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Mechanical Metamaterials for Handwritten Digits
Recognition

Lingling Wu, Yuyang Lu, Penghui Li, Yong Wang, Jiacheng Xue, Xiaoyong Tian,
Shenhao Ge, Xiaowen Li, Zirui Zhai, Junqiang Lu, Xiaoli Lu, Dichen Li,
and Hanqing Jiang*

The increasing needs for new types of computing lie in the requirements in
harsh environments. In this study, the successful development of a
non-electrical neural network is presented that functions based on mechanical
computing. By overcoming the challenges of low mechanical signal
transmission efficiency and intricate layout design methodologies, a
mechanical neural network based on bistable kirigami-based mechanical
metamaterials have designed. In preliminary tests, the system exhibits high
reliability in recognizing handwritten digits and proves operable in
low-temperature environments. This work paves the way for a new, alternative
computing system with broad applications in areas where electricity is not
accessible. By integrating with the traditional electronic computers, the
present system lays the foundation for a more diversified form of computing.

1. Introduction

The essence of intelligence is computing, which can take var-
ious forms, including electronic,[1] mechanical,[2] optical,[3,4]

biological,[5] pneumatic,[6] fluidic,[7] and many more forms.
Currently, we are witnessing a glorious era of electronic-based
artificial intelligence (e.g., ChatGPT),[8] where electrons become
the information carriers, and electricity is the energy source
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that processes the signals. Similarly, in
optical computing, photonic information
is handled and carried by means of light
quantum.[9] Within this context, mechan-
ical computing has always been a modest
candidate. While a precursor to what con-
stitutes modern artificial intelligence today,
pure mechanical computing is presently
finding new uses, particularly under condi-
tions where electrical or optical computing
are non-starters. Mechanical computing is
reliable in a range of scenarios, including
but not limited to, harsh circumstances or
extra-terrestrial planets where electricity
is beyond reach and/or in extreme envi-
ronmental conditions where factors such
as moisture, electromagnetic interference,
radiation, and volatile temperatures hinder
electricity-based operations.

To date, mechanical computing, however, has received rela-
tively little attention compared to mainstream electrical comput-
ing systems. This is partly because of the absence of a basic op-
erational methodology that can successfully demonstrate its full
benefits and its narrow focus on piecemeal components that con-
stitute the basics of mechanical computing. These components
include memory storage,[10] logic gates, mechanical integrated
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Figure 1. Schematic of a non-electrical neural network. a) The construction scheme for building a computational array based on a mechanical full adder
and mechano-synapses. b) The structure of the mechanical metamaterial neural network that could identify representations of handwritten “1”s and
“0”s. c) The weights matrix of the mechanical neural network. d) The process of the neural network identifying a handwritten “0”. e) The process of the
neural network identifying a handwritten “1”.

circuit[11] and common calculation modules[6,12–15] based on soft
components,[6] origami,[16,17] and bar links.[18–20] At present, two
main obstacles hinder mechanical computing development. The
first is the prevailing belief that a bottom-up design starting from
logic calculations and then assembling the whole, akin to electri-
cal systems, is the only approach to developing a reliable system.
The second barrier relates to the low transmission efficiency of
mechanical signals[21] compared to electrical signals, which are
faster and more reliable. This study presents a new type of signal-
amplifying mechanism and a concise space topology of mechan-
ical computing–all of which have remained unexplored.

In this paper, we demonstrate a novel mechanical neural net-
work based on 3D printed bistable kirigami metamaterials to
achieve a non-electricity-based artificial intelligence system with-
out bulky assembled machinery usually composed of spring and
rotary components. The developed mechanical computing em-
powers the coding of a simple handwritten number recogni-
tion exercise through specific neural network algorithms and the
corresponding hardware assembly, all without electricity. A top-
down design methodology is used to simplify the structure of the
mechanical modules, which stands in contrast to previously re-
ported works[22–24] that mostly rely on a bottom-up design from
basic logic gates. A concise topological layout is used to con-
struct the clusters of these non-electrical modules to achieve a
mechanical neural network. To enhance the transmission effi-
ciency of mechanical signals, the modules rely on unique 3D-
printed kirigami-based mechanical metamaterials for amplify-
ing both input displacement and force. This study represents a
milestone in mechanical artificial system development because

of its top-down methodology and potential application in environ-
ments that cannot support electricity-based operations for artifi-
cial intelligence. It provides an effective method for constructing
more powerful and versatile computing forms with richer capac-
ities.

2. Results

2.1. Overview of Constructed Non-Electrical Neural Network

The concept and functionality of the mechanical neural network
are presented in Figure 1. In contrast to the electrical comput-
ing system in which semiconductor elements exhibit 0 and 1
states under the application of different voltages, a mechanical
bistable petal-shaped kirigami-based metamaterial produces 0
and 1 states by applying different mechanical inputs (e.g., force
or displacement). Here, the bistable petal-shaped kirigami pat-
tern (inset of Figure 1a) was chosen as the design basis because it
transmits the mechanical signals of both displacement and force,
analogous to current and voltage signals in an electrical system.
We call this mechanical metamaterial mechano-synapse similar
to a biological synapse that transmits bioelectric signals.

Exploiting the mechano-synapse concept, we constructed a
mechanical computational array with basic calculation functions
by connecting mechanical full adders in a series (Figure 1a)
to achieve artificial intelligence. The prototype mechanical
neural network could distinguish the handwritten “1” and “0”
as illustrated in Figure 1b using a specific layout of full adders
connected both horizontally and vertically. The mechanical
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Figure 2. Mechanical signal amplification mechanism. a) The design of a mechano-synapse and its simulated mechanical performance. b) Simulated
phase diagrams of the force amplification factor (output force Fout over input force Fin) with varying geometric parameters in the mechano-synapse.
c) Simulated phase diagrams for the displacement amplification factor (output displacement Uout and input displacement Uin) with varying geometric
parameters in the mechano-synapses. d) Simulated mechanical behavior of the mechano-synapse element for the three different size values marked in
the top diagram in b). F and U are the normalized force and displacement by their maximum value, respectively. e) The simulated mechanical behavior of
the mechano-synapse element for the three different size values marked in the top diagram in c). f) The fabricated mechano-synapse sample with a force
amplification factor of 13.8 and displacement amplification factor of 8.7. Scale bar is 1 cm. g) Measurement results of the fabricated mechano-synapse
sample shown in f). Three samples with the same geometry were fabricated, and the shaded area represents the discrepancies of the three samples,
with each tested for five times.

neural network was composed of a series of full adders. The
neural network was trained and tested on numerous physical
representations of images of handwritten “0”s and “1”s from the
Mixed National Institute of Standards and Technology database
(MNIST), and the spatial weight matrix of the trained neural net-
work is shown in Figure 1c. The weight matrix of the mechanical
neural network was constructed by a 10 × 10 array which has
100 pixels. Because we adopted a binary neural network model,
each pixel of the weight matrix could only take the value of 1 or
0. For those pixels that take the value of 0, we regard it as non-
necessary to build the input module, and thus we just keep the
pixels that take the value of 1. Different inputs actuated different
weight matrix elements of the neural network, and the output
was calculated and expressed from the top layer of the system
where some snap-through of the output beams indicated an
input of handwritten “0” and others indicated a handwritten “1”
(Figure 1d,e). This as-constructed mechanical neural network
demonstrated that very basic intelligence (i.e., recognizing “0”
and “1”), could be achieved without any electricity consumption.

2.2. Signal Amplification Mechanism of the Metamaterial

To realize the overall aim of this study, namely, to achieve a me-
chanical neural network as outlined above, obtaining efficient

transmission of mechanical signals (force and displacement) was
the first crucial challenge. Unlike in electronic systems, the trans-
mission of mechanical signals is difficult to maintain in mechan-
ical systems, primarily because mechanical deformation or force
can greatly degrade during propagation between different me-
chanical parts for various reasons (e.g., friction, material fatigue,
tolerance, fabrication error, etc.). To solve this pivotal problem,
an amplification mechanism was introduced into the mechano-
synapse.

A mechano-synapse with signal amplifying effect was devel-
oped from a typical bistable kirigami-metamaterial that snaps
through[25] and consists of two petal-shaped domains. It is
defined by three parameters (𝛼, L, and R), and tilted beam
hinges, as shown in Figure 2a. The value range of 𝛼, L, and R
is determined to enable fabrication accuracy and the size of the
synapse (see Methods for detail). Under a certain input of force,
this kirigami-based mechanical metamaterial cycles between two
states: state ① as the initial configuration indicating a binary 0
and state ② as the activated configuration representing a binary 1.
In terms of force, state ② is a stress-free configuration, whereas
state ① is a force-free, but not stress-free configuration. The
stress, here, is localized at the tilted beam hinges, connecting the
two petals with the main frame. Positive is defined as upward
force or displacement, and negative is defined as downward
force or displacement. Thus, we are able to perform computing
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by switching from state ① to ② under certain inputs. We believe
progressive computing can be performed by having the outputs
from one mechano-synapse element serve as the input to trigger
the next mechano-synapse. Here, we define and quantify the
transmission efficiency as the ratio of output force/displacement
to input force/displacement. If the ratio is larger than 1, meaning
that the mechanical signal is amplified during the transmission
in the mechanical neural network. By contrast, if it is smaller
than 1, meaning that the mechanical signal is weakened during
transmission.

To ensure efficient transmission of mechanical signals (force
or displacement) in progressive computing, the output force and
displacement (|Fout| and |Uout|) must be larger than the input
(|Fin| and |Uin|) (Figure 2a). To amplify the output force and dis-
placement for a mechano-synapse, tilted beam hinges with a
length of L were introduced to break the symmetry of the bistable
structure. Note, before cycling between states, a considerable part
of energy can be pre-stored in the synapse. In Figure 2a, the dif-
ference in the output and input areas in the force-displacement
graph is the stored energy in the mechano-synapse. Then, an am-
plified mechanical signal can be achieved under the actuation of
the pre-processed synapse.

To determine the relationship between amplification of me-
chanical signals and geometric sizes (𝛼, L, and R), we used fi-
nite element analysis to figure out the relationships between the
amplification factors for force (i.e., |Fout||Fin| ) and displacement (i.e.,
|Uout||Uin| ). The mechano-synapse geometry parameters are shown in

Figure 2b,c. These results indicate that the mechano-synapse am-
plification factors vary by several orders of magnitude depend-
ing on the geometry of the two petals (𝛼 and R) and the length
of the tilted beam hinges (L). The resulting force and displace-
ment behaviors for several representative parameter combina-
tions are detailed in Figure 2d,e, which indicate different ampli-
fication factors. Note that the largest amplification factor of the
mechanical signal might not necessarily be the best choice. While
the transmission efficiency of mechanical information must be
sufficiently large to enable signal propagation between each of
the modules, a sufficient |Fin| is required to prevent unwanted
snap-through interference by environmental vibrations. In other
words, a balance between the efficiency of the transmission and
robustness against external disturbances should be achieved. We
first carried out experiment to test the |Fin| to be at least 0.1
N to maintain the bistable state, which is related to the ma-
terial adopted to fabricate the sample. Considering the output
force equals to the force required to reset the snapped mechano-
synapse, which means larger output force required more external
energy to reset the structure. Therefore, we select an appropriate
force amplification factor of 15 to balance the signal transmission
and resetting energy. To identify the optimum geometric param-
eters of the mechano-synapses that satisfies these requirements,
a genetic algorithm combined with finite element analysis was
applied to determine the best configuration using a fitness func-

tion of f =
√

(| Fout

Fin
| − 15)

2
+ 1000 ⋅ (|Fin| − 0.1)2 to search for a

| Fout

Fin
|close to 15, and |Fin| close to 0.1 N, which is sufficient to

resist the surrounding disturbance (see Figure S1, Supporting
Information).

We achieved an optimized mechano-synapse with a force am-
plification factor of ≈12.8 and a |Fin| of ≈0.1 N. A mechano-
synapse with these parameters was fabricated using 3D printing
(Figure 2f), and its mechanical behavior in terms of force ver-
sus displacement was then tested (Figure 2g). Compared with
the predicted performance (Figure S1, Supporting Information),
the 3D printed prototype showed similar behavior, with an am-
plification factor of 13.8, which is sufficient to transmit mechani-
cal signals efficiently in different kirigami modules. Additionally,
the required |Fin| of ≈0.1 N maintained a relatively robust snap-
through state.

2.3. Design of the Full Adder

We first implemented our mechano-synapse in basic logic gates
(i.e., AND and OR gates) and then more complicated gates (i.e.,
XOR gate, SR latch, and half adder), as shown in Figures S2,S3
(Supporting Information), respectively, and Video S1 (Support-
ing Information). This was achieved before starting the next and
more complex task of constructing a mechanical full adder. The
full adder design was challenging because it had eight different
combinations of inputs and outputs (Figure 3a), and its corre-
sponding electronic bottom-up design had three AND gates, one
3-input-OR gate and one 3-input-XOR gate with intricate connec-
tions. Thus, it was relatively difficult to construct the full adder by
directly following its electrical circuit. These connections there-
fore obstructed our ability to construct the mechanical full adder
using the traditional bottom-up design used in electric systems.
Instead, a top-down method was used to arrange the mechano-
synapses for satisfying the force/displacement amplification and
minimum |Fin| requirements for meeting the desired combina-
tions in the truth value table.

The resulting design was a mechanical full adder that added
three inputs (i.e., X and Y as the operands and Cin as a bit carried
in from the previous calculation) and generated two outputs (i.e.,
summary bit S and the output carry Cout), as shown in Figure 3b.
The front side and the back side of the full adder comprised dif-
ferent layouts of mechano-synapses, which were designed inde-
pendently in a top-down manner. The as-designed full adder only
required three logic gates (2 XORs for the front side and 1 3-
input gate for the back side), ensuring a relatively simple con-
figuration of the full adder for fabrication purposes. The front
side XOR gates were connected in a series to calculate the output
summary bit S, thus functioning similarly to a 3-input-XOR gate
(Figure S4a, Supporting Information). The back side worked to
obtain the output carry bit Cout. When the number of actuated
parameters (X, Y, Cin) is larger than two, Cout is 1; otherwise, Cout
is 0 (Figure S4b, Supporting Information).

Figure 3c,d presents four different inputs and outputs for a
mechanical full adder, which corresponds well with the truth
value table. More complex calculations with higher bits are read-
ily achievable by connecting multiple full adders in a series. For
example, two connected mechanical full adders successfully cal-
culated 01 + 01 = 010 (Figure 3e) and 11 + 11 = 110 (Figure 3f).
Additional details about the full adder can be found in Figure S4
and Video S2 (Supporting Information), including the assembly
process, as well as more calculation configurations with different
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Figure 3. The top-down design approach of a mechanical full adder. a) Truth value table of a full adder and its electrical circuit expression. b) Design and
the photo of the front and back sides of the mechanical full adder. c) Calculation process of a binary addition of 0 + 0 and 0 + 1 by a one-bit mechanical
computing unit. d) Calculation process of a binary addition of 1 + 0 and 1 + 1 by a one-bit mechanical computing unit. e) Calculation process of a binary
addition of 01 + 01 by a two-bit mechanical computing array. f) Calculation process of a binary addition of 11 + 11 by a two-bit mechanical computing
array. The scale bar in b–f) is 1 cm.

inputs/outputs. The full adder can be reset by resetting a plate,
as shown in Figure S4i,j, and Video S3 (Supporting Information).
More complex assemblies of full adders were then used to con-
struct the mechanical neural network.

2.4. Construction of the Non-Electrical Neural Network

Based on the design of the kirigami-based modules, namely, a full
adder that can efficiently transmit mechanical signals to conduct
computation, we built a mechanical neural network to demon-
strate a nonelectrical mechanical computing system for image
recognition functionality (Figure 4). A binary neural network that
quantitatively recognized handwritten images of “0”s and “1”s
was adopted to generate a simple model with a weight matrix
composed of only 0 or 1. A dataset of handwritten images of “1”
and “0”, obtained from MNIST and as shown in Figure 4a, was
used for training and testing of the neural network. The weight
matrix was obtained by computationally training a binary neu-
ral network by MNIST, and then we used the trained weights to
physically construct the logic gates to realize the computational
functions of the neural network. Each image for training was pix-
elized into a 10 × 10 array with the color of pixels either black or

white, which for the full adder would be an input of 1 or 0, re-
spectively.

The nonlinear function of the binary neural network is shown
in Figure 4b, where xj = 1 or 0 represents the input value (push-
in for 1 or not for 0) and wj = 0 or 1 is the corresponding weight
factor for the binary neural network model. The neural network
was trained to provide an output for identifying a handwritten
“0” if the calculated summation

∑
j wjxj exceeded a threshold of

1. In other words, if the output of a full adder was larger than 1,
the neural network would tell us it “recognizes” an image of the
handwritten “0”. If

∑
j wjxj ≤ 1, it would tell us it “recognizes” an

image of a handwritten “1”. The constructed weight matrix was
composed of eight 1s and ninety-two 0s (Figure 1c), meaning the
maximum value of the calculated summation was eight. There-
fore, to calculate any possible input combinations, a three-layered
mechanical neural network with each full adder performing pair-
wise addition was required to achieve the mechanical neural net-
work.

To ensure the transmission efficiency of mechanical signals
across different modules, a carefully designed topology of the
multiple kirigami-based mechanical metamaterial system was
critical. Thus, we adopted the principle of proximity (using as
minimum connections as possible to connect the full adders)
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Figure 4. Non-electrical neural network for identification of handwritten “0”s and “1”s. a) Schematic of the neural network and the data used to train
the model. b) The nonlinear function adopted by the neural network model. c) The training and testing process for the neural network model. d) The
construction strategy that builds the mechanical neural network layer by layer to add up all the input values from the weight matrix. e) The established
3-layered mechanical neural network model. f) The fabricated mechanical neural network.

for arranging the full adders in space. This involved construct-
ing the mechanical neural network layer by layer in the most
compact manner possible (Figure 4d,f; Figures S5–S7, Support-
ing Information provide details). The handwritten image models
(“0” or “1”) to be recognized were pressed against the bottom of
the mechanical neural network, which actuated the correspond-
ing cubes in the input layer and then progressively transmitted
mechanical signals through the next two layers via the embedded
logic in the full adders. The result was represented by red output
blocks on the top layer of the system. The larger the calculated
value, the closer the handwriting model was to a standard “0”.
Therefore, any actuation of the three red cubes indicated a hand-
written image of “0”, while no actuation indicated a handwritten
image of “1”. The constructed 3-layer mechanical neural network
model trained on this method possessed a prediction accuracy of
0.83 on the testing set (Figure 4c).

2.5. Demonstration of the Non-Electrical Neural Network
Performance

The performance of the mechanical neural network was tested
using pixelized handwritten “1”s and “0”s, also taken from the
MNIST database. To physically verify the identification accuracy
of the mechanical neural network, we fabricated 10 different 3D
printed models of handwritten images of “1” and “0” in each.

All the printed models were bonded onto a transparent plate so
that we could easily record the image recognition process in pho-
tos and videos. The input handwritten plates were then pushed
against the bottom layer of the mechanical neural network to ex-
ecute the image recognition algorithm (see Video S4 (Supporting
Information) for the recognition of “0” and Video S5 (Supporting
Information) for the recognition of 3 representative “1”). Figures
S8–S10 (Supporting Information) show the detailed functioning
process of the mechanical network to identify a handwritten “0”
and “1”, featuring some local views of the mechanical neural net-
work system. After testing all these 3D printed models, the re-
sults showed that 100% of “1” models provided a correct binary
calculation summary of 0000 because none of the eight input pix-
els based on the weight matrix were actuated. Then 90% of “0”
models correctly led to a binary calculation summary larger than
1 (i.e., 0011) because more than 1 input pixels were actuated.

To verify the strong adaptability of a full adder to the environ-
ment, we also conducted experiments in low temperatures after
letting the system in -20 °C environment for >24 h (Video S6,
Supporting Information). This video shows that the full adder
maintained its accurate calculation function. By contrast, the
electrical calculator cannot function in this low temperature.
It should be noted that extreme environmental conditions in-
clude various aspects, such as high radiation, large temperature
changes (high and low temperatures), low pressure, zero grav-
ity, and so on. Here, we only considered the low temperature as
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a demonstration of extreme temperature conditions due to the
limitation of experimental conditions. From a large number of
physical tests, we were able to conclude that the mechanical neu-
ral network demonstrated strong robustness and reliability for
recognizing 3D printed representations of handwritten “0” and
“1” images.

3. Conclusion

This paper presented a non-electrical mechanical computing sys-
tem constructed using purely mechanical elements with concise
topological architectures and efficient transmission of mechani-
cal signals. The system was designed via a top-down methodology
which allowed for simplified fabrication. Though very simple in-
telligence is demonstrated, this work represents a viable method
of combining multiple functional kirigami-based metamaterials
that can be further developed toward building a fully functional
mechanical computing system. It is also expected that more com-
plicated mechanical neural network (e.g., more hidden layers, dif-
ferent activation functions) with sophisticated functionalities can
be constructed by combining with advanced fabrication methods
(e.g., microfabrication for microscale components to enable high-
density assembly) and smart materials (e.g., light-sensitive ma-
terials for light trigged computing and recognition). In essence,
this study opens the door to discovering more complex versions
of mechanical computing systems. We demonstrated at a very
basic level that computing, learning, and even forgetting can
emerge from this unexplored area of non-electrical computing
systems. At present, the weight value in our work can only be
taken from 0 and 1, which limits the functionality and accuracy
of the mechanical neural network. The ideal effect is to design
a neural network model that could classify all handwritten num-
bers from MNIST. In this situation, the physical construction of
the mechanical neural network would be far more complex than
its current version. In the future work, more sophisticated design
methodology will be studied to achieve more complicated func-
tions. A recently reported work demonstrates the advantage of
achieve programmable weight value implemented by a machin-
ery system,[26] which indicates the trend to enrich the weights
of neural networks to achieve more complex and accurate func-
tions despite of its more intricate assembly. Future efforts will be
made to balance the accuracy of the mechanical computing and
the complexity of the mechanical system.

4. Experimental Section
Optimization of the Kirigami Metamaterial: To identify the geometric

parameters of the mechano-synapses that satisfied the requirements of
both mechanical signal amplification and robustness against accidental
induction of the snapped-through state, a genetic algorithm combined
with finite element analysis was applied using the fitness function (f =√

(| Fout
Fin

| − 15)
2
+ 1000 ⋅ (|Fin| − 0.1)2) (see Figure S1, Supporting Infor-

mation). The structural evolution process was performed to find out the
optimal meta-atom. Here, the genetic algorithm (GA) model was used
as the machine learning method. GA could be readily combined with the
COMSOL Multiphysics finite element simulations via LiveLink for MAT-
LAB. Details could be found in the literature.[23] By applying GA, a pop-
ulation size of 30 mechano-synapses was initially generated. Then, the

genetic algorithm was employed to find out an optimal solution by ge-
netically breeding a population of individuals over a series of generations
until the change of fitness function between two adjacent generations
was smaller than the tolerance.[27] Based on fitness values, the sort and
perform roulette wheel selection operations on the population, choosing
individuals with higher fitness to proceed to the next generation. Then,
crossover and mutation operations was applied to generate new individ-
uals. The crossover operation was generated new offspring individuals by
combining parts of the features of two-parent individuals. The mutation
operation introduces new variations by randomly changing some features
of an individual. To avoid premature convergence and being trapped in
local optima, it was set the crossover and mutation probabilities to 85%
and 20%, respectively. The maximum iteration generation was 200. The
mechanical behavior of the 3D printed part was then tested and had a
force amplification factor of ≈13.8 and required |Fin| of ≈0.1 N depending
on the materials it was used (TPU) and the fabrication accuracy.

Mechanical Measurements of Mechano-Synapses: The mechanical per-
formance of the mechano-synapses shown in Figure 2g was tested by
a Universal material testing machine (Instron, USA). The mechano-
synapses were snapped to state ①, then, a predetermined displacement
was applied on the middle beam of the structure to snap back the struc-
ture to state ②. The loading velocity was 1 mm min−1. Three samples of the
optimal mechano-synapse were fabricated. Each sample was measured for
three times.

Finite Element Method (FEM): The finite element analysis results
shown in Figure 2b,e are calculated by ABAQUS (Dassault Systèmes,
France) and the petal-like structure had a Young’s Modulus of 500 MPa,
and Poisson’s ratio of 0.3, which corresponded to the mechanical param-
eters of TPU used in 3D printing process. The model was meshed using
hybrid eight-node linear brick elements and mesh sensitivity analysis was
conducted to ensure numerical convergence. To calculate the amplifica-
tion factors of the mechano-synapse with different combinations of geo-
metric size, a Python script was used to iterate through the parameters and
the data of force-displacement curves were saved in the form of .txt. After
all calculations were finished, the results were then processed to obtain
Figure 2b,c.

The finite element analysis software COMSOL Multiphysics 5.6 was em-
ployed for the optimization of mechano-synapse shown in Figure 2b-d. By
incorporating the solid mechanics module and the steady-state solver, it
was successfully established a simulation model and calculated the force–
displacement curve. During the modeling process, it is discretized the
structural domain using triangular elements. To evaluate the performance
characteristics of the bistable structure, it was extracted the snap-through
force as a key indicator from the force–displacement curve.

Construction of Basic Logic Gates: Different logic gates and calcula-
tion modules were constructed based on bistable kirigami-based meta-
materials. Mechanical AND and OR logic gates were executed through
the two-petal kirigami metamaterials by limiting the push-in deformation.
This enabled the use of a whole family of common logic gates with similar
structures. Figure S2 (Supporting Information) presented three basic logic
gates, namely, the AND gate (Figure S2a–d, Supporting Information), OR
gate (Figure S2e–h, Supporting Information) and NOT gate (Figure S2i,j,
Supporting Information). Finite element analysis simulations were carried
out using ABAQUS to obtain the results of the stresses on the mechano-
synapse. The finite element results illustrated that the stress was localized
at the hinges of the two petals, while the rest of the structure was generally
stress-free.

More complicated logical gates and calculation modules were shown in
Figure S3 (Supporting Information). The XOR gate (Figure S3a, Support-
ing Information) was designed by a top-down method (i.e., focusing on
achieving the truth value table), consisting of two complementary blocks
that plug into each other when aligned. For a “0” output, two inputs take
the same value (both “0” or both “1”), and thus, these two blocks align
and prevent actuation of the output. Otherwise, the two blocks contact
each other, and the output was actuated for a “1” state. A model for a
mechanical version of a frequently used writing and storing module, SR
latch, was also designed in a top-down manner (Figure S3b, Supporting
Information). In this model, the state of Q can be controlled (or “written”)

Adv. Sci. 2023, 2308137 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2308137 (7 of 9)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202308137 by X

ian Jiaotong U
niversity, W

iley O
nline L

ibrary on [25/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

by S only when R was not actuated. Otherwise, when R was actuated, the
value of Q was reset regardless of the state of S. The design based on
the top-down method is much simpler than that based on the bottom-up
method. This function is achieved by the designed mechanical structure
when the boundary condition is changed by the R module. When the R
module was actuated, the right-side boundary of Q module was weakened,
which could not support the bistable performance of Q. Therefore, the Q
module was back to its initial state when Q = 1. A half adder was also
conceived (Figure S3c, Supporting Information), in which the summary
output S was obtained by an XOR gate, and the carry-out C was derived
from an AND gate.

Layout of the Non-Electrical Neural Network: To ensure the efficient
transmission of mechanical signals (force and displacement) between the
full adders that make up the mechanical neural network system, it was nec-
essary to determine the most concise layout of the full adders in each layer.
A principle of proximity was adopted to determine the best arrangement.
Here, the distance between two adjacent pixels was set to 1, and the con-
ciseness factor Q, defined as the sum of the distance between each con-
nected full adder, was used to quantify the conciseness of the topological
arrangement. Figure S5 (Supporting Information) lists six possible con-
nection schemes for the first layer of the mechanical neural network being
applied to a weight matrix with a maximum of eight 1s with the required
number of individual full adders to perform four pairwise additions. Here,
topology ① was the most concise layout with the minimum conciseness
factor Q = 11. The same assessment method was adopted for the other
layers of the mechanical neural network. The details and the most concise
layout of the second and third layers of the mechanical neural network
were given in Figures S6,S7 (Supporting Information), respectively, where
A, B, C, D represent full adders installed on the input plate, and AT, BT,
CT, DT represent the corresponding full adders rotated by 180°. Based on
the corresponding position according to the most concise topological ar-
rangement, the first layer of the mechanical neural network composed of
four single full adders could be installed separately. Then, the second layer
of the mechanical neural network composed of two sets of two full-adder
conjunctions and the third layer of the mechanical neural network with a
set of three full-adder conjunctions could be constructed and installed. To
ensure the construction accuracy of the mechanical neural network, con-
nection beams were appropriately designed and fabricated by 3D printing
to firmly join the inputs and outputs between adjacent layers. ABS (Acry-
lonitrile Butadiene Styrene) materials was used for the connection beams
to minimize the deformation and ensure the transmission efficiency of
mechanical signals between each layer.

Prototyping—Logic Gates: The frameworks of the logic gates were fab-
ricated by material jetting 3D printing (J826 Prime, Stratasys, USA) with
VeroWhite resin. The white flexible petal-shaped structure was fabricated
by fused deposition modeling (FDM) 3D printing (E2, Raise3D, China)
with TPU (PolyFlex TPU 95) materials. After fabrication, the petal-shaped
structure was installed in the framework and could be snapped through
under an external force.

Prototyping—Full Adder and the Non-Electrical Neural Network: The
blue frameworks of the full adder and mechanical neural network were
fabricated by material jetting 3D printing (J826 Prime, Stratasys, USA) us-
ing VeroWhite resin. The white petal-shaped structure was fabricated by
FDM 3D printing (E2, Raise3D, Shanghai) with TPU (PolyFlex TPU 95)
materials. It should be noted that the petal-shaped structure could also be
fabricated by laser cutting for more efficient and low-cost fabrication. The
input modules could be pushed onto the input area of the full adders to
actuate them. The connection beam between each layer of the mechanical
neural network was fabricated by FDM 3D printing (E2, Raise3D, Shang-
hai). To ensure high signal transmission efficiency of the force and dis-
placement, it was used the rigid material eSilk-PLA (eSUN, USA). Small
screws were used to fasten different sections of the connection beams. All
the full adders in different layers of the mechanical neural network were
installed on and fixed by a transparent acrylic plate to ensure robustness.

Prototyping—Handwritten “1” and “0” Models: The handwritten im-
ages of “0” and “1” from the dataset of MNIST to test the constructed
mechanical neural network. Representations of 10 handwritten “1” and
“0” each were fabricated by laser cutting (CMA0604-G-R, Han’s Yuem-

ing Laser, China) with acrylic plate. Each handwritten image was then
bonded together with a pixelized transparent plate fabricated with size of
256 mm × 256 mm × 10 mm.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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