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Critical Strain of Carbon
Nanotubes: An Atomic-Scale
Finite Element Study
This paper employs the atomic-scale finite element method (AFEM) to study critical
strain of axial buckling for carbon nanotubes (CNTs). Brenner et al. “second-
generation” empirical potential is used to model covalent bonds among atoms. The
computed energy curve and critical strain for (8, 0) single-walled CNT (SWNT) agree
well with molecular dynamics simulations. Both local and global buckling are achieved,
two corresponding buckling zones are obtained, and the global buckling behavior of
SWNT with a larger aspect ratio approaches gradually to that of a column described by
Euler’s formula. For double-walled CNTs with smaller ratio of length to outer diameter,
the local buckling behavior can be explained by conventional shell theory very well.
AFEM is an efficient way to study buckling of CNTs. �DOI: 10.1115/1.2198548�
ntroduction
By atomic force microscope, Falvo et al. observed reversible

igh-strain deformation and periodic buckling of multiwalled car-
on nanotubes �MWNT� �1�. Examining slices of MWNT embed-
ed within a polymeric film by transmission electron microscopy,
ourie et al. reported experimental results of various deformation
nd fracture modes under compression �2�. To investigate buck-
ing behavior of carbon nanotubes �CNTs�, extensive theoretical
esearch has been carried out. In general, the widely used theoret-
cal methods can be divided into atomistic-based methods and
ontinuum mechanics. Using molecular dynamics �MD�, Yakob-
on et al. found that single-walled CNT �SWNT� switches into
ifferent morphological patterns when subject to large deforma-
ion �3�. Srivastava et al. investigated axial compression of SWNT
sing generalized tight-binding MD �4�. By MD simulation, Xiao
t al. �5� and Liew et al. �6� studied instability of CNTs under
xial compression, Sears and Batra �7� and Wang et al. �8� inves-
igated critical strain for global and local buckling of CNTs, and
urther, Liew et al. �9� simulated the critical strain and buckling
oads of CNT bundles. The atomistic-based methods are currently
imited to very small length and time scales, due to insufficient
omputing power �6,9,10�. Several elasticity models can be com-
aratively easily used. Pantano et al. presented a nonlinear struc-
ural mechanics model and studied wrinkling of MWNT �11�.
ased on explicit formula for the van der Waals �vdW� interaction
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between any two layers of MWNT, He et al. established a shell
buckling model �12� and Kitipornchai et al. studied buckling be-
havior of triple-walled CNTs embedded in an elastic matrix �13�.
In the above continuum models, interatomic potential is not em-
ployed directly and multibody interactions cannot be considered
accurately, so the behavior of discrete atoms and concrete con-
figuration of CNT can hardly be achieved. Huang and his col-
leagues proposed a three-dimensional atomic-scale finite element
method �AFEM� �14,15�. Using interatomic potential to consider
the multibody interactions, AFEM is as accurate as molecular me-
chanics simulation. It is much faster than molecular mechanics
because it uses the first and second order of derivative of total
energy, while molecular mechanics employs the conjugate gradi-
ent method, which only uses its first order of derivative.

This paper employs AFEM to study critical strain of axial buck-
ling for CNTs. The achieved energy curve and critical strain for
�8, 0� SWNT agree well with recent MD simulations, which veri-
fies the application of AFEM to study buckling of CNTs. It is
found that there are two kinds of buckling: local and global. With
the aspect ratio �ratio of length to diameter� increasing, CNTs first
locally buckle and then globally buckle. The local and global
buckling zones can be searched in detail, and the critical strain
shows different characteristics in two zones. The global buckling
behavior of SWNT with a larger aspect ratio can be explained by
Euler’s buckling formula for column. For double-walled CNTs
�DWNTs� with smaller ratio of length to outer diameter, the local
buckling behavior is consistent with conventional shell theory.

Potential Function and AFEM for CNTs
As for the CNTs, covalent bonds among atoms can be modeled

according to Brenner et al. “second-generation” empirical poten-
tials �16�. For SWNT, covalent bonds are dominant interaction, so
in the following simulations on SWNT, vdW interaction is not

considered. For MWNT, vdW interaction is expressed according
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o the Lennard-Jones 12-6 model �17� and is taken as a nonlinear
pring when the distance between two carbon atoms in the differ-
nt layer is less than the cutoff radius.

In AFEM for CNTs proposed by Huang and his colleagues
14,15�, the AFEM element consists of ten atoms because each
arbon atom has three nearest-neighboring atoms and six second
earest-neighboring atoms. A schematic diagram of AFEM ele-
ent, the associated element stiffness matrix, and the nonequilib-

ium force vector are therein �14,15�. Such an element captures
he interactions among the central atom and other atoms. The
umber of nonzero entries in the global stiffness matrix K is of
rder N, so is the computational effort to solve Ku= P, while the
onjugate gradient method widely used in atomistic studies is of
rder N2.

imulation on Buckling of CNTs
Consider an initial equilibrium configuration of CNT. Unless

irect specification, one end of the CNT is fixed and the in-plane
isplacements of the other end are prohibited in our paper. An
xial displacement can be applied to compress it, and AFEM can
e performed to obtain new equilibrium configuration; then a fur-
her displacement can be applied. It deforms linearly when the
train is small. With the strain increasing, the stiffness matrix will
ose positive definiteness at a certain point, which is the critical
train for axial buckling. The post-buckling configuration of CNT
an also be achieved. All calculation is performed by ABAQUS via
ts UEL subroutine �18�.

First, we study axial buckling of a �8, 0� zigzag SWNT, with
ength 4.07 nm and diameter 0.63 nm. The average strain energy
er atom is calculated as the difference in the average energy per
tom in the strained and unstrained system as a function of strain
hown in Fig. 1. In Srivastava et al. �4�, its structural deformation
trained at 0.12 in the generalized tight-binding MD is completely
pontaneous and leads to plastic collapse. By MD simulation us-
ng Brenner et al. “second-generation” empirical potential, Xiao et
l. investigated nonlinear elastic properties and instability of
WNT under axial compression and found that �8, 0� SWNT can
eform elastically to the strain 0.10 �5�, while Liew et al. have
hown that it can be compressed up to a strain 0.135 before buck-
ing �6�. In our AFEM simulation, the critical strain is 0.105. For
omparison, the strain energy curves of Srivastava et al. �4�, Xiao
t al. �5�, and Liew et al. �6� are compared in Fig. 1. It can be
asily found that our energy curve approaches theirs closely. Es-
ecially, the energy curve of Xiao et al. and ours almost coincide
ith each other. Srivastava et al. used the tight-binding MD

cheme of Menon et al. �19�, resulting in the highest strain energy

ig. 1 Comparison among the strain energy curves for „8, 0…
WNT
n comparison to the others. Although the same Brenner et al.
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potential was employed in Liew et al., that their SWNT is a bit
longer explains the slight difference. Thus, the application of
AFEM to study the critical strain of axial buckling for CNTs is
verified. The time needed really depends on the applied total dis-
placement step size and the initial step size. Here only tens of
seconds are needed to achieve the final critical strain 0.105. To
show the effect of the boundary condition on the buckling behav-
ior, we still keep one end of the �8, 0� SWNT fixed, but allow for
the in-plane displacement at the other end. It is found that the new
boundary conditions almost do not affect the strain energy, but
reduce the critical strain to 0.03, less than one-third of the former
one. The phenomenon that the release of the constraint will facili-
tate the buckling is consistent with the continuum mechanics.

As for CNT, there are two kinds of buckling. The first one is
column buckling, where CNT approximately keeps the circular
cross section and buckles sideways as a whole. The second one is
shell buckling, where CNT buckles with lobes and half waves
along the tube and the axis remains straight. It was the same with
Wang et al. �8�, the former and latter is named the global buckling
and local buckling, respectively. For a �16, 0� zigzag SWNT, with
length 17.1 nm and diameter 1.254 nm, by MD simulation, Sears
and Batra found that critical strain is 0.02784 and it is global
buckling �7�. In our AFEM simulation, its critical strain is 0.029,
which represents 4.2% relative error with theirs, and it is also
global buckling, shown in Fig. 2�a� �20�. In our AFEM simulation
on a �7, 7� armchair SWNT, with length 6 nm and diameter
0.95 nm under axial compression, there is local buckling in good
agreement with MD simulation of Yakobson et al. �3�. Its mor-
phology after buckling is shown in Fig. 2�b� �20�.

Figure 3 shows the various critical strains �cr of �5, 5�, �10, 10�,
and �15, 15� armchair SWNTs at different length l, while their
aspects ratios change from �5 to �20. It is obvious that the
shorter SWNTs buckle locally and the longer ones buckle glo-
bally. There is an inflexion point in each curve of Fig. 3, and the
aspect ratio is 7.1, 12.0, and 14.4, while the corresponding length
is 4.788 nm, 16.35 nm, and 29.39 nm, respectively. With the di-
ameter increasing, the length associated with inflexion point in-
creases and so does the local buckling zone. The MD simulation
of Wang et al. shows the length associated with its inflexion point
for �10, 10� SWNT is 15.79 nm �8�, and the result in our AFEM
simulation has �4% relative error with theirs. In the local buck-
ling zone, the critical strain decreases very slowly. In the global
buckling zone, the critical strain first decreases fast, and then de-
creases slowly when the length is comparatively larger, which is
consistent with MD simulation of Liew et al. �6�. Thus, to show
this important characteristic of critical strain in the global buck-
ling zone, the exponential decay function is chosen to fit the cor-

Fig. 2 „a… Morphology of „16, 0… SWNT after global buckling,
„b… morphology of „7, 7… SWNT after local buckling. Two kinds
of buckling for CNTs with different aspect ratios.
responding data, i.e.,
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� �1�

here A, B, and C are fitting parameters. 1 /B shows the decay of

ig. 3 Critical strain versus aspect ratio for „a… „5, 5… SWNT
ith diameter of 0.678 nm, „b… „10, 10… SWNT with diameter of
.357 nm, and „c… „15, 15… SWNT with diameter of 2.036 nm
ritical strain �cr with the length l, so it is named as decay rate.

ournal of Applied Mechanics
The fitting curves and the associated correlation coefficients are
shown in Fig. 4. From Fig. 4, it can be found that Eq. �1� fits the

Fig. 4 Critical strain and fitting result by Eq. „1… for global
buckling of „a… „5, 5…, „b… „10, 10…, and „c… „15, 15… SWNTs with
different length
data very well. With the diameter increasing, B increases, and so

MARCH 2007, Vol. 74 / 349



t
d
a

b
c
E
b

w
t
i
s
b
w

w
a
c
−
l
�
i
a
b
g

7
t
s
T
t
p

D
1
s
e
a
c
C

F
p

3

he decay rate decreases, which is because, for SWNT with larger
iameter, more length is needed to realize the same change of
spect ratio.

As shown in Fig. 2�a�, the morphology of CNT after global
uckling is similar to the buckled column, and quantitative dis-
ussion on the critical strain is performed as follows. According to
uler’s formula, the critical strain �cr of column with both ends
uilt in is given by �21�

�cr =
4�2I

Al2 �2�

here A is the cross-sectional area and I is moment of inertia of
he column. Equation �2� shows that the critical strain �cr will be
nversely proportional to the square of the length, given the con-
tant A and I. As shown in Fig. 3, the data associated with global
uckling are the right part of whole curve; thus, a power function
ith a shift term is chosen to fit the data in Fig. 4, i.e.,

�cr = alb + c �3�

here a ,b ,c are fitting parameters. It is found that Eq. �3� can
lso fit each curve in Fig. 4 very well and all correlation coeffi-
ients are larger than 0.997. b is −1.01412, −1.44938, and
1.62841; thus, the critical strain �cr is linearly related to the

ength to power of −1.01412, −1.44938, and −1.62841 for �5, 5�,
10, 10�, and �15, 15� SWNT, respectively. With the diameter
ncreasing, number of the atoms in each circumference increase,
nd b approaches to −2.0 gradually, which shows that the global
uckling behavior of SWNT with a larger aspect ratio approaches
radually to that of a column described by Euler’s formula.

For armchair SWNTs with an approximate fixed aspect ratio
.6, the relationship between critical strain in our AFEM simula-
ion and the diameter is shown in Fig. 5. From Fig. 5, it is ob-
erved that as the diameter increases, the critical strain decreases.
he power function is used to fit the critical strain, and it is found

hat the critical strain is inversely proportional to the diameter to
ower of 0.724.

Finally, we employ AFEM to study buckling behavior of
WNTs. They are �5, 5� and �10, 10�, �10, 10� and �15, 15�, �15,
5� and �20, 20�, �20, 20� and �25, 25�, �25, 25� and �30, 30�,
equentially. The ratio of length to the corresponding outer diam-
ter is kept as �4.5. Their critical strain �cr versus the outer di-
meter is shown in Fig. 6. It shows that as the length increases, the
ritical strain decreases. As shown in Fig. 2�b�, the morphology of

ig. 5 Critical strain versus the diameter of SWNT with ap-
roximate aspect ratio of 7.6
NT after local buckling is similar with the buckled thin shell,
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and quantitative discussion on the critical strain is performed as
follows. For the buckling of a compressed thin shell, the critical
strain is �21�

�cr =
2h

d�3�1 − �2�
� �� = 0.6 − 1� �4�

where h is the effective thickness, d is the diameter of the shell, �
is the Poisson’s ratio, and � is correction coefficient. Usually, �
=1 if it buckles into short longitudinal waves, otherwise it de-
creases with longer waves. Equation �4� shows that the critical
strain will be inversely proportional to the diameter d, given con-
stant effective thickness h. The fitting results on MD simulation of
Xiao et al. �5� also reach that same conclusion on the critical
strain for shorter SWNTs. Because the ratio of length to the cor-
responding outer diameter keeps constant, we fit the critical strain
with the length in Fig. 6 and found that the critical strain is in-
versely proportional to the length to power of 0.897. There are
different definitions of effective thickness of CNTs �3,11,22–24�.
In our above analysis, the effective thickness of different DWNT
is assumed as a constant and the DWNT is taken as thin shell.
Further considering the vague definition on the diameter of
DWNT, the buckling behavior of DWNTs with a smaller ratio of
length to outer diameter can be explained very well by the con-
ventional shell theory.

In order to show the effect of the intertube vdW interaction, we
study the buckling of the above �5, 5� and �10, 10� DWNT without
intertube vdW interaction. It is found that it does not affect the
strain energy, but reduces the critical strain to 0.04, which is 15%
smaller than the former one. The attractive intertube vdW interac-
tion explains the larger critical strain when the vdW interaction is
considered.

Conclusions
This paper employs the atomic-scale finite element method

�AFEM� to study critical strain of the axial buckling for SWNTs
and DWNTs. Comparison of the energy curve and critical strain
for �8, 0� SWNT with MD simulations validates the application of
AFEM. There are two kinds of buckling: local and global. With
the aspect ratio increasing, SWNT first locally buckles and then
globally buckles. With its diameter increasing, the length associ-
ated with inflexion point increases, decay rate of critical strain
with length in the global buckling zone slows down, and its global
buckling behavior gradually approaches that of a column de-

Fig. 6 Critical strain versus the outer diameter of DWNT. The
ratio of length to the corresponding outer diameter is kept as
È4.5
scribed by Euler’s formula. The relationship between critical
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train and the diameter for armchair SWNTs with an approximate
xed aspect ratio is obtained. For DWNTs with smaller ratio of

ength to outer diameter, the dependence of the critical strain on
iameter is explained by conventional shell theory very well.
FEM is much faster in terms of computation because it is within

he theoretical framework of the conventional FEM. It is an effi-
ient way to study buckling of CNTs.
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