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A B S T R A C T   

Data-driven equation identification methods enable automated discovery of systems governing 
equations in differential, integral, or variational forms, provided with state data for autonomous 
systems while state and excitation data for forced systems. These methods for equation identi
fication can undoubtedly outperform those for algebraic relation identification, however, they 
essentially belong to the paradigm of data fitting, viz., compulsorily establishing mathematical 
relations within data. In this work, we tackle a different problem of extracting hidden conser
vative equations only from nonconservative state data collected from randomly/deterministically 
excited, dissipative dynamical systems; that is, we attempt to distill intrinsic structures without 
any excitation information. A 3E framework is implemented, namely, embedding Euler- 
Lagrangian equations in systems, eliminating the influence of nonconservative factors by 
orthogonalization, while extracting Lagrangians (or Lagrangian densities) for discrete (or 
continuous) systems. Three illustrative examples, including the Duffing oscillator, the cart- 
pendulum system, and the Euler-Bernoulli beam, are investigated to show how this method 
can achieve simplicity in complexity.   

1. Introduction 

Recent achievements in data sciences have promoted the automation progress of scientific discovery (Weinan et al., 2021). For 
example, some data-driven identification methods can now automatically discover governing equations in differential, integral, or 
variational forms directly from simulation or experimental data (Brunton et al., 2015; Huang et al., 2020; Kaiser et al., 2018; Reinbold 
et al., 2020; Rudy et al., 2017; Schaeffer and McCalla, 2017; Schmidt and Lipson, 2009). Conventional data fitting methods obtain 
algebraic relations within data. In contrast, equation identification methods discover dynamic relations between state data and their 
various-order derivatives. This conversion process in system identification, from algebraic relations to dynamic relations, represents an 
important paradigm shift in scientific discovery (Newton et al., 1846). 

Equation identification can be classified into explicit and implicit methods. Both are parallelly developed, always mutually pro
moted, and mutually inspired. The seminal work by Schmidt and Lipson (2009) and Brunton et al. (2015) offered an important 
breakthrough in the explicit branch; similar advances were made in the implicit branch by neural ordinary differential equations 
(Chen et al., 2018). Schmidt and Lipson (2009) leveraged genetic programming to discover symbolic relations within data. This 
method, however, was constrained by computational inefficiency, the curse of dimensionality, and a proneness to overfitting. 
Following closely, Brunton et al. (2015) introduced the assumption of parsimony, and successfully discovered differential equations 
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using sparsity promoting optimization. This method, named SINDy, could produce interpretable models and at the same time scaled 
well to high-dimensional problems. However, the numerical differentiations in SINDy made it sensitive to data noise, especially when 
high-order derivatives were involved. To resolve this sensitivity, new methods in integral identification (Schaeffer and McCalla, 2017), 
weak-form identification (Reinbold et al., 2020), and variational identification (Huang et al., 2020) were developed. The first two of 
these methods was within the mathematical framework and could transform differential equations to integral/weak-form equations. 
The last method, i.e., variational identification, on the other hand, was within the framework of theory-guided data science, that is, it 
started from physical variational equations, which are considered the most compact description of general physical systems, as 
opposed to mathematical differential equations. A range of other methods, including statistical techniques such as Bayesian inference 
(Hirsh et al., 2022; Zhang and Lin, 2018) and bootstrap aggregating (Fasel et al., 2021) have also been used to alleviate sensitivity to 
data noise. 

Implicit identification flourishes along the thread of neural ordinary differential equations, especially after the pioneering ex
tensions made by Greydanus et al. (2019) and Cranmer et al. (2020). Hamiltonian neural networks (HNN) (Greydanus et al., 2019) and 
Lagrangian neural networks (LNN) (Cranmer et al., 2020) impose physical rigid constraints to identify differential equations of 
conservative systems. This is accomplished by implicitly constructing scalar functions of system states, i.e., Hamiltonian and 
Lagrangian, from state data. To determine generalized momenta of Hamiltonian systems (this is an essential drawback of HNN, 
compared to LNN), Bertalan et al. (2019) and Choudhary et al. (2021) adopted dual neural networks, in which one achieves gener
alized momenta while the other approximates the Hamiltonian function, with the two networks being trained simultaneously. Finzi 
et al. (2020), on the other hand, abandoned generalized coordinates and started directly from physical coordinates, while introducing 
kinematics constraints into differential equations by Lagrangian multipliers. In the aspect of nonconservative system identification, 
Zhong et al. (2020, Zhong et al., 2019) embedded the port-Hamiltonian formulism into neural networks, while inferring mass matrix, 
potential energy, dissipation matrix, and input matrix simultaneously from the given state data and pre-specified control data. 

Data-driven equation identification has significantly advanced and transformed the modeling, simulation, and understanding of 
complex systems in scientific and industrial communities (Chen et al., 2021). It has led to extensive applications, including the 
tremendous potential currently in fields that lack reliable mathematical models, such as atmospheric science (Chattopadhyay et al., 
2020), recognition science (Khaled et al., 2022), and epidemiology (Horrocks and Bauch, 2020), to name a few. However, despite their 
powerful efficacy, data-driven identification methods must be fed state data and excitation data (if there is any excitation). Thus, these 
methods, essentially, still belong to the paradigm of data fitting, i.e., compulsorily establishing mathematical relations within data 
provided. In other words, they operate within state data themselves for autonomous systems or within state and excitation data for 
nonconservative systems. 

Here, we propose a bold question: in the absence of excitation data, is it possible to extract the associated conservative equations of 
randomly/deterministically excited, dissipative dynamical systems only from nonconservative state data? The fundamental concept, 
as shown in Fig. 1, is about seeing Essence through Surface, or eliminating the superficial fiction (excitations and dissipative com
ponents) while retaining the hidden truth (conservative equations). Note that this proposition is of important scientific and practical 
value. On the one hand, conservative information (Lagrangian and Hamiltonian, for instance) plays the pivotal role in physical science; 
we could even say that one of the primary objectives of physical science is just to find intrinsically conservative structures. On the other 
hand, for systems with complex or unknown excitations, it is always rather difficult or almost impossible to capture complete exci
tation data, such as the spatially distributed time-varying random wind load on architectural structures or unknown stimulations on 
micro-biological tissues. The two aspects mentioned above, thus, constitute the motivation for this work. 

As preparation for this work was underway, two papers (Desai et al., 2021; Liu et al., 2021) independently explored similar subjects 
from the implicit point of view. Liu et al. (2021) proposed dual networks (i.e., a Lagrangian neural network plus a universal 
approximator network) to detect new physics from trajectories induced by unknown excitations. Similarly, Desai et al. (2021) adopted 
triple dual networks to simultaneously recover the underlying Hamiltonian structure as well as time-dependent forces and dissipative 
coefficients solely from state data. While these two works offer significant contributions, they impose rigorous limitations on exci
tations and dissipative components, or do not demonstrate applicability for cases with random excitations. Compared to these works, 
herein we aim to extract only the conservative equations, as opposed to both conservative and nonconservative components. We 
extract conservative equations from the explicit viewpoint rather than the implicit, with an understanding that symbolic mathematical 
representation is the gold standard. The state data in our approach may be captured from dynamical systems with complex excitations 

Fig. 1. Illustration of what we do not know (external excitations and nonconservative system), what we know (nonconservative state data), and 
what we want to know (conservative structure), presenting the unknown information and mission of this work. 
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(combination of random and deterministic excitations for instance) as well as complex dissipative components (nonlinear or even 
non-smooth damping). 

The remainder of this work is arranged as follows: Section 2 describes the fundamental idea and the detailed methodology. In 
Section 3, three typical and illustrative examples, i.e., the Duffing oscillator, the cart-pendulum system, and the Euler-Bernoulli beam 
are investigated to demonstrate the effectiveness and accuracy of the proposed identification method, as well as its range of application 
with respect to nonconservative components. Section 4 presents conclusions and directions for future ideas. 

2. Methodology 

This work is developed within the paradigm of theory-guided data science. The fundamental idea can be condensed in a concise 
statement: 

Embed Euler-Lagrangian equations in randomly/deterministically excited, dissipative systems; eliminate the influence of nonconser
vative factors by orthogonalization operations and simultaneously extract conservative structures by assumptions and regressions. 

The embedded structure serves as a “filter”: nonconservative state data pass through the filter, and then only the effective infor
mation is retained. The understanding is that Euler-Lagrangian equations are the most fundamental conservative structures hidden in 
general physical systems. Thus, the embedment stated here is quite general, and almost does not limit its range of application. An 
orthogonalization operation lies at the heart of this method, while a regression operation gives the explicit description of the con
servative structure, which is Lagrangian. As shown in Fig. 2, we embrace three words: embedding, eliminating, and extracting (3E) to 
demonstrate the details of this approach. 

We start from state data collected from a general dynamical system. The dynamical system may be dissipative and subjected to 
arbitrary excitations. First, embed Euler-Lagrangian equations by which the exact relation between states and excitations is described 
as 

ELs[L∗(q, q̇)] = Qs(t), s = 1,…, d (1)  

in which q = {q1,…, qd} and q̇ = {q̇1,…, q̇d} denote generalized coordinates and generalized velocities, respectively; L∗(q, q̇) is the 
true Lagrangian of the system; ELs[·] =

d
dt

∂[·]
∂q̇s

−
∂[·]
∂qs 

is the Euler-Lagrangian operator with respect to the generalized coordinate qs; Qs(t) is 
the nonconservative generalized force associated with qs, and may be induced by excitations and dissipative components. Our goal is to 
identify the explicit expression of the true Lagrangian, solely from state data (q, q̇) and without the knowledge of Qs(t). 

The stumbling block here though is that the information of nonconservative forces Qs(t) is unavailable. Different from what Liu 
et al. (2021) and Desai et al. (2021) adopted by penalizing the nonconservative components Qs(t) in loss functions, and simultaneously 
learning the neural network representation of conservative and nonconservative components, here, we try a new approach: we 
eliminate nonconservative components using an orthogonalization operation. Suppose there exists a nontrivial function (not identically 
equal to zero) K∗

s (t) by the name of kernel function that is orthogonal to the nonconservative component Qs(t) in given time intervals 

[tk0, tk1] (k = 1,…,M), i.e., 
∫ tk

1
tk0

Qs(t)K∗
s (t)dt = 0. We multiply both sides of Eq. (1) by K∗

s (t) and integrate over the given time intervals, 

Fig. 2. The fundamental idea of the proposed method, briefly describing by three verbs, namely, embedding, eliminating, and extracting (3E). 
Embedding Euler-Lagrangian equations, eliminating the influences of nonconservative factors, and extracting Lagrangian. 
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∫ tk1

tk0

ELs[L∗(q, q̇)]K∗
s (t)dt =

∫ tk1

tk0

Qs(t)K∗
s (t)dt = 0 (2) 

Now the influence of nonconservative components is tactfully removed by the operation of weighted integration. 
Hence, the true Lagrangian L∗(q, q̇) and the kernel function K∗

s (t) can be extracted by solving the following optimization problem: 

L∗(q, q̇),K∗
s (t) = argmin

L,Ks

∑M

k=1

(∫ tk1

tk0

ELs[L(q, q̇)]Ks(t)dt

)2

(3) 

Here L(q, q̇) is the approximated Lagrangian, and Ks(t) the corresponding kernel function. Based on the outlined 3E (embedding, 
eliminating, extracting) framework, we propose a data-driven method to fulfill our goal. The detailed operating steps of this method 
are described next. 

Step 1: Collect discrete state data. State data are collected at discrete time instants within a finite time interval [0, ts], either from 
numerical simulations or experimental measurements. 

Step 2: Construct Lagrangian and kernel functions. A Lagrangian is constructed using a linear combination of pre-specified library of 
functions, 

L(q, q̇;α) = − f0(q, q̇) +
∑m

i=1
αifi(q, q̇) (4)  

in which, αi, i = 1,…,m are to-be-determined coefficients, and fi(q, q̇) are given basis functions of system states and represent 
candidate terms for the true Lagrangian. It is acceptable that the term f0(q, q̇) exists in the true Lagrangian and its coefficient can be 
assumed by any number (e.g., − 1 in here); such a term could be the square of generalized velocities, reflecting kinetic energy of the 
system. Simultaneously, we construct the kernel function for each nonconservative generalized force, 

Ks(t; βs
) =

∑n

j=1
βs

j g
s
j (q, q̇, t) (5)  

in which, βs
j , j = 1,…, n are undetermined coefficients, and gs

j (q, q̇, t) are given basis functions of system states and time. The selection 
of basis functions should be guided by domain knowledge. For instance, for systems with random excitations, gs

j (q, q̇, t) can be 
constituted as polynomials of states due to the known orthogonality between random processes and their derivative processes (Lin and 
Cai, 1995; Stratonovitch, 1963). Further, we normalize each basis function gs

j (q, q̇, t) to arrive at a standard deviation 1, such that the 
associated magnitudes βs

j reflect their relative importance in kernel functions. 
Step 3: Identify Lagrangian and kernel functions. Substitute the construction of Lagrangian in Eq. (4) and that of kernel function in Eq. 

(5) into the optimization problem Eq. (3), and rewrite it in matrix form, 

α̂, β̂
s
= argmin

α,βs
‖ A(βs

)α − b(βs
) ‖

2
2 (6)  

in which A(βs) is an M × m matrix with the element in the kth-row (i.e., M time intervals) and the ith-column being 
∫ tk

1
tk0

ELs[fi]Ks(t; βs)dt, 

and b(βs) is an M × 1 vector with the element in the kth-row being 
∫ tk1

tk
0

ELs[f0]Ks(t; βs)dt. We normalize the matrix A(βs) and the vector 

b(βs) by the standard deviation of b(βs) to avoid a trivial solution (i.e., βs being zeroes). Note that in Eq. (6), if we fix one set of pa
rameters βs, then the other set of parameters α can be solved readily using linear algebra, i.e., α = [AT(βs)A(βs)]

− 1AT(βs)b(βs). Hence 
the optimization problem of two sets of parameters in Eq. (6) can be converted to an optimization problem of one set of parameters, 

β̂
s
= argmin

α,βs
‖ (P(βs) − I)b(βs) ‖

2
2 (7)  

in which P(βs) = A(βs)[AT(βs)A(βs)]
− 1AT(βs) is the orthogonal projection matrix, I is the identity matrix. The optimization problem in 

Eq. (7) entails a geometric interpretation, i.e., minimizing the vertical distance from the vector b(βs) to the column space of the matrix 
A(βs). If the vertical distance is zero, then the kernel function is orthogonal to the nonconservative force in the given time intervals. 
Note that the time intervals are pre-specified in this paper for ease of presentation, but we can also determine the optimal intervals by 
adding one optimization nest. 

By substituting the optimal solution β̂
s 
into Eq. (6), the corresponding optimal solution α̂ can be readily solved. Here, we leverage 

the fact that for most dynamical systems, the explicit expression of the Lagrangian is sparse in a high dimensional nonlinear function 
space. To obtain a parsimonious expression for the Lagrangian, we penalize the model complexity of the Lagrangian by adding the L1- 
norm of α to the objective function in Eq. (6), resulting in the following regularized least-squares problem 

α̂ = argmin
α

(
‖ A(β̂

s
)α − b(β̂

s
) ‖

2
2 + λ‖ α ‖1

)
(8)  

in which, ‖ ⋅ ‖1 denotes the L1-norm (James et al., 2013), and λ is a regularization parameter that balances the model complexity and 

Z. Huang et al.                                                                                                                                                                                                         



Journal of the Mechanics and Physics of Solids 170 (2023) 105127

5

fitting accuracy. Consequently, the identified Lagrangian L̂(q, q̇; α̂) is given by Eq. (4) with the α substituted by the optimal solution α̂ 
in Eq. (8). 

3. Case studies 

This section is devoted to case studies. We apply the presented method to some illustrative examples, including a Duffing oscillator 
(single-degree-of-freedom system), a cart-pendulum system (two-degrees-of-freedom system), and a Euler-Bernoulli beam (continuous 
system). For multi-degrees-of-freedom systems and continuous systems, some complementary discussions are provided. It should be 
noted that all these three cases have known Lagrangian, such that once the nonconservative forces and system parameters are pre
scribed, state data can be obtained, which in turn, will be used to extract conservative equations using the present method. 

Case 1: Duffing oscillator 

Duffing oscillator can be graphically represented by a mechanical system as shown in the first row and first column of Fig. 3. The 
displacement and velocity of the mass block m are denoted by q and q̇, respectively; the linear and cubic nonlinear stiffness are denoted 
by k1 and k3, respectively; η(t) is an external excitation that injects energy, while c(q̇) is a dissipative component. Together, they induce 
the nonconservative generalized force Q(t), that is, Q(t) = η(t) − c(q̇). The conservative structure hidden in this nonconservative 
system is known and its Lagrangian is L∗(q, q̇) = 1

2 mq̇2
− 1

2k1q2 − 1
4k3q4. 

In this case study and others to be presented, what is known to us is just the state data (q,q̇) in discrete time instants captured from 
this system; all other information, including mass, stiffness, damping, and excitations, are totally unknown, neither their types nor 
values. Our objective is to extract the explicit expression of the Lagrangian only from the provided discrete state data. Let us start from 
a case with random excitation and linear damping, i.e., η(t) is Gaussian white noise with intensity 2D while c(q̇) = cq̇ with linear 
damping coefficient c. 

In step 1, set m = 1 kg, k1=1 N/m, k3=0.5 N/m3, c = 0.01 Ns/m and 2D=0.1 N2s. With initial conditions q(0) = 1m, q̇(0) = 0m /s 
and a constant time step 0.02 s, numerical integration by the fourth-order Runge-Kutta method produces discrete state data. The state 
data is collected in the time interval [0, 2000] s (100,000 sampling points in total), as shown in the first row and second column of 
Fig. 3. 

In step 2, the Lagrangian is constructed by a linear combination of low-order polynomials of system states, i.e., 

Fig. 3. Summary of identification results. The first row: Duffing oscillator, the second row: cart-pendulum system, and the third row: Euler- 
Bernoulli beam. The first column: diagrams of physical systems concerned, the second column: nonconservative state data as the starting point, 
the third column: the extracted Lagrangians and the exact Lagrangians. 
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L(q, q̇;α) = − q̇2 + α1q̇2q + α2q̇2q2 + α3q̇2q3 + α4q̇2q4 + α5q̇2q5

+α6q̇2q6 + α7q2 + α8q3 + α9q4 + α10q5 + α11q6 (9) 

Note, such terms as q̇qk (k = 0, 1, …) are excluded beforehand because of their triviality; refer to the discussions in Chu and 
Hayashibe (2020), Hills et al. (2015) and Landau and Lifshitz (1976). Notice that here we start from low-order polynomials; if the loss 
function of the identified result is small enough, we accept the result; otherwise, we increase the order of polynomials to enlarge the 
library of basis functions, and then identify again. The kernel function is similarly constructed as: 

K(t; β) = β1q + β2q2 + β3q3 + β4q̇ + β5q̇2 + β6q̇3 (10)  

in which αk (k = 1, …, 11) and βk (k = 1, …, 6) are coefficients to be determined. Each basis function in Eq. (10) is normalized to have 
standard deviation 1. 

In step 3, select 199 time intervals [tj0, t
j
1] from [0, 2000] s with tj0 = (j − 1) × 10s and tj

1 = j× 10 s; each time interval contains 501 
sampling points. Derive the 199 × 11 matrix A(β) and 199 × 1 vector b(β) via composite Simpson’s rule; then divide A(β) and b(β) by 
the standard deviation of b(β). We solve the nonlinear optimization problem in Eq. (7) using the genetic algorithm in MATLAB software 
(MATLAB, 2021). Here, we restrict the search region of each βk in [− 1, 1] for reducing computation complexity. After the optimal 
solution β̂ is found, we solve the regularized least-squares problem in Eq. (8) with λ = 0.1 to find the optimal α̂. 

The final solutions we obtain are, respectively (see Supporting Information for convergence plot of the genetic algorithm), 

K(t) = 0.2124q − 0.3076q2 − 0.9233q3 + 0.0066q̇ + 0.0413q̇2 − 0.0271q̇3 (11)  

L̂ = q̇2 − 1.0120q2 − 0.2495q4 (12) 

It is obvious that the sparse Lagrangian identified in Eq. (12) agrees very well with the exact one, that is L(q, q̇) = 1
2q̇

2 
− 1

2q
2 − 1

8q
4, 

except for a constant factor 2 (Landau and Lifshitz, 1976). The identification procedure is summarized and depicted in Fig. 4. 
To verify the efficacy of this method to various types of excitations and dissipative components, we summarize the solutions for 

different combinations in Fig. 5. The first three rows present the combination of linear damping and harmonic excitation, combination 
of linear damping, random and harmonic excitations, and combination of Coulomb friction and random excitation, respectively. The 
fourth row presents the case with no excitation and no dissipative component for comparison. For all rows, the first column presents 
the nonconservative generalized forces unknown to us, the second column depicts the nonconservative state data known to us, while 
the third column represents the Lagrangian extracted. Obviously, the conservative structure extracted from the nonconservative state 
data possesses high accuracy for various mechanisms of excitation and dissipation. Parametric analysis indicates that this method is 
consistently effective for cases with not too large excitation and too large damping, as shown in the left column of Fig. 6, in which the 
identification error is defined as the average of the relative error of each identified coefficient. 

Fig. 4. Flowchart for identifying the conservative structure of randomly excited, dissipative Duffing oscillator. Step 1: collects nonconservative state 
data, Step 2: constructs Lagrangian and kernel function, and Step 3: optimizes the to-be-determined coefficients of Lagrangian and kernel function. 
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Case 2: Cart-pendulum system 

Herein, we first emphasize some differences encountered in the cases of multi-degree-of-freedom systems. Note that we implement 
the identification for each degree of freedom separately. Thus, it is quite likely that we will obtain a set of different expressions for the 
sole Lagrangian. For instance, in the identification associated with the sth degree of freedom, the terms in Lagrangian that do not 
depend on (qs, q̇s) cannot be identified successfully. The expressions identified, denoted by L1,L2,⋯, which do not possess any identical 
term, suggest the separability of the system concerned. The exact Lagrangian will be the sum of all these expressions, that is, L = L1 +

L2 + ⋯. If the identified expressions possess at least one identical term, e.g., q̇1q̇2 in L1 = q̇2
1 + 2q̇1q̇2 and L2 = q̇2 + q̇1q̇2, we can 

normalize each expression such that the identical term (e.g., q̇1q̇2) in each expression has the same coefficient. We then combine all the 
other terms together to produce the “entire” Lagrangian of the system. 

Consider a typical nonlinear two-degree-of-freedom system, a cart-pendulum system, as depicted in the second row and first 
column of Fig. 3. The linear displacement of the cart with mass m1 and the angular displacement of the pendulum with mass m2 are 
denoted by q1 and q2, respectively; the linear stiffness coefficient of the horizontally displaced spring, the pendulum length, and the 
gravitational acceleration are denoted by k, l, and g, respectively. The nonconservative factors include external excitations (a time- 
varying force η1(t) imposed on the cart and a time-varying couple η2(t) imposed on the pendulum) and external dissipative compo
nents with linear damping coefficients c1, c2 (c2 not shown). The nonconservative generalized forces are Q1(t) = − c1q̇1 + η1(t) and 
Q2(t) = − cq̇2 + η2(t), respectively. The true Lagrangian is L(q, q̇) = 1

2 (m1 + m2)q̇2
1 +

1
2m2l2q̇2

2 + m2lq̇1q̇2cosq2 −
1
2 kq2

1 + m2glcosq2. 
Herein, η1(t) and η2(t) are described by Gaussian white noise with intensities 2D1,2D2, and the parameter values are set as m1=5 kg, 

Fig. 5. About Duffing oscillator, the summary of identification results for various nonconservative forces. The first row: linear damping plus 
harmonic excitation, the second row: linear damping plus harmonic excitation plus random excitation with intensity 2D=0.001 N2s, the third row: 
Coulomb friction plus random excitation with intensity 2D=0.1 N2s, and the fourth row: no excitation and no dissipative component. The first 
column: nonconservative generalized forces; the second column: nonconservative state data, and the third column: the extracted Lagrangian. The 
exact Lagrangian is L(q, q̇) = 1

2q̇
2
− 1

2q
2 − 1

4q
4. The associated kernel functions for these four cases are, respectively, as K(t) = − 0.2991q − 0.4362q2 

+ 0.7063q3 + 0.0971q̇+ 0.6125q̇2
− 0.0656q̇3, K(t) = − 0.1353q+ 0.2429q2 + 0.9828q3 + 0.0187q̇ − 0.1407q̇2

− 0.0166q̇3, K(t) = 0.2472q +
0.1925q2 − 0.8637q3 + 0.0242q̇ − 0.0215q̇2

− 0.0457q̇3, K(t) = − 0.1086q+ 0.6672q2 − 0.9519q3 + 0.9985q̇+ 1.000q̇2
+ 0.9937q̇3. 
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m2=1 kg, k=20 N/m, l=2 m, g=9.8 m/s2, c1=0.1 Ns/m, c2=0.01 Nms, 2D1=0.05 N2s, and 2D2=0.01N2m2s. In step 1, we numerically 
integrate the Lagrangian equations by the fourth-order Runge-Kutta method with a fixed time step 0.02 s and initial conditions q1(0) =

1m, q2(0) = 0, q̇1(0) = 0.5m /s, and q̇2(0) = 0. We then collect state data in [0, 4000] s (totally 200, 000 sampling points), as shown in 
the second row and second column of Fig. 3. In step 2, we construct the to-be-identified Lagrangian by a linear combination of given 
basis functions, that is, 

L = α1q̇2
1 + α2q̇2

2 + α3q̇1q̇2 + α4q̇1q̇2q1 + α5q̇1q̇2q2 + α6q̇1q̇2q2
1 + α7q̇1q̇2q2

2

+α8q̇1q̇2q1q2 + α9q̇1q̇2q3
1 + α10q̇1q̇2q3

2 + α11q̇1q̇2q4
1 + α12q̇1q̇2q4

2 + α13q2
1

+α14q3
1 + α15q4

1 + α16q5
1 + α17q2

2 + α18q3
2 + α19q4

2 + α20q5
2

(13) 

Here, the trivial terms, such as q̇1qk
1 and q̇2qk

2 with k being non-negative integers, are excluded beforehand. Similarly, we construct 
the kernel functions as below, 

W1(t) = β1
1q1 + β1

2q2
1 + β1

3q3
1 + β1

4q̇1 + β1
5q̇2

1 + β1
6q̇3

1 (14)  

W2(t) = β2
1q2 + β2

2q2
2 + β2

3q3
2 + β2

4q̇2 + β2
5q̇2

2 + β2
6q̇3

2 (15) 

In step 3, we select 1999 time intervals [tj
0, t

j
1] from [0, 4000] s with tj

0 = (j − 1) × 2s and tj
1 = j× 2s, and each time interval contains 

101 sampling points. We determine the optimal parameter values of β1 and β2 separately. Following similar steps as presented in case 1, 
the optimal kernel functions found by the nested optimization are, respectively (see Supporting Information for convergence plot of the 
genetic algorithm), 

K1(t) = − 0.3175q1 + 0.1071q2
1 + 0.7384q3

1 + 0.0156q̇1 − 0.0015q̇2
1 − 0.0424q̇3

1  

K2(t) = 0.3946q2 + 0.0440q2
2 − 0.8754q3

2 + 0.0274q̇2 + 0.0060q̇2
2 − 0.0510q̇3

2  

while the sparse expressions of the associated Lagrangians are 

L1 = q̇2
1 + 1.4951q̇1q̇2 − 1.6807q2

1, L2 = q̇2
2 + 0.3808q̇1q̇2 − 1.9087q2

2 

These two expressions possess one identical term, q̇1q̇2; thus, we normalize each expression such that the term q̇1q̇2 in each 
expression has the same coefficient 5. We then combine all the other terms to produce the “entire” Lagrangian, 

L = 3.3443q̇2
1 + 13.1303q̇2

2 + 5q̇1q̇2 − 5.6207q2
1 − 25.0617q2

2 (16) 

To compare with the true Lagrangian, i.e., L(q, q̇) =1
2 (m1 +m2)q̇2

1+
1
2m2l2q̇2

2+m2lq̇1q̇2cosq2−
1
2 kq2

1+m2glcosq2 with the extracted one in 
Eq. (16), we first need to simplify the expression by keeping the terms no more than quadratic ones—such that cosq2 in the term 
m2lq̇1q̇2cosq2 is taken by 1, and the same function in the term m2glcosq2 by 1 − 1/2q2

2. Then the true Lagrangian is approximated asL =
3q̇2

1 + 12.5q̇2
2 + 5q̇1q̇2 − 5q2

1 − 24.5q2
2 + 49. Obviously, the extracted Lagrangian in Eq. (16) agrees very well with the approximate 

Lagrangian, except for a constant 49, a trivial term that is insignificant (Landau and Lifshitz, 1976). Similar to the Duffing oscillator, 
the identification error almost monotonically increases with increase in excitation intensities and external damping, as shown in the 
middle column of Fig. 6. 

Fig. 6. Identification error versus nonconservative factors. The left one: damping coefficient and excitation intensity for Duffing oscillator; the 
middle one: damping coefficient and excitation intensity of the linear coordinate for cart-pendulum system with fixed c2=0.01 and 2D2=0.01; and 
the right one: scaled external damping coefficient and scaled excitation intensity for Euler-Bernoulli beam with fixed scaled internal damping 
coefficient c2=0.001. The purple star denotes the parameters used in the preceding numerical cases. The black square denotes that the identification 
result does not have the same terms as the true Lagrangian. 

Z. Huang et al.                                                                                                                                                                                                         



Journal of the Mechanics and Physics of Solids 170 (2023) 105127

9

Case 3: Euler-Bernoulli beam 

This method can be readily generalized to continuous systems. Here, for simplicity, we illustrate this generalization by one- 
dimensional continuous systems. The dynamical behavior of a one-dimensional continuous system is described by the following 
generalized-form Euler-Lagrange equation, 

EL
[

l
(

q,
∂q
∂t
,
∂q
∂x
,

∂2q
∂t∂x

…,
∂Jq
∂tJ ,

∂Jq
∂xJ

)]

= Q(x, t), 0 < x < s (17)  

where the function q(x, t) of position x and time t denotes the generalized coordinate, while Q(x, t) denotes the nonconservative 
generalized force distributed in the one-dimensional domain (0, s). l is the Lagrangian density, a scalar function of q and its various- 
order partial derivatives (assumed up to the Jth-order). EL[⋅] is the Euler-Lagrangian operator for this continuous system, that is, 

EL[ ⋅ ] =
∑J

j=0

∑j

kj=0
(− 1)j ∂j

∂xkj ∂tj− kj

(
∂[ ⋅ ]

∂
(
∂jq
/

∂xkj ∂tj− kj
)

)

(18) 

For derivation of Eq. (18) from the Hamilton’s principle, see Supporting Information. 
We embed the generalized-form Euler-Lagrange Eq. (17) in the continuous system concerned. The Lagrangian density replaces the 

role of the Lagrangian in discrete cases. In contrast to discrete systems, the generalized-form Euler-Lagrange Eq. (17) is a partial 
differential equation and holds at any spatial position in the domain (0,s). Thus, it is possible to consider only one or several positions 
and reduce the identification of the continuous system to that of a discrete system, as shown next. 

Consider a Euler-Bernoulli beam with simply supported boundaries, as depicted in the third row and first column of Fig. 3. The 
generalized coordinate q(x, t) describes the deflection of the beam. Denote mass density, elastic modulus, cross-sectional area, moment 
of inertia, length of the beam, the external and internal damping coefficients by ρ, E, A, I, s, c1, and c2, respectively. External excitation 
η(t) is a Gaussian white noise with intensity 2D and impressed at position xe.The exact Lagrangian density to be identified is of the 
analytical form l(qt ,qxx)=ρAq2

t /2 − EIq2
xx/2; the nonconservative force is Q(x,t)= − c1qt − c2qxxxxt + η(t)δ(x − xe). Set parameter values 

as ρ=8000 kg/m3, E = 200 GPa, s = 10 m, A=0.01 m2, I=8.33 × 10− 6 m4 (a square section), xe=s/3, the scaled external damping 
coefficient c1 = c1/ρA = 15, the scaled internal damping coefficient c2 = c2/EI = 0.001 and the scaled excitation intensity 2D=2D×

(2sin(πxe/s)/ρAs)2=1. 
In step 1, we combine the modal expansion method (with the first five modals) and the fourth-order Rung-Kutta method (with a 

fixed time step 0.0001 s and zero initial conditions) to produce spatial-temporal discrete data. We collect the state data in 501 uniform- 
spaced points, and in [0, 100] s with time step 0.001 s. The phase diagrams of state data at s/4, s/2 and 3s/4 are shown in the third row 
and second column of Fig. 3. 

We consider the midpoint by fixing the position x = s/2 in the generalized-form Euler-Lagrange Eq. (19), thus reducing the partial 
differential equation into an ordinary differential form as in the discrete cases. The identification procedures are similar to that of the 
discrete system. In step 2, construct the to-be-identified Lagrangian by a linear combination of given basis functions, that is, 

l = α1q2
t + α2q2

xt + α3q + α4q2 + α5q3 + α6q4 + α7q2
x + α8q3

x + α9q4
x + α10q2

xx + α11q3
xx + α12q4

xx (19) 

Similarly, the trivial terms, such as qtqk, qtqk
x, and qtqk

xx with k being non-negative integers, are excluded. Now, since we focus on the 
midpoint, we construct the associated kernel function as below, 

K(t) = β1q
(s

2
, t
)
+ β2q

(s
2
, t
)2

+ β3q
(s

2
, t
)2

+ β4qt

(s
2
, t
)
+ β5qt

(s
2
, t
)2

+ β6qt

(s
2
, t
)3

(20) 

In step 3, we select 999 time intervals [tj
0, t

j
1] from [0, 100] s with tj

0 = (j − 1) × 0.1s and tj
1 = j× 0.1s, and each time interval contains 

101 sampling points. We apply the Euler-Lagrangian operator in Eq. (18) to the Lagrangian in Eq. (19), fix the position x = s /2, 
multiply by the kernel function in Eq. (20), and then numerically integrate over the selected time intervals to obtain the matrices. The 
optimal kernel function determined by the nested optimization procedure is as, 

K(t) = − 0.3516q
(s

2
, t
)
+ 0.5845q

(s
2
, t
)2

+ 0.8430q
(s

2
, t
)3

0.0116qt

(s
2
, t
)
− 0.0827qt

(s
2
, t
)2

− 0.0128qt

(s
2
, t
)3

(21)  

and the sparse expression of the Lagrangian density is (see Supporting Information for convergence plot of the genetic algorithm), 

l = q2
t − 19798q2

xx (22) 

For given parameter values, the exact Lagrangian is l(qt ,q2
xx) = 40(q2

t − 20833q2
xx). Obviously, the extracted Lagrangian in Eq. (22) 

is close to the exact Lagrangian except for only a trivial constant factor of 40. As shown in the right column of Fig. 6, the identification 
error monotonically increases with an increase in external damping, but almost does not depend on the excitation intensity due to the 
linear property of this dynamical system. 
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4. Conclusions and discussion 

This work is devoted to extracting the explicit conservative equations hidden in randomly/deterministically excited, dissipative 
systems solely from nonconservative state data. In the framework of physics-guided data science, we embed the Euler-Lagrangian 
equation, the most general description of physical systems, into one unknown system, and extract the Lagrangian (for a discrete 
system) or Lagrangian density (for a continuous system) based on the concept of orthogonality. The proposed method comes down to 
an optimization procedure and can successfully extract the conservative structures for three typical dynamical systems. 

Once the Lagrangian is discovered, the potential energy is identified at the same time; hence one can employ feedback control to 
change the qualitative properties of the dynamical system, such as the number and stability of equilibrium points. We illustrate the 
procedure by the Duffing oscillator examined in Section 3. Using the proposed method, we identify the Lagrangian as L̂ = q̇2 

−

1.0120q2 − 0.2495q4, from which the potential energy is recognized to be V̂ = 1.0120q2 + 0.2495q4. By applying a state-dependent 
feedback control force F = 7q, the potential energy of the system is changed to Ṽ = 1.0120q2 − 1

2× 7q2 + 0.2495q4 = − 2.4880q2 +

0.2495q4, as shown in the first row of Fig. 7. As shown in the second row of Fig. 7, the original system oscillates around one equi
librium point in the phase space, i.e., (0, 0); while the modified system with feedback control force oscillates around two equilibrium 
points. 

Intuitively, along this train of thought, to extract the intrinsically conservative structure, we can also embed the integral-variational 
law or Hamiltonian equations rather than the Euler-Lagrange equations. For the integral-variational law, the arbitrarily selected 
variations of generalized coordinates serve as kernel functions, as adopted here. The variational functions can be similarly optimized 
by minimizing the residual. Of course, to satisfy the requirement on variations(i.e., the values of variations must vanish at the time- 
integral bounds), we can deliberately introduce window functions, which abruptly decrease to zero at the time-integral bounds while 
almost keep constant somewhere else; and multiply the optimized variations by window functions to guarantee the requirement. For 
the Hamiltonian equations, however, we must extract the Hamiltonian and the generalized momenta simultaneously. Moreover, the 
kernel functions and variational functions can also be constructed using neural networks to enlarge the searching space. These will be 
the subject of our future work. 

Author statement 

This paper is an original work in this exciting direction, and has not been submitted to other journal for publication. 

Fig. 7. Potential energy (first row) and phase diagram (second row) of the original (first column) and modified (second column) system for a 
Duffing oscillator. 
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