs under
torsion. where R is the CNT radius prior to deformation.
Since the torsion is symmetric, i.e., a pair of opposite angle
of twist k means that CNT is twisted in opposite dirce-
tion with same amount ol torsional angle. the band gup
tor symmetric CNTs (i.c.. armchair and zigzag CNTSs) is
also symmetric: while the curve is unsynmimetric for chiral
CNTs. Contrary to tension. the band gap of armchair (5.5)
CN'T is not zero anymore once torsion is imposed: it varies
from zero to a linite amount. This trend is also observed
in other metallic CNTs. including (9.0) and (9.6) CNTs,
where band gap varies upon torsional deformation. Sim-
ilar to tension, the band gap for semi-conducting CNTs
keeps finite no matter the torsional strain. The same tran-
sition from metallic to semi-conducting CN'Ts for tension
and torsion make metallic CNTs unique candidates for
mechanical-electrical sensors. For chiral CNTSs that origi-
nally have finite band gap. the torsional deformation does
not qualitatively change the clectrical properties. i.e.. semi-
conducting property remains belore and  after torsional
deformation.

The combined tension/torsion deformation was  also
imposed to CNTs. Figure 7 shows the distribution ol band
gap versus the tensile (engineering) struin & and normal-
ized twist kR for (5.5) CNT. Only xR = 0 is shown duc
to symmetry. It is observed that the band gap is non-zero
almost over the entire domain: only around very isolated
curves does the band gap vanish. This is clearly observed
from the contour plot of band gap in Figure 7(b). The
isolated curves for vanishing band gap are marked by the
white dashed lines. Therefore, even though these three
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Fig. 7. The band wap versus the tensile strain & and normaldized twist
ki Tor (3.5) carbon nanotubes (CNT) under combined tenstonftorsion.
(a) (53.5) CNT (b} contour plot. Reprinted with permission from |22].
B. Liu et al., /. Mecir Phys, Sofids 32,1 (2004). © 2004, Elsevier.

CNTs are considered as conducting by the simple crite-
rion (7 —m is the multiply of 3). their band eap will most

likely become finite and the conducting CNTs will become
semi-conducting once the deformation is imposed.

3. NON-UNIFORM DEFORMATION:
SQUASHING

Electronic  properties of  nanotubes can be changed
dramatically by squashing. As mentioned earlier, metal-
semiconductor,  semiconductor-metal  and
conductor-metal transitions by squashing nanotubes have
been experimentally demonstrated.™ In these experiments.
squashing was preformed by an AFM tip. The squash-
ing of nanotube under the AFM tip is localized and the
deformation far away [rom the tip decays and the strain is
small, Extensive theoretical studies™ ™ have been carried
out on the simple model of radial deformation with infi-

metal-semi-

nite length. which described a comprehensive picture ol

the metal-semiconductor. semiconductor-metal and metal-
semiconductor-metal transitions. Studies™ of the finite size
effect of the squashing are particular important for NEMS
design,
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3.1. Radial Deformation

The electronic property transition ol carbon nanotubes
under radial deformation varies for dilferent type of
nanotubes. For example, metal-semiconductor transition
oceurs when armchair SWCNTS are squashed, -0
and metal-semiconductor and semiconductor-metal tran-
sitions happen when zigzag SWONTS are squashed.*'™
[ deformation is applied at different locations of the
SWONT. it will produce series ol semiconductor strue-
tures along the SWONT uxis. which opens a very simple
idea to build nanoscale circuits, Due to this reason. metal-
semiconductor transition (MST) in squashing SWCNTs
are particular important and have been comprehensively:
studied.”"

J A MST in Squashing Armchair SWCNTy

MST in squashing (or, radial deformation)  armehai
SWOCNTSs has been studied extensively.™ ™ Park et al®
investizated the mirror symmetry breaking related to the
MST. Lammert et al.”" pointed out the role of the interas
tion between carbon bilayer-structure in squashed SWC
NTs. We'™ studied the combined eftect of mirror symmetn
breaking and bond formation between the flattened face
of the squashed SWCNTs. and proposed a general guid
line to achieve MST in an armchair SWCNTSs by making
the two original equivalent sublattices physically distr
euishable. This guide line may also be applicable beyond
mechanical deformation. such as chemical absorption.
The typical conductance curve of a perfect armch
(8.8) SWCNT is shown in Figure 8(a). The conductan
near the Fermi energy is 2G,. indicating that there
two conducting channels. There are two dilferent means|
squash an armehair SWCNT: one by breaking the mim
symmetry about the v-axis (Figs. 8(b and ¢)) and the ofhg
by preserving the mirror symmetry (Fig. 8(e)).
When the SWCNT is squashed without mirror sy

cal SWCNT and a dumbbell SWCNT is that the two i
tened faces in a dumbbell SWCNT become close enoug
o interact with each other.

The relationship between the MST and the interact
between the two [lattened faces is showed in Figure §
Figure 8(d) plots the conductance gap near the Fen
energy and the interaction distance . as a function]
the tip separation . « . is the distance between the
closest atoms. A in the upper face and A" in the lower fi
as shown in Figure 8(b). The conductance gap appd
when d . < 2.60 A. indicating that the gap is openedd
the atom A stlarts 1o interact with the atom A’

However, the interaction alone is not sufficient
induce a MST. When the SWCNT is squashed with)

J. Comput. Theor. Nanosci. 5, 449-463 U
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Fig. 8. (a-c). (c. 1) Conductances of virious SWONT structures. which
are shown as the insels. £ is the energy ol conducting electrons. The
Fermi energy ol ideal armehair (8.8) SWONT is taken as zero. (d) The
conductance gap and o o ax o function of the tip distance ¢f Reprinted
with permission from [30]. 1. Q. Lu et al.. Phvs. Rev Lerr, 90, 156601
(2003). © 2003, The Amcrican Physical Society.

mirror symmetry preserved. as shown in Fieure 8(e). the
conductance remains at 2G,, near the Fermi cnergy. even
when the distance between the two flattened faces is less
than 2.60 A. Thus. a MST has o be driven by the com-
bined effect of the mirror symmetry breaking and interac-
tion between the two flattened faces.

The combined cffect of the mirror symmetry break-
ing and the interaction between the Hattened faces in a
squashed armchair SWCONT can be viewed as a more gen-
eral condition for driving the MST: to make the two orig-
inal equivalent sublattices in the SWCNT distinguishable.
The nanotubes. similar o graphenc sheet. have two cquiv-
alent sublattices. which labeled as A and B sublattices.
When a SWCNT is squashed along the axis through two
atoms from the same A-sublattice (or B-sublattice), as
in Figures 8(b and ¢), the squashed SWONT will break
the mirror symmetry about the axis. When the two flat-
tened faces are close enough, A-atoms will interact with
A-atoms. 11" the squashing is performed along the axis
through two atoms from different sublattices (one from A
and the other from B). as in Figure 8(¢). the squashed
SWCNT will maintain the mirror symmetry. When the two
flattened faces are close enough. A(B)-atoms interact with
B(A)-atoms. In the following, the first case will be referred
as the AA" structure (Fig. 8(c¢)) and the second as the AB’
structure (Fig, 8(e)).

The MST in squashing armchair SWCNT can be under-
stood by an extended simple pp7 model which includes

J. Comput. Theor. Nanosci. 5, 449-463, 2008
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the interaction between the two fattened faces. The inter-
action can be expressed by a perturbation Hamiltonian®!

a__ (k)
H (k) = (6)
o_ _ (k)

The diagonal terms 6 (k) and O_ _ (k) shift the 7 and
7" bands, and the band crossing point. The ofl-diagonal
terms 6_ (k) and &__ (k) will open up an encrgy gap.
Il @ mirror symmetry exists. such as AB’ structure, then
M(m)=m: M(H)=H" M(7) = —7
the mirror operator. Consequently. 6., = M(8__ ) =
M({7|H'|7")) = —(w|H'|7") = —&__. which gives
0. = 0. That means the off-diagonal terms are always

where M iy

zero and no band gap opening.

Figure 9(d) schematically represents the interactions
between the two states 7 and 7 for the two struc-
tures AA" and AB'. As shown by the fieure. the off-
diagonal term of the AA" structure §__ consists of two
a bonds as 8, = (p|H'|p) + {p|H'|p) # 0. where [p)
is the 2p, orbital of carbon atom. The off-diagonal term

AA AB

Fig. 9. (a) The energy dispersion relations near the Fermi enerey of an
ideal armehdir (8.8) SWONT with a pp model. (b) The phase correla
tions at the Fermi vector &y between the three equivalent atomic posi-
tions B which are the nearest neighborhoods ol the atomic positions A,
(e} A sehematic representation of the stie m and 7 within the cross
section ol an ideal armchair (8.8) SWONT. (d) Configurations of the new
imteraction introduced between the 7 state and 77 state (or structures
AA und AR Reprinted with permission from [30], 1. Q. Lu et al.. Phvs.
Revo Len 90. 156601 (2003). © 2003, The American Physical Society,
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Fig. 10.  The LDOS (unit: ¢V

of the AB’ structure consists of four o bonds. which can-
cel out as &_.. = (—{p|H'|p) + (p|H'|p) + (p|H'|p}
(P|H'|p)) = 0. Therefore, the off-diagonal term of the
AB’ structure is always zero, in agreement with the ubove
mirror-symmetry analysis.

The above analysis shows that the MST must be driven
by a combination of the mirror symmetry breaking and the
interaction, which effectively distinguishes the two orig-
inally equivalent sublattices (A and B). The two sublat-
tices are always equivalent without the interaction. They
remain equivalent with interaction if the mirror symme-
try is preserved when squashing because the interaction
oceurs between atoms from two sublattices in a symmet-
ric manner. Only it the mirror symmetry is broken when
squashing and hence the interaction occurs between atoms
within only one sublattice (A), will make it distinguishable
[rom the other sublattice (B).

Figure 10 provides a clear evidence of such a distine-
tion of the two sublattices by the local density of states
(LDOS). The LDOS distributions of two atomic layers
(along z-axis) are plotted in Figure 10. Each layer con-
sists of two sublattices (A and B) of 16 atoms. The LDOS
near the Fermi energy of an ideal SWCNT are homoge-
neously distributed over the two cquivalent sublattices. In
AA" squashed SWONT. the electrons tend to distribute
around A sites below the Fermi energy, but around B
sites above it, causing a discontinuity in the energy spec-
trum, as shown in Figure 10(a). In AB" squashed SWOCNT
(Fig. 10(b)). the LDOS crosses the Fermi energy continu-
ously. The tiny inhomogeneity of the LDOS is caused by
the inhomogeneous curvature of the squashed SWCN'T,

3.1.2. A Unified Model of MST in Squashing SWCNTs

Different from armchair SWCNTSs. zigzag SWCNTSs can
be either metal or semiconductor, as mentioned earlier.
Experimental measurements and theoretical simulations
both show that a MST can be achicved more easily in
metallic zigzag SWCNTSs than armchair SWCNTs.520-27
Theoretical studies™ =" showed that the mechanism to
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}distributions near the Fermi energy over two atomic Tayers of the squashed (8.8) armehair SWONT for AA (1) and
AB" (b) structures. The woms in B (A sublattice are Labled 1 (9) through 8 (16) Tor the tirst atomie Taver and 17 (23) through 24 (32) for the second
atomic layer. Reprinted with permission from [30[. 00 Q. Lu et al. Phvs. Rev Ler. 90, 156601 (2003). € 2003, The American Physical Society.
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drive a MST in metallic zigzag SWCNTs is different
from that in armchair SWCNT. MST in squashing metal-
lic zigrag SWCNTs is mainly driven by the curvature
clfect. ™" regardless both the mirror symmetry and inter-
action between the two Hattened faces. We™ re-examined
the two different mechanisms which driving MST in
armchair SWCNTs and zigzag SWCNTs and presented
a unified explanation for the MST in SWCNTSs based
on a simple tight-binding model: to make the two origi-
nal equivalent sublattices phivsically distinguishable. This
mechanism can also drive MST in a graphene monolayer,
but, incidentally. not in a graphene bilayer.

Figure 11 illustrates energy dispersion relation of a sime
ple tight-hinding model ol a one-dimensional lattice sys:
tem. It can be described by a simple cosine [unction

E—gy= 2y coslka) (l

Fig. 11, The solid line: energy dispersion relation of one-dimensi
latticed system: the dot line: energy dispersion relations of system

between y and y. y.. Reprinted with permission from [29], 1. QA
ctal Lo Appl Phvs, 970 114314 (2005), € 2005, American Instif
Physics.
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where, g, is the onsite energy in the tight-binding model.
¥y 1s the nearest-neighbor hopping integral, & is the one-

dimensional wave vector. and « is the lattice constant. If

the bands arc half filled. the Fermi energy of the system
is &y, and the curve of the energy dispersion relation con-
tinues at the Fermi energy. so the system is metallic.

It the one-dimensional system is divided into two sub-
lattices with different onsite energies &, and &;. as in the
left-top corner of Figure 11. the encray dispersion relation
of the system will change to

¥ Rl

g— 8, =A%+ (23, cos(ka)) ) (&)

where, &) = (&84 +&;)/2.A = |g, —&,|/2. The eneray
bands are plotted as the dotted line in Figure I'1. An energy
gap with value 2A is opened ncur the Fermi cnergy. indi-
cating the system is semiconducting, Therefore. a differ
ence in the onsite energics of the two sublattices leads to
a MST in the one-dimensional tight-binding model.
Another mechanism leading 1o a MST in the one-
dimensional system is: to make the nearest-neighbor hop-
ping integral different. It the onsite energies are kept as
&g, but the two nearest hopping integrals are changed to
Y, and ys. as shown in the left-top corner of Figure 11,
the energy dispersion relation of the system changes to:

&—gy ==Ly
. 5 ) (9)
Y= (¥ + v + 2y, y2c05(2ka))

where y and y,. v, can be treated as the three sides of a
triangle. as shown in the right-bottom insct of Figure 11,
To get y = 0. the two conditions: 2ka = 7 and y, = v,.
must be satisfied. Therelore, ¥ will not be zero no matter
the value of A. if the two hopping integrals vy, and 7y, are
different. Then energy bands will open an energy gap with
value 2|y, — v,| near the Fermi encrgy and the system will
be semiconducting.

The above discussion illustrates two mechanisms that
can drive a MST in the one-dimensional latlice system:
(i) a difference in the onsite energies of the two sublattices
and (ii) a difference in the nearest-neighbor hopping inte-
grals. The effect ol both mechanisms is to make the two
original equivalent sublattices physically distinguishable.

The similar examination is applied to SWCNTs. It is
found that only the first mechanism can lead 0 a MST in
armchair SWCNTs. while either mechanism can drive a
MST in metallic zigzag SWCNTs. A SWCNT is wrapped
from a graphene sheet. The processes of wrapping i
graphene sheet into a SWCNT and then squashing it will
produce curvature. The effect of the curvature is shown in
Figure 12(b). First. it will reduce the pp overlap between
the nearest-neighbor carbon atoms to the original cos” e
second, the o orbital and 7 orbital between the nearest-
neighbor carbon atoms will not be normalized. Both the
two effects lead to different nearest-neighbor hopping inte-
grals along the axis and the circumference.
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Y

Fig. 12, {a) The graphene sheet-like structure with different onsite ener-
gies and nearesl-neighbor hopping integrals. (b) The difference of v, and
v, due to the curvature effect. {¢) The triangle relationships between v
and v and 2y cosdd . Reprinted with permission from [29]. 1. Q. Lu

et al L Apple Phvy, 7. 114314 (2005), © 2005, American Institute of

Physics.

On the other hand. squashing a SWCNT can also intro-
duce new interactions between the atoms in one sublattice,
as mentioned earlier. The new interaction distinguish the
two sublattices from each other. which is equivalent 1o
assigning dilferent onsite energies to the 1two sublattices,
as is the case in Boron-Nitride nanotubes. Therefore, with
the process of wrapping and then squashing. the system
shown in Figure 12(a) will be different from a graphene
sheet. and 1t 1s assumed the two sublattices have different
onsite energies &, and g, and nearest-neighbor hopping
integrals along the v and y directions given by v, and
v, respectively. The encrey dispersion relation of such a
system can be expressed as:

;s

gk k) —Ey= A7) (10)

where. & and & are the wave vector components along
the x and v directions. and

sy =ilEy 8,2, A=lg,—gyl/2

y=(y;+4dycos’ ¢, +4y, v, cosg, cose )’ (Y
where ¢, and ¢, are half of the phase increments between
the nearest-neighbor carbon atoms which belong to the
same sublattice along the v and v directions. as shown in
Figure 12(a), and ¢, = v’ﬁk\u/ﬁ. p, =Kka/2

In order to keep the system metallic. there are two con-
ditions must be satistied: A =0, and y = 0. Therefore,
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a MST can be achieved by breaking of either condition.
The different onsite energies from the two sublattices (i.e..
A = 0) leads to a MST. This mechanism can drive a MST
not only in armchair SWCNTSs, but also in all metallic
SWCNTs and even in the graphene monolayer.

The other mechanism is to break the condition y = (.
Figure 12(c) shows that y can also be treated as onc of the
sides of a triangle, where the other two sides are y, and
2y, cos ¢,. That the condition y =0 can be further divided
into two conditions: ¢, = 7 and 2y, cos¢, = ¥,. When a
eraphene sheet is wrapped into a SWCN'T, ¢ = 7 can be
satisfied in both armchair SWCNTSs and zigzag SWCNTs.

When a graphene sheet is wrapped in an armchair
SWCNT and is squashed. the condition 2y cos¢, = 7,
can always be satisfied. Though, the hopping integrals
v, # v, due to the wrapping and squashing. the ¢, can take
any value near /3 continuously because the restricted
condition is applied on x direction. Thus. a difference
in the nearest-neighbor hopping integral along the axis
and the circumference will not drive a MST in armchair
SWCNTs.

However, when a graphene sheet is wrapped into a
zigzag SWOCNT, the system is restricted in v direction,
That ¢, can only take certain discrete values. Roughly,
v, = v, holds when a graphene sheet is wrapped into a
SWCNT. The condition 2y, cosg, =y, is cose@, = 1/2.
which means that ¢ can only be +a/3. This shows the
well-known result that zigzag (12,0) SWCNTs are metallic
only when n is a multiple of 3. When squashing a metal-
lic zigzag SWCNT, vy, # y,. the condition 2y, cos¢, =,

BR—
F e
~ 4 ‘ i
= ® i
WGJ E\&swy_ —t
N 5l d=951A
&5
a)
al (
-1 0 1
E (eV)
015" _a 7igzag (12.0)
; —— Armchair (8.,8)
© 0.10+
-/
o e
fey]
TN

005+ o a7

0.00 F 9=3—3—0—1—3—0—3—p—3—D—1— 23— 1— p—}—)—

Fig. 13. (a. b) Conductances of different zigzag (12.0) SWONT struc-
tures. as shown in the insets. £ is the energy of conducting electrons. The
Fermi energy of ideal zigzag (12.0) SWONT is taken as scero. (¢) The
conductance gaps of zigzag (12,0) SWONT and armchair (8.8) SWOCNT
as functions of the applicd strain. Reprinted with permission from [29],
1. Q. Lu et al. J Appl. Phys. 97, 114314 (2005). © 2005, American
Institute of Physics.
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can not be satisfied through adjusting ¢,. because ¢, can
only take certain discrete values. Thus. a difference in the
nearest-neighbor hopping integral along the axis and the
circumference can be used to drive a MST n metallic
zigzag SWONTSs.

In fact, it is impossible to maintain y, = 7y, during
the process in which a graphene sheet is wrapped into
a SWCNT even without squashing. Thus. when nis a
multiple of 3. there is a very narrow cnergy gap neal
the Fermi eneray of zigzag (n.0) SWCNTSs. as shown in
Figure 13(a).

Figure 13(a) shows the typical conductance curve of
a perfect zigzag (12.0) SWCNT. As mentioned above
there is a very narrow gap ncar the Fermi energy. In
Figure 13(b), when the SWCNT is squashed into an ellip-
tical shape. a considerable gap is opened ncar the Fermi
energy. indicating a MST. Further squashing the (120
SWCNT closes the conductance gip due to the enhanced
o — " hybridization effects.™

A comparison of the MST in squashing zigzag (120
SWOCNT and armchair (8.8) SWCNT is made in Figure |4
The variation of their conductance gaps are plotted &
functions of the applied strain &, The strain g, is define
by €, =(d—d,)/d. No MST in armchair (8.8) SWCN
takes place until it is squashed into a dumbbell shape th
the opposite walls interact, which corresponds to g,
(.76 in Figure 14. However, a MST can be achieved mo
easily by squashing (12.0) zigzag SWCNT.

Fig. 14, The graphene bilavers with new interaction introducedh
the sublattices A and B () Top view and (h) side view. Repring
permission from [29]. J. Q. Lu et al.. /o Appl. Phys. 97, 114314
@ 2005. American Institute off Physics.
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As mentioned carlier, the effect of the two different
mechanisms which drive MST in one-dimensional tight-
binding model is the same: to make the two original equiv-
alent sublattices phivsically distinguishable. This is also
true in the case of squashing SWCNTS.

Without squashing. the two sublattices in a graphene
sheet or in a SWCNT are originally topologically distin-
guishable. but not plivsically distinguishable. The plivsi-
cal distinction means that the two sublattices are “felt”
differently by the conducting clectrons, which is the
underlying reason for a MST. In the case of the first
mechanism, the onsite energies ol the two sublattices are
different. That means the two sublattices are physically
distinguishable.

In the case of the second mechanism, the nearest-
neighbor hopping integral along the axis and the cir-
cumference are different, which also makes the two
sublattices distinguishable. The condition 2v cos¢, =y,
ina graphene sheet can be understood to enforce the equal-
ity of the hopping integrals wlong the v direction (the
axis direction of zigzag SWCNTs). In zigzag SWCNTs.
when y, and v, is ditferent. the equality is broken, which
leads to the phvsical distinction of the two sublattices. as
in the one-dimensional tight-binding model. In armchair
SWCNTSs. the axis direction 1s the v direction. The equal-
ity of the hopping integrals can always be satislied. It is
the reason that the second mechanism can not drive a MST
in armchair SWCNTs.

Both the two different mechanisms which drive MST
in squashing SWCNTs make the two original cquivalent
sublattices in SWCNTs phivsically distinguishable. The
physical distinction between the two sublattices is a gen-
eral mechanism which can drive a MST in any metallic
SWCNTSs or even in the graphene layers.

Though making the two sublattices plivsically distin-
guishable can drive a MST in a metallic SWCNT. it can
not drive a MST in graphene bilayers. For example. o new
interaction V' is introduced between the sublatiices A and
B’ of the graphene bilayers, as shown in Figure 14. The
two sublattices in each layer are physically distiguishable.
The energy dispersion relation of the bilayer system can
be expressed as:

B—igy = (FV £/ V2 4dy?) /2

k]

y =7y (1 +4cos” ¢, +4cose, cose,)

v

where &, 1s the onsite energy of the carbon atoms in
the graphene bilavers and vy, is the nearest-neighbor hop-
ping integral. & — g, = v is coincident the energy disper-
sion relation of a graphene monolaver, which can get the
value O with given value of ¢, = +7 and @, = =7/3. At
the same time. & — &, =) for the bilayer system. indicating
that no energy gap is open and that no MST is achieved.
This shows the difference between SWCNTs and graphene
hilayers.
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3.2. Finite Size Effect in Squashing SWCNTSs and
SWOCNT-Based Structures and Devices Design

As mentioned above. MST may be achieved through
squashing armechair SWCNTs. While theoretical studies™
show that a local deformation usually can not drive a MST
in armchuair SWCNTs. The different conclusions are based
on two different models: a radial deformation along the
holistic SWCNT and « local deformation within only part
ol the SWCNT. The difference shows that the finiteness of
the deformed length plays an important role in the elec-
tronic properties of SWCNTs. In case ol SWCN'T-based
clectronic device design. the deformed length along the
SWONT will be a key parameter (o ensure their functions.
We studied the finite size elfect in a squashed armchair
(10.10) SWCNT and proposed some SWCNT-based struc-
tures and devices design.

Figure 15(a) shows an example structure of an armchair
(10.10) SWCNT squashed by a tip with finite length d. =
6.0 A. The cross section of the SWCNT changes from a
dumbbell (in the fully deformed part of the SWCNT. as
shown in Fig, 15(b)) to an ellipse (in the less deformed
part, as shown in Fig. 15(c¢)), and then to a circle (in the
undeformed part, as shown in Fig. 15(d)). [n the fully
deformed part. the smallest mteratomic distance between
the upper face and the lower face is . = 2.1A. and the
mirror symmetry is broken due to squashing. That the fully
deformed part works as semiconductors,

Figure 16(a) shows the conductance curves near the
Fermi energy of SWCNTs deformed by tips with differ-
ent lengths. Though the Tully deformed part acts as semi-
conductor. no energy gap is opened in the conductance
curve il ¢ is only 3.0 um (the pink short dash line).
that means the whole SWCN'T keeps its metallic behavior,

Fig. 15, (a) Finite length delormation i an armchair (10.10) SWCNT
squashed by two identcal tps: (he ©) cross sections of the different parts
of the detormed SWCNT. as indicated by the arrows: (d) cross section of
the non-deformed part of the SWONT. Reprinted with permission {rom
[25]. 0. Q. Tu et al, Appl. Phvy. Ler. 8404203 (2004), © 2004, American
Institute of Physics.
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Fig. 16. (a) Conductance ol armchair (10.10) SWONTs delormed by
tips with different length o . g (= 2¢7 /) is the unil quanta ol conduc-
tance. /2 s the energy of conducting electron. The Fermi eneray of ideal
armchair (10.10] SWONT is taken as zero. (b, ¢) The LDOS (unit: eV )
per unit cell layer near Fermi encrgy of SWONTs deformed by tips with

lengths (b) = 25.2 nm and (¢) = 3.0 nm. Reprinted with permission

from [25]. 1. Q. Lu et al, Appl. Phyvs. Lo, 840 4203 (2004). @ 2004
American Institute ol Physics.

Moreover. the conductance of the whole SWCNT almost
keeps constant near Fermi energy. When the tip length
increases. the length of deformed part gets longer., the
conductance near Fermi energy will begin 1o decrease.
as shown in Figure 16(a). The conductance near Fermi
energy approaches zero when . = 25.2 nm (the red dash
line). When the tip length approaches infinite. the whole
SWCNT is deformed. (which is the case of the radial
deformation) the conductance near Fermi eneray is zero.

Figures 16(b and ¢) present visual pictures of the finite
size effect of deformation length in squashed SWCNTSs.
The LDOS per unit cell layer along the SWCNT axes are
plotted. Each unit cell layer consists of 40 atoms which
distribute over two atomic layers. When ¢ = 25.2 nm. the
deformed part of the squashed SWCNT contains about 100
unit cell layers (4000 atoms). The LDOS of layers in the
deformed part and its nearby. totally 120 unit cell layers

(4800 atoms). is plotted in Figure 16(b). The LDOS of

the deformed part is almost zero near Fermi encrey, which
means that energy gap exists near Fermi encrgy within the
deformed part. While in the nearby part. the 1.DOS crosses
Fermi energy continuously. Conscquently, the squashed
SWOCNT forms a metal-semiconductor-metal (MSM) het-
crojunction. It opens an casy way for SWCNT-based
devices design. If ¢_ = 3.0 nm only. the deformed part
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only includes about 12 unit cell layers (480 atoms). The
LDOS ol 30 unit cell layers (1200 atoms) is plotted i
Figure 16(¢). Even in the deformed part. the LDOS crosses
Fermi energy continuously, The SWCNT keeps its metallie
behavior,

The underlying physics of the finite size ellect of the
deformed length in squashed armchair SWCNTS s thel
quantum tunnelling clfect. When electron tunnels through
an energy  barrier, the tunnelling probability attenuat
exponentially  with increasing width of energy  barries
Electrons cun casily tunnel through the energy barrier if
it is narrow enough, This is particular important for nano
clectronic device design. Il the size of the device is tof
small. electron can easily tunnel through the device, th
device may not function well as expected.

Figure 17 gives a vivid sight of the wnnelling effectis
the deformed SWCNT. The LDOS of each atom withi
one unit cell layer of the dumbbell part for the case d.
252 nm and d. = 3 nm are plotted in Figures 17(a and bl
As mentioned earlier. when a MST is achieved in
squashed armchair SWCNT. the 1.DOS distributing on i
two sublattices are distinguishable. which results in a g
continuity energy spectrum near Fermi energy. This phe
nomena can also be found in Figure 17(a). in the LDO
distribution of the dumbbell part of SWCNT deformé
by tip with length ¢ = 25.2 nm. Figure 17(b) shoi
the LDOS distribution of the dumbbell part of SWCM
deformed by tip with = 3.0 nm. The distinction betvied
the LDOS of the two sublattices is tiny. The LD@
crosses Fermi energy continuously, The LDOS near Fen
energy in the dumbbell part is resulted from the tunnel
cllect.

The interesting changes ol the electronic structure
the SWCNT detormed by finite sized tip are also s
ied. Fieure 17(¢) shows the LDOS distribution withis
unit cell layer of the ellipse part (as shown in Fig. 1
of the SWCNT deformed by tips with ¢ = 252 nm
is interesting to find that the L.DOS over the two subl
tices are distinguishable. though there is no energy g
near Fermi cnergy with the absence ol the bond for
tion between the flattened faces. Figure 17(d) plots)
LDOS distribution within a circle unit cell layer, wh
is far from the deformed center with distance 4061
The LDOS of the two sublattices are also distingl
able. Moreover, the LDOS on one certain atom o
lates with energy. as indicated by the red dash lin
Figure 17(d). Studies also show that the LDOS of
two sublattices within a unit ce i

I Tayer are always di
guishable when the distance between the layer
deformed center increases, and the oscillation of LI
with energy becomes more exquisite. The LDOS of
ideal SWCNT ncar Fermi energy distribute overg
carbon atom homogeneously. Upon delormation, [
and 77 wave functions in the SWOCNT are mixed
the breaking of the mirror symmetry. With the finite§
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formation, the translation symmetry along the SWCNT
also broken. The standing wave Tunctions are the com-
nation of the incoming and reflecting wave functions.™
e LDOS near Fermi energy can be expressed as 2] |+
8(20kx)|[1+R L2V R cos(2k, v+ 8)]. M The distinction
een the LDOS of the two sublattices results from the
fference between |1 =cos(2Akx)]. As the energy disper-
sion relations near Fermi encrgy is approximately linear

ith Ak = 2E£/(v3ay,). the period of the oscillation s

= /3ay,m/(2x).
As mentioned above, an armchair (10,10) SWCNT can
a MSM heterojunction when the deformation length
i§ large enough ¢~ 20 nm. For the conducting electrons.
e middle semiconductor layers act as an energy barrier,
e MSM heterojunction opens up an casy wiy 1o struc-
ture some SWCNT-based nanoscale devices.

Figure 18(a) shows a SWCNT-based double barrier.
y squashing an armchair SWONT at two different posi-
tions. The typical behavior of double barrier structure
the resonant tunneling. as shown in the conductance
e in Figure 18(a). The small conductance peaks lying
the energy gap are duc to the resonant tunnelling
ect. The advantage ol the SWCNT-based double barrier
Structure is that its electronic transport property can be

omput. Theor. Nanosci. 5, 449—-463, 2008
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17. The LDOS (unit: eV ') near Fermi encrgy within aounit cell Taver of armehair (10.10) SWONTs deformed by tips with different lengths

d)d. =252 am and (b) = 3.0 nm. (. b) dumbbell parts (e ellipse part and (J) cirele part. The atems in B {A) sublattice are Tahelled 1 (11)

gh 10 (20) for the first womic layer and 21 (31) theough 30 (40) for the second atomic layer. The dash line in {d) is added only for suide.
inted with permission from [25] 10 Q. Lo ctal. Appd Phivs. Lere 8404203 (2004). © 2004, American [nstitute of Physics,

casily controlled through changing the widths of the two
energy barriers and the middle energy trap (i.e.. chang-
ing the deformed length and the distance between the
two deformed positions). For the example case shown in
Figure 18(a). the tip length ¢ = 25.2 nm, and the distance
between the two deformed positions [ = 371 nm.

I an armchair SWONT is deformed periodically along
its axis. it will behave as a superlattice. as shown schemat-
ically in Figure 18(b). The period of the superlattice in
Figure [8(b) is 1 = 57.1 nm. and the tip length is d =
25.2 nm. The conductance of the nanoscale superlattice is
also presented in Figure 18(b). As shown in the insel. each
conductance peak is sphit into many small peaks. This is
the resonant splitting effect of superlattice structure. The
conductance vanishes near Fermi energy between the con-
ductance bands. The electronic properties of the SWCNT-
based superlattices can also be controlled casily through
changing the range of the conductance gap. The latter can
be achieved by adjusting the structure parameters.

For a logical circuit. transistor is one of the most impor-
tant components. Designing a nanoscale transistor will be
one of key steps to realize the nanologic. Bachtold et al.
achieved a nanoscale transistor experimentally. In their
design. a semiconducting SWCNT is connected with two
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Fig. 18. Conceptual desiens of SWONT-bused  (a) double barrier:
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tures are shown schematically only, The inset in (h) presents the detail
ol resonant splitting effect. Reprinted with permission from |23]. 1. Q.
Lu et al, Appl. Phys. Let. 84,4203 (2004). © 2004, American Insttute
of Physics.

gold electrodes. Based on the MSM heterojunction. pure
carbon transistor is possible.

Figure 18(c) shows of a conceptual design of pure car-
bon transistor based on MSM heterojunction with . =
25.2 nm. The MSM heterojunction will act as a nanoscale
transistor if a gate voltage V, is applied to the tips. When
V, =0, as the deformed ]"Jﬁ.]‘t behaves as semiconductor.
the conductance is zero. The transistor is OFF. Changing
of V, will shift the energy gap ol the deformed part. When
Fermi energy does not lie in the shifted energy gap, the

=

transistor begins to be ON. That is the basic principle of

the SWCNT-based nanoscale transistor. Figure [8(c¢) also
presents the dependence of the conductance on V. The
logical voltage of the sample transistor is about —0.10 V.
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