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Identifying efficient and accurate optimization algorithms is a long-desired goal for the 
scientific community. At present, a combination of evolutionary and deep-learning meth-
ods is widely used for optimization. In this paper, we demonstrate three cases involving 
different physics and conclude that no matter how accurate a deep-learning model is 
for a single, specific problem, a simple combination of evolutionary and deep-learning 
methods cannot achieve the desired optimization because of the intrinsic nature of the 
evolutionary method. We begin by using a physics-supervised deep-learning optimi-
zation algorithm (PSDLO) to supervise the results from the deep-learning model. We 
then intervene in the evolutionary process to eventually achieve simultaneous accuracy 
and efficiency. PSDLO is successfully demonstrated using both sufficient and insuffi-
cient datasets. PSDLO offers a perspective for solving optimization problems and can 
tackle complex science and engineering problems having many features. This approach 
to optimization algorithms holds tremendous potential for application in real-world 
engineering domains.

physics-supervise | deep learning | evolutionary algorithm | accuracy | efficiency

Optimization algorithms that are both efficient and accurate are an area of research of con-
siderable value and interest (1–6). Evolutionary methods, such as genetic algorithms (GA) 
(7), particle swarm optimization (PSO) (8), and ant colony optimization (ACO) (9) are 
commonly used global optimization algorithms. These methods simulate biological evolution 
processes and the associated collective behaviors and can address complex nonlinear problems 
that require global search with multiple objectives (e.g., fitness functions) and constraints. 
During the evolution of the optimization problem that use these methods, the fitness function 
needs to be calculated at every iteration step to evaluate the status of the evolution. This is 
achieved by solving physics-based governing equations through various means, such as finite 
element method (FEM) or first-principles calculations, depending on the nature of the prob-
lem (10–16). These calculations are often time-consuming and result in a relatively slow 
convergence for the entire evolutionary optimization process, even though the results are 
accurate. To address the efficiency of the physics-based solving methods, deep learning–based 
neural networks (NN) have been utilized to replace the physics-based governing equations 
(17–23). NNs have shown to be highly efficient and accurate in predicting specific problems, 
leading to a discussion about whether NN can, in fact, replace physics-based simulations (24). 
However, different from the single-problem prediction using NN methods, evolutionary 
algorithms–based optimization problems combined with NN methods involve many iterative 
steps, and thus many executions of the NN calculations in which certain problem-specific 
factors would be amplified/diminished and inherited (25). Consequently, a significant question 
to ask is: Can a well-trained deep learning-based NN method that has been tested successfully 
for single-problem prediction maintain its accuracy and be harnessed when applied to an 
evolutionary optimization method to achieve simultaneous efficiency and accuracy?

In this paper, we examined three cases based on different physics, namely solid mechan-
ics, acoustics, and solid-state physics, at different length scales and demonstrated that even 
a very well-trained deep learning-based NN method with a large amount of training data 
(squared correlation coefficient R2 = 0.99), and capable of accurately predicting many 
individual problems can still lead to a significant deviation from the optimal result (cali-
brated by the physics-based simulations) when applied for evolutionary optimization 
algorithms. We identified that small inaccuracies from the NN methods that are insignif-
icant for individual predictions would be inherited in the evolutionary methods, and the 
species that favors the fitness functions would be amplified and gradually dominate 
throughout generations of optimization, while at the same time disfavor the species that 
are opposite to the fitness function, thereby resulting in substantial discrepancy. This 
natural tendency is independent of the accuracy of the NN methods but is inevitable to 
the evolutionary algorithms.
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To correct the inaccuracy problem by simply combining evolu-
tionary algorithms and NN methods, a physics-supervised 
deep-learning algorithm for efficient and accurate optimization 
(PSDLO) was developed (Fig. 1A). In this method, physics is not 
only used to provide data to the NN model, but also plays a crucial 
role in supervising the evolutionary process during each iteration. 
Quantitative comparison between the present PSDLO and the 
nonphysics-supervised NN combined with evolutionary methods 
(Fig. 1B) clearly showed that by supervising the NN-based optimi-
zation method, erroneous data or features (i.e., species) can be iden-
tified and properly treated, thereby achieving a balance between 
accuracy and efficiency (Fig. 1C). The present physics-supervised 
deep-learning method for evolutionary optimization is generic and 
can be applied to many problems that involve inheritance, mutation, 
and swarm behavior over the generations.

Results

Problem Statement. Fig. 1A illustrates three scenarios: a) a pure 
evolutionary method (“EM”) in which the fitness function is 
evaluated by solving physics-based governing equations in every 
iteration step; b) an evolutionary method combined with deep-
learning method (“EM+DL”) in which physics-based simulations 
provide data to train the deep-learning method, which is followed 
by the trained deep-learning method that evaluates the fitness 
function in the evolutionary method; and c) the present PSDLO 
method in which physics provides data to train the deep-learning 
method and supervises the evolutionary process based on the 
evaluation results from the deep-learning method. Here, the 
“physics” term is not limited to a specific subject and can be, for 
example, solid mechanics, acoustics, or solid-state physics, ranging 
from meters to nanometers. For demonstration purposes, three 
cases, namely, designing a bistable structure to achieve optimal 
snap-through behavior, optimizing the sound barrier performance, 
and maximizing the piezoelectric coupling coefficient using strain 
engineering are presented (Fig. 1B). The computational methods 
used can be FEM or density functional theory (DFT). The fitness 
functions for the three cases are the ratio between the backward 
and forward snapping forces |F2/F1|, average transmission loss 
TLavg, and the out-of-plane piezoelectric coupling coefficient e33, 
respectively. Details can be found in Materials and Methods section.

Though DL methods include many options [e.g., convolutional 
neural networks (CNN), recurrent neural networks (RNN), and 
generative adversarial networks (GAN)] (26), for the sake of dis-
cussion, only fully connected neural network (NN) method, in 
which the input layer communicates with the physical model by 
extracting its features (e.g., geometrical and physical parameters), 
was used in this study (SI Appendix, Fig. S1). Then, the hidden 
layers capture the complex relationships and interactions between 
the input features, and the output layer, which is also the fitness 
function for the evolutionary algorithm, reflects the results of this 
physical problem.

Similarly, the evolutionary methods also include many algo-
rithms, such as GA, PSO, ACO. Here, we present only GA as an 
example in the main text although another method (i.e., PSO) 
was also used in the study. GA is an optimization method based 
on the principles of natural selection and genetics (27). As shown 
in SI Appendix, Fig. S2, by treating physical features as genes, GA 
involves cross-over and mutation to create individuals with differ-
ent features. By evaluating and then sorting the performance of 
individuals based on the fitness function, the ones with better 
performance (i.e., higher value of fitness function) have higher 
chances to pass their features to their offspring individuals. PSO 
is a population-based heuristic optimization algorithm, where each 

“particle” in the PSO algorithm represents a potential solution, 
and particles move through the search space to find the optimal 
solution. Similarly, particles with higher fitness have a greater 
influence on the overall population behavior. The main steps of 
the PSO algorithm can be found in Materials and Methods 
section.

Deep Learning–Based Evolutionary Method without Physics 
Supervision. To apply an NN-based GA method (i.e., GA+NN), 
we first need to train the NN model based on the data generated 
from the physics-based simulations. SI Appendix, Fig. S4 shows 
the distribution and preparation time of datasets (row 1), and 
the performance and training time of the NNs (row 2) (Materials 
and Methods). The dataset preparation times, ranging from several 
hours to hundreds of days indicate the varying complexity of 
these cases. The coefficient of determination [R2(test)] of the test 
set is used to measure the predictive capability of the NN model, 
which ranges from 0.99 to 0.76, representing NN models with 
different quality. Given that GA with fitness function evaluated 
by solving physics-based governing equations provides the most 
accurate results, we consider “GA” as the accurate and optimal 
benchmark in these cases.

To process GA+NN, the initial population (i.e., parent popu-
lation) is obtained by randomly sampling the feasible parameter 
space of the physical model’s features. The number of populations 
depends on the feature size. Practically, the population size nor-
mally takes 10 to 50 times more than the feature sizes (28). For 
this bistable problem, there are four features (x1, x2, y1, and y2 in 
Fig. 1B) and 50 individuals in each population. For the acoustic 
problem, there are eight geometrical features (Fig. 1B) and thus 
more individuals (i.e., 200) in each generation. Using the NN 
acquired in the first step, the fitness function of the parent pop-
ulation is calculated. Subsequently, we apply the GA’s selection 
[via roulette wheel method (28)], cross-over, and mutation pro-
cesses to obtain the initial offspring population. Their performance 
is then evaluated using the trained NN model for fast prescreen-
ing. The same process repeats until reaching convergence. As 
shown in Fig. 1C, GA+NN (in teal) demonstrates a significant 
advantage in computational efficiency, e.g., about 200 to 1,000 
times faster than GA (in dark blue) depending on different physics 
and feature sizes. For problems with more feature sizes (e.g., the 
acoustic problem), the gain in computational efficiency is more 
obvious, from 2.75 d using the GA method reduced to 3.45 min 
using GA+NN, i.e., close to 1,150 times faster. However, the 
results predicted by the GA+NN method clearly deviate from the 
actual values. The more feature sizes, the larger the deviation. For 
the acoustic problem, the optimal TLavg predicted by GA+NN is 
57.56 dB, which seems very close to the optimal result predicted 
by the GA model (55.70 dB). However, the actual TLavg for the 
configuration given by GA+NN is just 47.89 dB, more than 
16.8% deviation from its predicted value. Clearly, GA+NN is 
efficient by sacrificing accuracy.

Fig. 2 analyzes the underlying mechanism of why GA+NN leads 
to deviation. Fig. 2A depicts the change in the fitness function of 
the bistable problem for all individuals using the GA+NN during 
the iterative process. The y axis shows their fitness predicted by 
the NN model, while the colors of these dots show the values of 
these fitness functions obtained by FEM, as the benchmark, with 
the darker color for larger value and the lighter color for smaller 
value. It is clear now that due to the inevitable deviation of the 
NN-predicted fitness from the ones obtained from physics-based 
simulations, many individuals display color artifacts, e.g., dots 
taking a higher position in y axis do not show darker color as they 
are supposed to do. There are two types of artifacts or deviations, D
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A

B

C

Fig. 1. Overview of three methods for optimization with and without deep-learning methods involved. (A) Comparative illustration of three optimization 
approaches: the pure evolutionary method (“EM”), the evolutionary method combined with a deep-learning model (“EM+DL”), and the present physics-supervised 
deep learning–based optimization (PSDLO) method, highlighting their differences in fitness function evaluation and the role of physics. (B) Illustration of three 
case studies: bistable structure design for optimal snap-through behavior, sound barrier performance optimization, and piezoelectric coupling coefficient 
maximization via strain engineering. The fitness functions for these three cases are the snapping force ratio |F2/F1|, average transmission loss (TLavg), and out-
of-plane piezoelectric coupling coefficient (e33), respectively. (C) Comparisons of convergence time and accuracy among the GA, the neural-network (NN)-based 
GA method (GA + NN), and the present PSDLO algorithms.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 W
E

ST
L

A
K

E
 U

N
IV

E
R

SI
T

Y
 o

n 
A

ug
us

t 2
8,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
16

0.
20

.5
2.

14
8.



4 of 10   https://doi.org/10.1073/pnas.2309062120� pnas.org

with certain individuals having NN-predicted fitness larger than 
the fitness from FEM, known as “overestimated” individuals 
(i.e., OE), and others having NN-predicted fitness smaller than 
that from FEM, characterized as “underestimated” individuals 

(i.e., UE). Fig. 2B shows how the genes (i.e., features) of these 
individuals (OE and UE) pass through generations, in which four 
types can be categorized, namely, OE-OE individuals (whose genes 
come from both OE parents), UE-UE individuals (whose parents 
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Fig. 2. Detailed analysis of the GA+NN algorithm for 50 generations using the bistable problem. (A) Fitness functions predicted by the NN (left vertical axis) and 
those supervised by physics (right vertical axis color band) for each iteration. (B) Genetic inheritance of individuals with overestimated (OE) and underestimated 
(UE) genes, forming offspring with OE-OE, OE-UE, UE-UE, and mutated genes; pie charts show the proportions of these combinations in the 5th, 25th, and 45th 
generations. The amplification/diminishing effects of (C) OE, and (D) UE cases in the population, based on Eqs. 1 and 2, plotted against the number of generations. 
(E) The R2 value for the population plotted against the number of generations.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 W
E

ST
L

A
K

E
 U

N
IV

E
R

SI
T

Y
 o

n 
A

ug
us

t 2
8,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
16

0.
20

.5
2.

14
8.



PNAS  2023  Vol. 120  No. 35  e2309062120� https://doi.org/10.1073/pnas.2309062120   5 of 10

are UEs), OE-UE individuals (mixed OE and UE parents), and 
mutations. Two apparent trends can be observed in Fig. 2B.  
1) OE-OE populations increase significantly through generations. 
Specifically, at the 5th generation, there are only 12% OE-OE 
individuals, and this number increases to 44% at the 25th 
generation and dominates with 60% at the 45th generation. 2) 
UE-UE populations decrease significantly through evolution, 
from 52% at the 5th generation, to 28% at the 25th generation, 
and to 12% at the 45th generation. The other two populations 
(i.e., OE-UE and mutations) fluctuate and remain at a fairly stable 
level through generations. The obvious increasing trend of the 
OE genes and decreasing trend of the UE genes are the natural 
result of GA, namely, the fitness function prefers the genes that 
produce larger fitness (i.e., OE’s) and disfavor the conservative 
ones (i.e., UE’s), which indeed leads to an overall bias and over-
estimation of the fitness. As shown in Fig. 1C, the GA+NN meth-
od’s prediction overestimates the fitness, e.g., 0.83 (prediction by 
NN) vs. 0.76 (actual by FEM) for the bistable problem, 57.56 
dB (prediction) vs. 47.89 dB (actual) for the acoustic problem, 
and 17.44 C/m2 (prediction) vs. 17.06 C/m2 (actual) for the 
piezoelectric coupling coefficient problem. This trend is 
physics-independent.

Since the value of a fitness function of an individual relates 
linearly to the survival probability of its features to the next gen-
eration (i.e., roulette wheel method), OE individuals are amplified, 
and UE ones are suppressed. To quantify the amplification/dimin-
ishing effects of OE and UE species, the following two quantities 
are defined,

	 [1]

where “OE” is the counts of OE individuals for a given generation, 
“total” is the total individuals in one generation, and fNN and fp are 
fitness functions predicted by the NN model and FEM, respec-
tively. The denominators of �OE and �UE are the probabilities 
of these OE and UE individuals passing to the next generation 
based on FEM (which is accurate), and the numerators are the 
inherit probability of passing based on the NN-model. While 
�OE and �UE describe the amplification/diminishing effects for 
each generation, respectively, it is more important to note that 
the evolutionary algorithm is iterative, with effects compounding 
over generations. Therefore, we further introduce a cumulative 
multiplication expression to capture this iterative influence:

	 [2]

Here, n and j denote the generation numbers.
Fig. 2 C and D show that the �OE increases from 1.00 to 1.02 

with iteration, while the �UE decreases from 1.00 to 0.97. At first 
glance, it seems that the values of �OE and �UE do not deviate 
significantly from the ideal value 1. In fact, they cannot deviate 
too much from 1 because of the quality of the NN as characterized 
by R2 (=0.99). Yet, it should be noted that this is an evolutionary 
process, in which small tendencies would cause huge effects after 
generations. The cumulative effects do show that the multiplica-
tion factors, the MOE significantly increases from 1.00 to 1.88, 
and the MUE significantly drops from 1.00 to 0.44. This demon-
strates that the survival rate of OE individuals in the population 

is gradually and notably increased, while the survival rate of UE 
individuals is notably decreased.

It should be noted as well that the NN used in this case study 
performs exceptionally well on the test set, with an R2 = 0.99 
(SI Appendix, Fig. S4) and continues performing well through 
generations (Fig. 2E). The eventual deviation from the actual fit-
ness is a natural and inevitable consequence because of the prin-
ciples of evolutionary algorithms: Individuals showing larger 
fitness (though maybe incorrect) have a higher survival rate in the 
next generation, and thus exert the greatest influence on the off-
spring. Using an analogy from sociology, the entire population 
tends to “ingratiate” the fitness function and evolve in a direction 
favored by it, which is the underlying cause of the inaccuracy of 
GA+NN optimization. Neither GA nor NN is considered at fault, 
but this simple combination leads to deviation.

Note that only GA+NN was discussed in this section, we also 
studied PSO+NN for the bistable problem. Similar to the GA+NN 
method, the PSO+NN method also overestimated the fitness 
value. For instance, the predicted value was 0.83, while the actual 
value was 0.76 for the bistable problem, as shown in SI Appendix, 
Figs. S5 and S6. The same conclusion holds.

Deep Learning–Based Evolutionary Method with Physics 
Supervision – PSDLO. Knowing the intrinsic problem of GA+NN, 
the core rationale of PSDLO is to establish a balance between 
accuracy and efficiency in a deep-learning algorithm powered by 
the evolutionary method. The detailed process for PSDLO is given 
in Fig. 3. To make this process more focused, we just present GA 
as a representative evolutionary algorithm with other methods 
provided in SI Appendix and employ NN for the DL method. The 
first step is generating initial population, which forms a parent 
population by sorting the NN-calculated fitness function, and the 
first offspring is the same as that in the GA+NN method. Now, to 
avoid the intrinsic problem of GA+NN, physics-based supervision 
is employed here as a critical step to reevaluate the top performers of 
this population and then re-sort them, i.e., physics-supervised deep-
learning optimization. The number of top performers is an empirical, 
which balances accuracy and efficiency of the algorithm. For more 
information on selecting the number of supervised individuals 
and meeting a balance between computational complexity and 
optimization performance, one can refer to SI Appendix, section 3. 
The same process repeats until it reaches convergence. SI Appendix, 
Fig. S5 presents the process of PSDLO using PSO as the evolutionary 
method. During the optimization process, PSDLO can be combined 
with PSO to guide the movement of particles in the search space. 
Specifically, PSDLO can improve the search capability of PSO by 
supervising the objective function (physical quantities predicted 
by the NN). Though the specific steps are different, the essential 
rationale is the same, i.e., to supervise the fitness function calculated 
from the NN model.

Now let us examine the performance of PSDLO method by stud-
ying the three problems in Fig. 1B. Here, only the first top five 
performers in each generation are supervised by physics-based sim-
ulations. Take the piezoelectric problem, for example, to explain the 
PSDLO process. For this problem, there are five features, and each 
generation has 200 individuals. At the 5th generation, the top five 
(i.e., top 2.5% individuals) predicted e33 (C/m2) by the NN model 
are 17.24, 17.23, 17.20, 17.20, and 17.20 with each subjected to 
different strain fields characterized by five parameters (e.g., five fea-
tures), named as NN1 to NN5 for the sake of discussion. We then 
used first-principal calculation to reevaluate these five cases (i.e., NN1 
to NN5); the corresponding e33 (C/m2) are given by 17.17, 17.09, 
17.16, 17.03, 17.01. It can be seen that the values are obviously 
different from that predicted by the NN model. More importantly, 

�OE =

∑OE
i=1 fNN∑total
i=1 fNN
∑OE

i=1 fp∑total
i=1 fp

, �UE =

∑UE
i=1 fNN∑total
i=1 fNN
∑UE

i=1 fp∑total
i=1 fp

,

MOE (n) =

n∏
j=0

�OE
(
j
)
, MUE (n) =

n∏
j=0

�UE (J ),
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the orders are different. Specifically, NN3 has a larger e33 than NN2. 
Now, we re-sort them as 17.17, 17.16, 17.09, 17.03, 17.01 (C/m2) 
to make sure the accurate fitness functions are adopted to generate 
the next generation. This process repeats until reaching a conver-
gence. As shown in Fig. 1C, the PSDLO can produce results as 
accurate as those from the GA method, but is more computationally 
efficient, e.g., 10 to 40 times faster than the GA method. We also 
studied the bistable problem using PSDLO using the top four indi-
viduals (SI Appendix, Fig. S7).

We further used the bistable problem to understand why PSDLO 
can reach a balance of accuracy and efficiency (Fig. 4). As shown in 
Fig. 4A, the individuals with top fitness exhibit even color changes 
and no color noise, meaning that after physics-based supervision, the 
color artifacts (in GA+NN) have been resorted, which ensures that 
the features having higher probability to be passed to the next gen-
eration do have higher fitness. With the physics-based supervision, 

as one can observe in Fig. 4B, the evolutionary processes do not show 
bias preference, i.e., although OE-OE, UE-UE, and OE-UE off-
spring fluctuate, they do not show clear lopsided trends. Specifically, 
the OE-OE populations are 32%, 20%, and 24% at 5th, 25th, and 
45th generations, respectively; the UE-UE populations are 52%, 
64%, and 36% at 5th, 25th, and 45th generations, respectively; the 
OE-UE populations are 12%, 12%, and 16% at 5th, 25th, and 45th 
generations, respectively, which is remarkably different from the case 
for GA+NN (Fig. 2B).

Fig. 4 C and D demonstrates that �OE   and �UE   oscillate around 
1.01 and 1.00, respectively, throughout the iterations, without 
any notable increase or decrease. The cumulative effects of these 
iterations, represented by MOE and MUE, show a slight increase to 
1.31 and a decrease to 0.83, respectively. These results indicate 
that unlike the GA+NN case, the survival probabilities of the OE 
and UE populations in the PSDLO method do not undergo sig-
nificant amplification or reduction. Due to the supervision of 
physics, the population does not significantly deviate from the 
correct evolutionary direction and can ensure accurate estimation 
of the top few individuals with high fitness.

Additionally, we implemented the PSDLO using the PSO 
approach for the bistable case. The result obtained from the 
PSDLO algorithm (SI Appendix, Fig. S6) is identical to the out-
come derived from the purely physics based PSO algorithm. It 
further corroborates our conclusion.

PSDLO under Inadequate Data. In previous cases, the optimal 
solution is within the dataset that trains the NN model, which 
may not be the case for practical physical problems. Thus, the 
accuracy of the NN model would be significantly hampered 
outside the training dataset, and in turn the GA+NN method 
would perform even worse. For PSDLO, can physics supervision 
be able to correct inaccurate NN model? In this comparison, the 
results obtained from GA using the fitness evaluated by solving 
physics-based governing equations are still the benchmark.

Table 1 compares the performance of GA, GA+NN, and 
PSDLO algorithms studying three problems (i.e., bistable prob-
lem, sound barrier, and piezoelectric coefficient) with inadequate 
dataset to train the NN model. As expected, the deviation from 
the GA and GA+NN is more severe as compared to Fig. 1C where 
the dataset contains the optimal results. Specifically, for the acous-
tic problem having eight features, GA+NN predicted TLavg as 
46.97 dB as the optimal results, which has 15.7% error compared 
with 55.70 dB from GA; even more severe, the optimal configu-
ration predicted by GA+NN actually can only provide 38.52 dB 
average transmission loss, which has 30.8% deviation from the 
optimal configuration. As a comparison, PSDLO algorithm still 
maintains minimal error (less than 1.6% even for the acoustic 
problem with 8 features), while improving computation speed by 
10 to 40 times. This case clearly shows that the supervisory role 
of physics in PSDLO ensures that the entire population evolves 
in the correct direction even when NN learning is insufficient.

We also studied the dependence of the predication capability 
of PSDLO on the size of training data. Using the solid mechanics 
case as an example, we have tested the predictive performance of 
PSDLO with training data ranging from 100% to 10% of the raw 
data, as well as its comparison with GA+NN (SI Appendix, 
Tables S4 and S5). We found that as the training data decreased, 
the predictive performance of NN gradually worsened, with errors 
eventually reaching as high as 10.09%. However, the predictive 
performance of PSDLO remained consistently good, even for a 
training set comprising only 10% of the raw data, maintaining a 
relatively small error of 1.52% (SI Appendix, Fig. S10).

Fig.  3. Overall workflow of iterative evolution of PSDLO method. Icons 
represent different components: the function graph symbolizes the NN, the 
gene icon represents the GA, and the atom icon denotes physics.
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Fig. 4. Detailed analysis of the PSDLO method for 50 generations using the bistable problem. (A) Fitness functions predicted by the NN (left vertical axis) and 
those supervised by physics (right vertical axis color band) for each iteration. (B) Genetic inheritance of individuals with overestimated (OE) and underestimated 
(UE) genes, forming offspring with OE-OE, OE-UE, UE-UE, and mutated genes; pie charts show the proportions of these combinations in the 5th, 25th, and 45th 
generations. The amplification/diminishing effects of (C) OE, and (D) UE cases in the population, based on Eqs. 1 and 2, plotted against the number of generations. 
(E) The R2 value for the population plotted against the number of generations.
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Discussion

We successfully developed and validated a PSDLO algorithm 
that achieves a balance between efficiency and accuracy in the 
evolutionary optimization process. We concluded that despite 
the high accuracy of deep-learning NN in single-problem pre-
dictions, their accuracy would be seriously compromised when 
applied in evolutionary optimization algorithms due to the 
intrinsic and inevitable nature of the evolutionary method, i.e., 
overestimated individuals seize more favorable positions through 
generations and eventually incorrectly dominate the evolution-
ary process. To address this issue, we designed a physics-
supervised approach, where physics supervises the evolutionary 
process at each iteration, thereby achieving a balance between 
accuracy and efficiency. Three cases of different physics using 
sufficient or insufficient dataset were demonstrated. A concrete 
conclusion was achieved, i.e., even a very well-trained deep-
learning model cannot replace physics-based simulations and 

proper physics-based supervision is indispensable to reach accu-
rate results.

The present PSDLO method can be extended to optimization 
problems involving multiscale features, such as the macroscopic 
instability of beams with microscopic defects, by replacing the cur-
rent NN methods with more suitable models, such as the PINN 
model (29) that is capable of predicting macroscopic material prop-
erties from atomistic features. Furthermore, the PSDLO method 
can also be extended to multi-objective optimization problems. One 
can simply conduct individual prediction by straightforwardly using 
the current PSDLO methods for each objective. Alternatively, 
simultaneous predictions can be achieved by combining multi-task 
NNs with the output layer predicting multiple physical objectives 
and multi-objective optimization methods, such as NSGA-II (30), 
SPEA2 (31), MOEA/D (32), or NGA (33).

It is noted that the problems considered in this study involve at 
most eight features. For more complex physical problems with addi-
tional features, the evolutionary process would require a larger 

Table 1. Comparison among GA, GA+NN, and PSDLO algorithms studying three problems with inadequate data

System Solid mechanics Acoustics Solid-state physics

Training set

Cutoff 0.58 41.83 dB 17.02 C/m2

Amount 9,680 38,046 3,098

NN

R2 (test) 0.98 0.98 0.73
Time 11.58 min 24.60 min 13.80 min

Iteration

Algorithm GA GA+NN PSDLO GA GA+NN PSDLO GA GA+NN PSDLO

Prediction 0.80 0.75 0.79 55.70 dB 46.97 dB 54.81 dB Very Long 17.14 C/m2 17.25 C/m2

Actual 0.77 38.52 dB 16.92 C/m2

Time 3.72 h 52.85 s 21.77 min 2.87 d 3.70 min 2.12 h 43.20 s 51.72 h
Cutoff value represents a threshold used to remove data points greater than this value from the dataset. This threshold is determined by taking the average of the dataset’s mean and 
maximum values. The estimation for time cost is based on one CPU Core (Intel Core i9-12900 KS) and one GPU (NVIDIA GeForce RTX 3080 Ti).
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population, and the PSDLO algorithm would demonstrate even 
more significant advantages than those problems. We believe that 
PSDLO algorithm provides a perspective for addressing multi-scale 
and multiphysics field issues and will have significant impact on the 
study of optimization problems in the fields of science and 
engineering.

Materials and Methods

FEM. We employed the finite element analysis software COMSOL Multiphysics 5.6 
for both the solid mechanics problem (i.e., bistable problem) and the acoustic prob-
lem. By incorporating the solid mechanics module and the steady-state solver, we 
successfully established a simulation model and calculated the force-displacement 
curve. During the modeling process, we discretized the structural domain using tri-
angular elements, ultimately generating a model consisting of 222 mesh elements. 
To evaluate the performance characteristics of the bistable structure, we extracted 
the snap-through force as a key indicator from the force-displacement curve. This 
approach provided an effective means to analyze the bistable structure, contributing 
to the understanding of its performance behavior.

By utilizing the pressure acoustics module, we calculated the transmission loss 
(34). In the model, we applied Floquet periodic boundary conditions in the direction 
perpendicular to the incident sound wave. The structural domain was discretized 
using triangular mesh elements, with a total mesh count of 27,092. To calculate the 
transmission loss of the finite element lattice array, we set a background pressure 
field of 1 Pa outside the acoustic metamaterials. Additionally, we created a perfectly 
matched layer to simulate an infinitely open region (SI Appendix, Fig. S8).

DFT. In this study, we employed the first-principles calculation software VASP 
(Vienna Ab initio Simulation Package) to compute the piezoelectric coefficients. 
VASP is a high-performance first-principles calculation software based on DFT 
capable of accurately simulating the electronic structure and crystal structure of 
materials (35). Initially, we used the standard library in VASP to perform struc-
tural optimization, obtaining the optimal lattice parameters for PbZr0.5Ti0.5O3 
(SI Appendix, Fig. S9). Subsequently, within the optimized lattice, we simulated 
the strain field and computed the corresponding piezoelectric coefficients. To 
ensure the accuracy and reliability of the calculation results, the exchange corre-
lation functional adopted the meta generalized gradient approximation (meta-
GGA) of the strongly constrained and appropriately normed (SCAN) semilocal 
density functional (36). The calculations were converged with an energy tolerance 
of 10−5 eV, and a force tolerance of 0.01 eV/Å under a cutoff energy of 500 eV. All 
calculations were carried out with automatic k-mesh generators with l = 0.03, 
where l is the k-points resolved value between adjacent k-points in reciprocal 
cell, and the unit is 2π/Å. The number N of k-points is further determined from

	
[3]

where |||b⃗
||| is the reciprocal lattice vector in the specific direction.

NN. We designed our NN architecture based on the number of features in the 
physical problems. The NN consists of multiple hidden layers, which serves to 
capture the complex relationships and interactions among the input features. 
Each hidden layer comprises a varying number of neurons, depending on the 
problem’s complexity and desired level of abstraction. For problems with four 
or fewer features, we chose a network with five hidden layers, with the number 
of neurons in each layer increasing in powers of 2, ranging from 24 to 28. For 
physical problems with more than four features, we utilized a network with 
six hidden layers, with the number of neurons in each layer also increasing in 
powers of 2, ranging from 24 to 29.

To introduce nonlinearity, we chose the ReLU (Rectified Linear Unit) activation 
function for the hidden layers. For the output layer, since the results of the physical 
problems in this study are nonnegative, we employed the ReLU activation function 
to obtain the predicted outcomes. We used the TensorFlow (v2.11.0) framework to 
implement our NN model. To evaluate the discrepancy between the model’s pre-
dictions and the actual values, we used the mean squared error (MSE) as the loss 
function. In terms of the optimizer, we selected the Adam optimizer with adaptive 

learning rate adjustment capabilities. We divided the collected dataset into training 
and test sets, with the test set comprising 10% of the total dataset. We preprocessed 
the data, including standardization and normalization, to improve the model’s 
training performance and generalization capabilities. During the training process, 
we employed batch gradient descent to update the weights and biases at each iter-
ation. We trained our model for 10,000 epochs to ensure adequate learning and 
convergence of the network weights. To prevent overfitting, we implemented early 
stopping, where training would terminate prematurely if the validation loss did not 
show significant improvement over consecutive iterations. After training, we evalu-
ated the model using the test set. The primary evaluation metric was the coefficient 
of determination (R2), expressed as:

	 [4]

where SSres is the sum of squared residuals (the difference between the actual and 
predicted values ŷi , and SStot is the total sum of squares (the difference between 
the actual values and the mean of the actual values y.

GA. The GA is an optimization method based on the principles of natural selec-
tion and genetics (27). As shown in SI Appendix, Fig. S2, we first initialized a 
population according to the characteristics of the physical problem, consisting 
of Y individuals. Each individual possesses X features. The more features the 
physical problem has, the larger the population. For physical models with 
fewer than five features, we set the population size to 50 individuals; for 
physical models with more than five features, we set the population size to 
200 individuals. Next, we evaluate the performance of each individual based 
on their fitness function. Based on fitness values, we sort and perform rou-
lette wheel selection operations on the population, choosing individuals with 
higher fitness to proceed to the next generation. After the selection process, 
we apply cross-over and mutation operations to generate new individuals. The 
cross-over operation generates new offspring individuals by combining parts 
of the features of two parent individuals. The mutation operation introduces 
new variations by randomly changing some features of an individual. To avoid 
premature convergence and being trapped in local optima, we set the cross-
over and mutation probabilities to 90% and 20%, respectively.

Particle Swamp Optimization (PSO). We also investigate the PSDLO algorithm 
based on PSO to explore the universality of the PSDLO algorithm in different 
evolutionary algorithms. The PSO algorithm is inspired by the regularity of bird 
flocking behavior and is a simplified model established by utilizing swarm intelli-
gence. The PSO algorithm leverages the sharing of information among individu-
als within the swarm, enabling the entire swarm’s motion in the problem-solving 
space to undergo an evolutionary process from disorder to order, thus obtaining 
the optimal solution (8). From time t to t + 1, the change in the position of each 
particle can be described as follows:

	
[5]

Here, X represents the position, v represents the velocity, the subscript i denotes 
the ith particle within the swarm, and the subscript j represents the jth feature 
of the current particle, as illustrated in SI Appendix, Fig. S5. At time t + 1, the 
velocity of each particle consists of three components: the inertial direction of 
the particle’s velocity at time t, the direction of the current particle’s historical best 
position (Xp), and the direction of the historical best position (Xg) of all particles. 
The particle velocity at time t + 1 can be expressed as:

	 [6]

Here, r1(t) and r1(t) represent random numbers within the range of 0 to 1, which 
vary with time t. c0, c1, and c2 denote the learning factors. Based on empirical 
studies, the values for c0, c1, and c2 are set to 0.8, 2, and 2, respectively.

N = max

⎛
⎜⎜⎝
1,

���b⃗
���
l

⎞
⎟⎟⎠
,

R2 = 1 −
SSres
SStot

= 1 −

∑ �
ŷ i − yi

�
∑ �

yi − y
� ,

Xij (t + 1 ) = Xij(t) + vij (t + 1 ),

vij (t+1 ) = c0vij(t) + c1r1(t)
[
Xpij(t) − Xij(t)

]

+ c2r2(t)
[
Xgij(t) − Xij(t)

]
,
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Data, Materials, and Software Availability. All the analysis and result 
data are included in the article and/or SI Appendix. The code for the PSDLO 
algorithm based on GA and PSO algorithms, as well as the training sets, have 
been deposited in the GitHub repository (https://github.com/SkyRiverMoon/
PSDLO.git) (37).
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