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Abstract A data-driven method is established to

derive the (approximately) analytical expression of the

stationary response probability density of nonlinear

random vibrating system, which explicitly includes

system features and intensity of excitation. The

stationary response probability density is first assumed

as an exponential form by using the principle of

maximum entropy. Through the rule of dimensional

consistency, the power of exponential function is

expressed as a linear combination of a set of nondi-

mensional parameter clusters which are constituted by

system features, intensity of excitation, and state

variables. By comparing the power of exponential

function with the approximate logarithm probability

density evaluated from simulated data statistically, the

determination of unknown coefficients comes down to

the solution of (overdetermined) simultaneous linear

algebraic equations. The data-driven method redis-

covers the exact stationary response probability den-

sity of random-excited Duffing oscillator and derives

an approximately analytical expression of stationary

response probability density of van der Pol system

from the simulated data of six cases with different

values of system features and intensity of excitation.

This data-driven method is a unique method which can

explicitly include the information of system and

excitation in the analytical expression of stationary

response probability density. It avoids the solution of

simultaneous nonlinear algebraic equations encoun-

tered in the maximum entropy method and closure

methods and, in the meanwhile, avoids the sophisti-

cated selection of weighting functions in closure

methods.

Keywords Stationary response probability density �
Nonlinear random vibrating system � Data-driven
method � Dimensional analysis � Simulated data

1 Introduction

Nonlinear random vibration phenomena are ubiqui-

tous in the fields of mechanical engineering, civil

engineering, and other technologies, such as the

responses of a tower-shaped structure subjected to
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severe seismic excitations, a moving vehicle excited

by real rough road surfaces, and an aerospace structure

acted by severe atmospheric turbulence [1, 2]. The

exact prediction of the response probability density is

of great significance to evaluate the operating perfor-

mance, stability and reliability, and then guide the

design for reliability [3, 4]. The nonlinearity can arise

from various sources: the material nonlinearity (such

as the nonlinear stress–strain relation including a

hysteretic loop), the geometric nonlinearity (such as

the nonlinear strain–displacement relation due to large

deformation and the nonlinear damping with displace-

ment-dependent damping coefficient), and the topo-

logical nonlinearity (such as physical barriers limiting

the motion) [5]. Also, various random excitations

exhibit quite different properties in the aspects of

probability and correlation. Due to the nonlinearity of

systems themselves and the uncertainty of random

excitations, it is quite difficult to exactly predict the

probability densities of transient/stationary responses.

Nonlinear random vibrating systems are mathe-

matically described by simultaneous second-order

nonlinear stochastic differential equations (NSDEs)

[3, 4]. The representative methods establishing the

transient/stationary probability densities directly from

the NSDEs are the Monte Carlo simulation and the

maximum entropy method. The Monte Carlo simula-

tion statistically evaluates the approximate probability

densities of state variables at discrete grids from the

discrete simulated data of plenty of samples [6]. The

maximum entropy method seeks the approximate

probability density function maximizing the Shannon

informational entropy under the constraints of various

order moments and normalization condition [7–9], in

which the various order moments are determined by

the moment equations derived from the NSDEs, and

the functional extreme value problem with constraints

is solved by introducing Lagrangian multipliers. The

probability density is expressed as an exponential

function of the summation of Lagrangian multipliers

multiplying functions of state variables; then, the

Lagrangian multipliers are determined by solving a set

of nonlinear differential equations (for the transient

cases) or nonlinear algebraic equations (for the

stationary cases).

For the random vibrating systems with Gaussian

white noise or filtered white noise excitation, the

response probability density function satisfies the

Chapman–Kolmogorov–Smoluwski (CKS) equation

and the Fokker–Plank–Kolmogorov (FPK) equation

[3, 4]. The CKS equation is an integral equation

governing the transition probability density, while the

FPK equation is a parabolic partial differential equa-

tion with first-order derivative to time and second-

order derivatives to state variables. Almost all the

existing literatures derive the response probability

densities of nonlinear random systems by solving the

associated FPK equation, analytically or numerically.

Only for a few simple and low-dimensional nonlinear

systems, the exact stationary probability density is

derived by using the detailed balance or generalized

stationary potential methods [3, 4, 10]. Even for these

systems with exact stationary solutions, there always

exist some solvability conditions which are too strict

to be satisfied in actual situations. Thus, many purely

numerical procedures have been adopted, such as the

finite difference method, finite element method

[11, 12], generalized cell mapping technique [13, 14]

and path integration method [15–17]. These purely

numerical procedures are versatile, while only give the

discrete values in preset grids.

A lot of literatures devote the semianalytical

procedures to solve the FPK equation, such as the

equivalent methods (including statistical linearization

and equivalent nonlinear system [4, 18]), the closure

methods (including Gaussian [19], non-Gaussian [20]

and exponential [21–23], and its variants [24–26]).

The equivalent methods first preselect a special system

family with exact solution and then determine the

optimal approximation of the nonlinear system in a

certain statistical sense. The application of equivalent

linearization method is confined to weakly nonlinear

systems, while the application of equivalent nonlinear

systemmethod is limited by the preselection of system

family. The Gaussian closure technique is equivalent

to the statistical linearization method for the systems

with Gaussian white noise excitations and only

effective for the systems with weak nonlinearity.

The non-Gaussian closure technique expands the

probability density as various series and then deter-

mines the undetermined coefficients of the series. This

method, however, cannot guarantee the nonnegative

property of the probability density. The exponential

closure technique assumes the probability density can

be approximated by an exponential function of

polynomial in state variables and then determines

the undetermined coefficients by (iterative) weighted

residual method. This method guarantees the
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nonnegative property of the probability density, while

the simultaneous nonlinear differential or algebraic

equations must be solved, and the prediction accuracy

is strongly dependent on the selection of weighting

functions.

The existing methods for determining the response

probability densities of nonlinear random vibrating

systems are summarized in Fig. 1. The methods

starting from the NSDEs do not limited by the styles

of random excitations, while those starting from the

FPK equation are confined to the (filtered) Gaussian

white noise excitations. Furthermore, all the existing

methods possess some disadvantages. For instance,

the purely numerical methods only give the discrete

values in preset grids. The equivalent methods are

limited by the strength of nonlinearity and the scarcity

of system families with exact solutions. The maximum

entropy methods and the closure methods come down

to the solution of a set of simultaneous nonlinear

differential or algebraic equations. Furthermore, the

accuracy of the closure methods is strongly dependent

on the selection of weighting functions. Thus, it is

deserved to develop a new method to derive the

(approximately) analytical expression of transient/

stationary probability density directly from the

NSDEs, without involving the solution of simultaneous

nonlinear differential/algebraic equations and the

preselection of weighting functions.

This manuscript devotes to establish a data-driven

method to derive the (approximately) analytical

expression of stationary response probability density

of nonlinear random vibrating systems. The method

starts from the discrete simulated data and comes

down to the solution of a set of (overdetermined) linear

algebraic equations. The manuscript is organized as

follows: Sect. 2 states the whole process of the

methodology, including the exponential assumption

of stationary response probability density, the deter-

mination of possible parameter clusters, the optimiza-

tion criterion, and the optimization algorithm; two

typical examples, i.e., Duffing oscillator (with exact

solution) and van der Pol system (without exact

solution), are investigated in Sects. 3 and 4 to illustrate

the application and efficacy of the data-driven method;

Sect. 5 concludes this work and gives some

discussions.

2 Whole process of data-driven method

This section demonstrates the whole process of the

data-driven method step by step. This method starts

from the simulated data of NSDEs; thus, there is no

limitation on the styles of random excitations. For

simplicity, the random excitations are confined to

Gaussian white noises in what follows.

2.1 Mathematical description and data acquisition

of nonlinear random vibrating systems

A nonlinear random vibrating system excited by

Gaussian white noises can be described by the

stochastic differential equations,

C €q; _q; q; s;Wð Þ ¼ 0 ð1Þ

in which q ¼ q1; q2. . .; qnf g denotes (generalized)

displacements and the over dot means the derivative

with respect to time t. s ¼ s1; s2; . . .slf g is system

Fig. 1 Existing methods

for predicting the response

probability density of

random-excited systems
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feature, such as mass, stiffness and damping. W ¼
W1;W2. . .;Wmf g is a Gaussian white noise vector

with zero mean and correlation function

E W tð ÞW t þ sð Þ½ � ¼ 2Dd sð Þ, in which the intensity

2D ¼ 2Dij

� �
m�m

is symmetric and generally nondiag-

onal. The output (i.e., generalized displacement q)

depends on the system itself (i.e., system feature s) and

the input (i.e., random excitation W).

Regardless of the complexity induced by high

dimension, strong nonlinearity, and/or uncertainty of

random excitations, the approximate values of sta-

tionary response probability density at preset grids can

be evaluated from the simulated data statistically, i.e.,

record the simulated data, statistically calculate the

probability in discrete domains, and evaluate the

approximate values of probability density at preset

grids. The approximate stationary probability density

at preset grids qi; _qj
� �

is denoted as p̂s s;D; q; _qð Þ,
which depends on system feature s and intensity of

excitation 2D. This method starts from the simulated

data (maybe the simulated data from the same system

with different values of system feature and excitation

intensity), statistically evaluates the approximate

stationary probability density at preset grids, and

derives the explicit relation between the stationary

probability density, system feature, intensity of exci-

tation, and state variables.

2.2 Exponential assumption of stationary

probability density

Referring to the maximum entropy method and

exponential closure method, the stationary joint prob-

ability density of state variables of nonlinear random

vibrating systems can be expressed as the following

exponential form,

ps s;D; q; _qð Þ ¼ exp f s;D; q; _qð Þ½ � ð2Þ

in which the power of exponential function

f s;D; q; _qð Þ explicitly depends on system feature s,

intensity of excitation 2D, and state variables q and _q.

The assumption of exponential form guarantees the

nonnegativity of stationary probability density. Our

objective is to derive the explicitly analytical expres-

sion of the power from the approximate probability

density at preset grids evaluated statistically from the

simulated data.

2.3 Determination of nondimensional parameter

clusters and expansion of power

of exponential function

The power of exponential function f s;D; q; _qð Þ must

be nondimensional, because an exponential function

can be expressed as the power series of f . Thus, it is

reasonable to first express the power f s;D; q; _qð Þ as a
linear combination of a series of nondimensional

parameter clusters which are constructed by system

feature, intensity of excitation, and state variables.

Here, we construct the nondimensional parameter

clusters by the rule of dimensional consistency

[27–29].

For general mechanical vibrating systems, there

only exist three independent dimensions, i.e., the

dimensions of mass, length, and time denoted byM, L,

and T, respectively. The dimension of arbitrary

quantity j in mechanical systems can be expressed

by these three basic dimensions, that is j½ � ¼ MaLbTc,

in which a; b; c are real constants. For the random

vibrating systems, the dimensions of state variables

q; _q and system feature s, such as mass, linear, or

nonlinear stiffness coefficients, and linear or nonlinear

damping coefficients are easily determined. The

dimensions of intensities of excitations, however, are

determined by the following relation

Dij

� �
¼ Wi½ � Wi½ �T .

Preselect several quantities from system feature,

intensity of excitation, and state variables to construct

the nondimensional parameter clusters. The number of

preselected quantities k should be equal to or larger

than 3 which is the number of independent dimen-

sions, and the number of possible selections is

Ck
2nþlþm� mþ1ð Þ=2. The powers of these preselected

quantities can be obtained by solving homogeneous

linear algebraic equations with three rows and k
columns. For each selection, the homogeneous linear

algebraic equations may have a unique solution (i.e.,

zero solution) or infinite solutions. Zero solution

corresponds to a nondimensional constant 1. The

infinite solutions mean that there exist infinite ways to

construct nondimensional quantities through the pre-

selected quantities. For complicated systems, we tend

to first select less quantities to construct the nondi-

mensional parameter clusters. Only when the analyt-

ical results cannot satisfy the requirement of accuracy,

we include more quantities in the construction of
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nondimensional quantities. For simple systems, we

directly select all the quantities to construct the

nondimensional parameter clusters.

Then, the power of exponential function can be

expanded as the linear combinations of the nondi-

mensional parameter clusters, that is,

f s;D; q; _qð Þ ¼
X

i

Gi � gi s;D; q; _qð Þ ð3Þ

in which gi s;D; q; _qð Þ are the nondimensional param-

eter clusters which may include all or part of the

system feature, intensity of excitation, and state

variables. For the nondimensional parameter clusters

with free index(es), we first set the free index(es) as

small integers and then increase the values of free

index(es) until the accuracy is satisfactory. Note that

the nondimensional constant 1 is included in param-

eter clusters as an independent cluster. The coefficient

of the nondimensional constant 1 corresponds to the

normalization constant of the stationary probability

density. The other undetermined nondimensional

coefficients Gi can be regarded as the characteristic

values of the system, which do not change with the

values of system feature and intensity of excitation.

2.4 Criteria selection and optimization algorithm

Superficially, we should construct the total residual

between the analytical probability density with expo-

nential form and the approximate probability density

statistically evaluated from the simulated data in full

spatial domain and then determine the undetermined

coefficients Gi by minimizing the residual. This

procedure, however, will inevitably induce a complex

solving problem of nonlinear algebraic equations.

Alternatively, we can bypass this difficulty by com-

paring the power of exponential form of stationary

probability density f s;D; q; _qð Þ and the approximate

logarithm probability density ln p̂s s;D; q; _qð Þ½ �. The

residual in a prescribed spatial domain X is defined as,

e ¼
ZZ

X
f s;D;q; _qð Þ � ln p̂s s;D;q; _qð Þ½ �f g2dqd _q

¼
ZZ

X

X

i

Gi � gi s;D; q; _qð Þ � ln p̂s s;D; q; _qð Þ½ �
( )2

dqd _q

ð4Þ

Minimizing the residual yields the linear algebraic

relations with respect to undetermined coefficients Gi,

i.e.,

ZZ

X

X

j

Gj � gj s;D; q; _qð Þ � ln p̂s s;D; q; _qð Þ½ �
( )

� gi s;D; q; _qð Þdqd _q;
i ¼ 1; 2. . .

ð5Þ

The number of linear relations just matches with the

number of undetermined coefficients Gi. Solving the

simultaneous linear algebraic equations gives the

optimal values of the undetermined coefficients G�
i .

Note that the integral expression must be calculated

numerically because the approximate probability

density p̂s s;D; q; _qð Þ is only given in preset grids. It

is worth pointing out that for an arbitrarily prescribed

spatial domain, we can establish a set of linear

algebraic equations with the same number of unde-

termined coefficients Gi. If the full spatial domain is

deliberately partitioned into several subdomains, we

will obtain plenty of linear algebraic equations with

the number significantly larger than that of Gi. If the

exact data are adopted, the number of the independent

equations just equals to the number of Gi, and so the

deliberate partition of the spatial domain is insignif-

icant. However, for the approximate probability

density at preset grids evaluated statistically, the

deliberate partition is of great significance. The

optimal values of undetermined coefficients can be

obtained by the pseudo-inverse algorithm, which can

dramatically reduce the influence of the error induced

by the statistical calculation from a small amount of

simulated data. Furthermore, the number of the

overdetermined equations can be further enlarged by

using the statistically evaluated approximate proba-

bility densities of the same system with different

values of system feature and intensity of excitations.

In the approximate probability density statistically

evaluated from the simulated data, it is possible that

there exist some grids with the probability density

value just being zero. Due to the singularity of the

logarithm of real numbers close to 0, the small

domains including these grids should be excluded

from the integral domain in Eq. (5). In addition,

compared to the criterion with respect to the proba-

bility density itself, the criterion with respect to the

logarithm probability density means assigning large

weight at the domain near to the edge of probability
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density. Thus, the probability density obtained will be

more accurate at the edge, which is of great signifi-

cance for the analysis and design for reliability. So far,

the (approximately) analytical expression of the

stationary probability density of nonlinear random

vibrating systems can be derived by solving a set of

(overdetermined) linear algebraic equations, no matter

how complex the system concerned. The flow dia-

grams of the data-driven method are depicted in

Fig. 2.

3 Numerical example: Duffing oscillator

In this section, we concentrate on the famous nonlin-

ear system, i.e., Duffing oscillator, and derive the

stationary probability density from the simulated data

by the data-driven method. The exact stationary

probability density of Duffing oscillator is known,

and so it can be used as a benchmark problem to assess

the efficacy of the data-driven method.

Consider a Duffing oscillator subjected to external

Gaussian white noise excitation. The equation of

motion is as,

m€qþ c _qþ k1qþ k3q
3 ¼ W tð Þ ð6Þ

in which m and c are the mass of block and linear

damping coefficient, respectively. k1 and k3 are linear

and nonlinear stiffness coefficients, respectively. The

intensity of excitation is denoted by 2D.

The dimensions of the system feature (i.e., mass,

damping coefficient, stiffness coefficients), intensity

of excitation, state variables (i.e., displacement and

velocity) are listed in Table 1. For this simple system,

we directly select all these quantities to construct

nondimensional parameter clusters. From the rule of

dimensional consistency, we have M0L0T0 ¼
m½ �i c½ � j k1½ �k k3½ �l D½ �s q½ �s _q½ �r. The powers satisfy the

following homogeneous linear algebraic equations,

i.e.,

Fig. 2 Flow diagrams of the data-driven method
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iþ jþ k þ lþ 2s ¼ 0; �2lþ 2sþ sþ r ¼ 0;
� j� 2k � 2l� 3s� r ¼ 0

ð7Þ

The powers s, s and r can be represented by the other

four powers i, j, k and l by solving the above linear

equations. Then, the nondimensional parameter clus-

ters can be expressed as,

mic jkk1k
l
3D

�iþjþkþl
2 q

�iþjþ3kþ7l
2 _q

3iþj�k�l
2 ð8Þ

According to the principle of simplicity, we first select

the free variables i, j, k and l, as 1, 0, - 1. By deleting

the singular terms and complex terms, the nondimen-

sional parameter clusters are reduced as,

1; ck1D
�1q2; k�1

1 k3q
2; ck3D

�1q4;

mc�1k1k3D
�1q4; mk1D

�1q _q; mc�1k�1
1 k3q _q;

mk3D
�1q3 _q;mck1k3D

�2q5 _q; mcD�1 _q2;

mck�1
1 k3D

�1q2 _q2

ð9Þ

These parameter clusters will be cited as gj s;D; q; _qð Þ
in what follows. The power of the assumed exponen-

tial function of stationary probability density is then

expanded as the linear combinations of the nondi-

mensional parameter clusters. That is,

f s;D; q; _qð Þ

¼
X10

j¼0

Gj � gj s;D; q; _qð Þ

¼ G0 � 1þ G1 � ck1D
�1q2 þ G2 � k�1

1 k3q
2

þ G3 � ck3D
�1q4 þ G4 � mc�1k1k3D

�1q4

þ G5 � mk1D
�1q _qþ G6 � mc�1k�1

1 k3q _q

þ G7 � mk3D
�1q3 _qþ G8 � mck1k3D

�2q5 _q

þ G9 � mcD�1 _q2 þ G10 � mck�1
1 k3D

�1q2 _q2

ð10Þ

in which Gj i ¼ 0; 1; . . .10ð Þ are the undetermined

coefficients associated with the parameter clusters

gj s;D; q; _qð Þ.

The undetermined coefficients Gj i ¼ 0; 1; . . .10ð Þ
satisfy the following simultaneous linear algebraic

equations,

X10

j¼0

ZZ

X
gj s;D; q; _qð Þ � gi s;D; q; _qð Þdqd _q

� �

Gj ¼
ZZ

X
ln p̂s s;D; q; _qð Þ½ � � gi s;D; q; _qð Þdqd _q

i ¼ 0; 1; . . .10ð Þ
ð11Þ

Note that g1=g2 ¼ ck21D
�1k�1

3 ; g3=g4 ¼ c2m�1k�1
1 ;

g5=g6 ¼ k21D
�1ck�1

3 are independent on state variables

q; _q. Thus, for a set of given values of system feature

and intensity of excitation, the coefficients of

G1;G3;G5 are proportional to G2;G4;G6, respec-

tively, regardless of the selection of the prescribed

spatial domain. Here, we develop the following

procedure to derive the undetermined coefficients by

using the statistically evaluated approximate proba-

bility densities from several cases, i.e., the same

system with different values of system feature and

intensity of excitation.

We first combine the nondimensional parameter

clusters with the same power of state variables. The

expression of the power of stationary probability

density in Eq. (10) is then rearranged as,

f s;D; q; _qð Þ
¼ G0 � 1þ P1 � q2 þ P2 � q4 þ P3 � q _q

þ G7 � mk3D
�1q3 _qþ G8 � mck1k3D

�2q5 _q

þ G9 � mcD�1 _q2 þ G10 � mck�1
1 k3D

�1q2 _q2

ð12Þ

with P1 ¼ G1ck1D
�1 þ G2k

�1
1 k3;P2 ¼ G3ck3D

�1 þ
G4mc

�1k1k3D
�1;P3 ¼ G5mk1 D�1 þ G6mc

�1k�1
1 k3.

For an arbitrarily selected set of values of system

feature and intensity of excitation, we can derive a set

of values of G0;P1;P2;P3;G7;G8;G9;G10. The coef-

ficients G7;G8;G9;G10 are independent to system

feature and intensity of excitation. The coefficient G0

Table 1 Dimensions of system feature, intensity of excitation, and state variables of Duffing oscillator

s1 mð Þ s2 cð Þ s3 k1ð Þ s4 k3ð Þ s5 Dð Þ q _q f s;D; q; _qð Þ

M 1 1 1 1 2 0 0 0

L 0 0 0 - 2 2 1 1 0

T 0 - 1 - 2 - 2 - 3 0 - 1 0
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which corresponding to the normalization condition is

usually different for different values of system feature

and intensity of excitation. The coefficients

G1;G2;G3;G4;G5;G6 which are independent to sys-

tem feature and intensity of excitation can be solved

from the definition of Pi and the values Pi for several

cases by using the Gaussian elimination method (for

two cases) or pseudo-inverse algorithm (for three or

more cases).

Here, the statistically evaluated approximate prob-

ability densities from two cases are adopted to

determine the characteristic quantities Gj i ¼ 0; 1;ð
. . .10Þ. The values of system feature and intensity of

excitation are listed in Table 2. The approximate

values of probability densities with the grid spacing

1=10� 1=10 are evaluated statistically from two

hundred million simulated data, as shown in Fig. 3a,

b. Denote the maximum value of p̂s s;D; q; _qð Þ as

p̂max s;Dð Þ, and we select the spatial domain with the

approximate values of probability densities larger than

ap̂max s;Dð Þ to derive the undetermined coefficients.

Here, 0\a� 1, and the smaller the value of a the

larger the domain utilized.

Set a being 0:01, and the data adopted are shown in
the upper two contour figures of Fig. 4. From the data

of Case I, we obtain G0 ¼ �1:36, P1 ¼ �0:757,

P2 ¼ �0:615, P3 ¼ �8:57� 10�5, G7 ¼ �1:03�
10�4, G8 ¼ 8:11� 10�5, G9 ¼ �0:501, G10 ¼
1:81� 10�4, while from the data of Case II,

G0 ¼ �1:96, P1 ¼ �0:167, P2 ¼ �0:249, P3 ¼
2:81� 10�5, G7 ¼ �5:36� 10�5, G8 ¼ 1:29� 10�4,

G9 ¼ �0:502, G10 ¼ �1:81� 10�4. From the values

of Pi in these two cases, we obtain G1 ¼ �0:505,

G2 ¼ 5:84� 10�4; G3 ¼ �0:249; G4 ¼ 5:66� 10�4;

G5 ¼ �4:44� 10�5; G6 ¼ 1:43� 10�5.

Then, the analytical expression of the stationary

probability density of Duffing oscillator derived from

the data-driven method is as,

ps s;D; q; _qð Þ
¼ exp f s;D; q; _qð Þ½ � ¼ exp G0½ � � exp½�0:505ck1D

�1q2

þ 5:84� 10�4k�1
1 k3q

2 � 0:249ck3D
�1q4

þ 5:66� 10�4mc�1k1k3D
�1q4 � 4:44� 10�5mk1D

�1q _q

þ 1:43� 10�5mc�1k�1
1 k3q _q� 1:03� 10�4mk3D

�1q3 _q

þ 8:11� 10�5mck1k3D
�2q5 _q� 0:501� mcD�1 _q2

þ 1:81� 10�4mck�1
1 k3D

�1q2 _q2�
ð13Þ

By neglecting the quantities with small order of

magnitude, it is obvious that the derived stationary

probability density agrees very well with the well-

known analytical expression,

p q; _qð Þ ¼ C exp � c

D

1

2
m _q2 þ 1

2
k1q

2 þ 1

4
k3q

4

� 	� �

ð14Þ

Table 2 Values of system parameters of Duffing oscillator for

two cases

m c k1 k3 D

Case I 1.0 0.5 1.5 2.5 0.5

Case II 1.0 1.0 0.5 1.5 1.5

Fig. 3 Statistically evaluated approximate stationary probability density of Duffing oscillator (with grid spacing 1=10� 1=10). a Case
I; b Case II
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The contour maps of the derived expression from the

data-driven method in Eq. (13) and the analytical

expression in Eq. (14) are depicted in the middle two

figures and the lower two figures of Fig. 4, respec-

tively. The data-driven method identifies the analyt-

ical expression of the stationary probability density

with high accuracy from the simulated data. Figure 5

depicts the data adopted as a ¼ 0:25 (as shown in the

upper two figures) and the contour maps of the derived

results from data-driven method (as shown in the

lower two figures). Figure 6 gives the associated

results as a ¼ 0:5.

To evaluate the identified accuracy of the data-

driven method, an error of the identified result to the

analytical result is defined as,

R ¼
P10

i¼1 Gi � aið Þ2
P10

i¼1 a
2
i

ð15Þ

in which a1 ¼ � 1
2
, a3 ¼ � 1

4
, a9 ¼ � 1

2
which are the

effective coefficients in analytical expression in

Eq. (14), while ai ¼ 0 i 6¼ 1; 3; 9ð Þ. The data-driven

Fig. 4 Contour maps of stationary probability density of

Duffing oscillator. a Approximate probability density of Case

I (a ¼ 0:01); b approximate probability density of Case II

(a ¼ 0:01); c derived solution of Case I from data-driven

method; d derived solution of Case II from data-driven method;

e exact solution of Case I; f exact solution of Case II
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method gives analytical expression of stationary

probability density with high accuracy up to

a ¼ 0:75, as shown in Fig. 7. Figure 8 depicts the

dependence of the error of data-driven method on the

number of simulated data from which the approximate

probability densities at preset grids are evaluated

statistically. The error monotonically decreases with

the increase in the number of simulated data. Further-

more, by using the exact approximate probability

densities at preset grids, the analytical expression

identified by the data-driven method is almost com-

pletely consistent with the exact stationary probability

density in Eq. (14).

4 Numerical example: van der Pol system

In this section, we concentrate on the van der Pol

system excited by Gaussian white noise, which is an

important nonlinear system in the field of nonlinear

dynamics. It comes from a circuit system including

semiconductor, capacitance, inductance, and battery

and now has been realized in mechanical system [30].

So far, the analytical expression of the stationary

probability density of van der Pol system has not been

derived.

The equation of motion of van der Pol system is

expressed as,

m€qþ c1 þ c2q
2

� �
_qþ kq ¼ W tð Þ ð16Þ

in which m is the mass of block, k is linear stiffness

coefficient. c1\0 and c2 [ 0 are linear and nonlinear

damping coefficients, respectively. W tð Þ is Gaussian
white noise with intensity 2D.

The dimensions of system feature, intensity of

excitation, and state variables are listed in Table 3.We

select all quantities to construct the nondimensional

parameter clusters. From the rule of dimensional

consistency, we have M0L0T0 ¼ m½ �i c1½ � j c2½ �g

k½ �l D½ �s q½ �s _q½ �r. The powers satisfy the following

homogeneous linear algebraic equations, i.e.,

Fig. 5 Contour maps of stationary probability density of

Duffing oscillator. a Approximate probability density of Case

I (a ¼ 0:25); b approximate probability density of Case II

(a ¼ 0:25); c derived solution of Case I from data-driven

method; d derived solution of Case II from data-driven method
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iþ jþ gþ lþ 2s ¼ 0; �2gþ 2sþ sþ r ¼ 0;
� j� g� 2l� 3s� r ¼ 0

ð17Þ

The indexes s, s, and r can be represented by the other
four indexes i, j, g, and l. Then the nondimensional

parameter clusters are expressed as,

mic
j
1c

g
2k

lD�iþjþgþl
2 q

�iþjþ5gþ3l
2 _q

3iþjþg�l
2 ð18Þ

Set the free indexes i, j, g, and l as - 2, - 1, 0, 1, 2,

and retain the nondimensional parameter clusters with

the power of state variables not higher than 4. The

number of the nondimensional parameter clusters

gj s;D; q; _qð Þ is 45. The power of the exponential

Fig. 6 Contour maps of stationary probability density of

Duffing oscillator. a Approximate probability density of Case

I (a ¼ 0:5); b approximate probability density of Case II

(a ¼ 0:5); c derived solution of Case I from data-driven method;

d derived solution of Case II from data-driven method
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Fig. 7 Dependence of the error R on the value of parameter a
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R
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Fig. 8 Dependence of the error R on the number of data points
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expression of stationary probability density is then

expressed as the linear combinations,

f s;D; q; _qð Þ ¼
P44

j¼0

Gj � gj s;D; q; _qð Þ.

Careful observation shows that we can use the data

from six cases to determine the undetermined coeffi-

cientsGj j ¼ 0; 1. . .; 44ð Þ. The values of system feature

and intensity of excitation for these six cases are

shown in Table 4. The approximate stationary prob-

ability densities for each case are evaluated statisti-

cally from two hundred million simulated data, just as

shown in Fig. 9. By setting the parameter a being 0:01,
the analytical expression of the stationary probability

density identified by the data-driven method is as,

p x; _xð Þ ¼ exp G0½ � � exp½4:32� 10�2c�1
1 c2q

2

� 0:327c1k1D
�1q2 � 0:118m�1c�1

1 c22k
�2
1 Dq2

� 9:66m�1c1c2k
�1
1 q2 � 6:25� 10�4c�2

1 c22q
4

� 6:50� 10�2c2k1D
�1q4 þ 4:55� 10�4c21k

2
1D

�2q4

þ 1:77� 10�3m�2c21c
2
2k

2
1q

4 þ 9:12

� 10�2m�1c21c2D
�1q4 � 5:73� 10�2m�1c22k

�1
1 q4

þ 1:28� 10�5mc�2
1 c2k

2
1D

�1q4

� 0:721c21D
�1q _qþ 4:78� 10�3c�2

1 c22k
�2
1 Dq _q

� 1:14k�1
1 c2q _q� 4:28� 10�2m�1c21c2k

�2
1 q _q

� 5:57� 10�5mc�2
1 c2q _q

� 1:95� 10�4mk1D
�1q _qþ 1:74

� 10�3mc21c
�1
2 k21D

�2q _q� 2:84

� 10�5m2c�2
1 k21D

�1q _q� 0:144c1c2D
�1q3 _q

� 1:39� 10�2c�1
1 c22k

�1
1 q3 _qþ 0:683m�1c1c

2
2q

3 _q

� 6:57� 10�4mc�1
1 c2k1D

�1q3 _qþ 2:70

� 10�4mc1k
2
1D

�2q3 _q� 9:91c1c2k
�2
1 _q2

� 0:274mc1D
�1 _q2 þ 5:51� 10�2mc�1

1 c2k
�1
1 _q2

� 1:09� 10�3m2c�1
1 k1D

�1 _q2

� 1:71� 10�4m2c1c
�1
2 k21D

�2 _q2 � 0:147c�2
2 k21q

2 _q2

� 9:69� 10�2c21c2k
�1
1 D�1q2 _q2

� 0:125mc2D
�1q2 _q2 � 7:40� 10�4mc�2

1 c22k
�1
1 q2 _q2

þ 2:00� 10�3mc21k1D
�2q2 _q2 � 2:95

� 10�5m2c�2
1 c2k1D

�1q2 _q2 þ 3:12

� 10�6m2k21D
�2q2 _q2 � 1:38� 10�2mc�1

1 c22k
�2
1 q _q3

� 0:284mc1c2k
�1
1 D�1q _q3 � 2:62m2c�1

1 c2D
�1q _q3

þ 1:03� 10�3m2c1k1D
�2q _q3 þ 0:221mc21c2k

�2
1 D�1 _q4

� 1:53� 10�4m2c21D
�2 _q4 þ 3:40� 10�4m2c�2

1 c22k
�2
1 _q4

� 6:17� 10�2m2c2k
�1
1 D�1 _q4�

ð19Þ

The contour maps of the data adopted and the

results derived from the data-driven method are

depicted for comparison, as shown in Fig. 10. The

upper six figures represent the data adopted, while the

lower six figures represent the results derived from the

data-driven method. The stationary probability densi-

ties identified by the data-driven method agree very

well with the approximate probability densities from

those the analytical expression in Eq. (19) is derived.

Define the error of the derived solution from the

data-driven method to a reference solution, that is,

R ¼
RR

p q; _qð Þ � pref q; _qð Þ
� �2

dqd _q
RR

pref q; _qð Þ
� �2

dqd _q
ð20Þ

in which p q; _qð Þ ¼ exp f s;D; q; _qð Þ½ � is the derived

probability density by the data-driven method. Here,

we adopt the numerical solution of the associated

reduced FPK equation as the reference result pref q; _qð Þ.
The reduced FPK equation associated with the van der

Pol system is as,

� _q
op

oq
þ 1

m

o

o _q
c1 þ c2q

2
� �

_qþ kq
� �

p

 �

þ D

m2

o2p

o _q2
¼ 0

ð21Þ

The dependence of the error R on the value of

parameter a is depicted in Fig. 11. The data-driven

method gives the analytical expression with high

accuracy even for large value of a. Figure 12 depicts

the dependence of the error R on the number of

simulated data from which the approximate probabil-

ity density is evaluated statistically. The error mono-

tonically decreases with the increase in the number of

simulated data which corresponds to the increase in

the accuracy of the approximate probability density.

The analytical expression in Eq. (19) is obtained from

the simulated data of six specific cases. Although it is

not the exact analytical solution, we participate it

provides good approximation of van der Pol system

with values of system feature and intensity of excita-

tion which is not deviating those of six specific cases

prominently. Select the values of system attribute and

intensity of excitation of Case III as the baseline.

Figure 13a, b depicts the dependences of the errorR on

the variation of mass and linear damping coefficient,

respectively. The analytical expression from data-

driven method gives the approximation of stationary

probability density with acceptable accuracy for a
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considerable range of variation of system feature and

intensity of excitation.

5 Conclusion and discussion

A data-driven method is established to derive the

(approximately) analytical expression of the station-

ary probability density of nonlinear random vibrating

system, which comes down to the solution of

(overdetermined) simultaneous linear algebraic equa-

tions. The exact analytical expression of the stationary

probability density of random-excited Duffing oscil-

lator can be rediscovered. For van der Pol system, the

approximately analytical expression of the stationary

probability density is obtained from the simulated data

of six cases with different values of system feature and

intensity of excitation, which is effective for a

considerable range of parameter variation.

By using the rule of dimensional consistency, the

derived analytical expression explicitly includes sys-

tem feature and intensity of excitation. The data-

driven method is the unique method which can

explicitly include the information of system itself

and excitation. Compared to theMCSmethod which is

time-consuming and can only give the discrete values

at preset grids, the data-driven method yields the

analytical expression of the stationary probability

density. By comparing the power of exponential

function with the approximate logarithm probability

density, the data-driven method comes down to the

solution of simultaneous linear algebraic equations,

which is easier than other existing methods, such as

the maximum entropy method and the closure meth-

ods which correspond to the solution of simultaneous

nonlinear algebraic equations.

Furthermore, the data-drivenmethod starts from the

simulated data of the original NSDEs; thus, there is not

any limitation on the styles of random excitations and

the styles of nonlinearity. This method, in theory, can

be used to derive the stationary probability density for

nonlinear systems with general random excitations.

For instance, for the nonlinear systems with combined

excitation of Gaussian white noise and harmonic

force, the amplitude and circular frequency of har-

monic force participate the construction of nondimen-

sional parameter clusters. Furthermore, it is worth

pointing out that the procedure of determining nondi-

mensional parameter clusters can be generalized, i.e.,

deliberately add arbitrary functions of dimensionless

parameter clusters as new parameter clusters if any

prior knowledge is provided. This generalization is of

great significance for complex nonlinear systems (e.g.,

hysteretic systems and frictional systems), in which

the appropriate supplement of some specific parameter

clusters will dramatically decrease the term number

needed by the power expansion and prominently

improve the efficiency of the data-driven method.

Table 3 Dimensions of system feature, intensity of excitation, and state variables of van der Pol system

s1 mð Þ s2 c1ð Þ s3 c2ð Þ s3 kð Þ s5 Dð Þ q _q f s;D; q; _qð Þ

M 1 1 1 1 2 0 0 0

L 0 0 - 2 0 2 1 1 0

T 0 - 1 - 1 - 2 - 3 0 - 1 0

Table 4 Values of system parameters of van der Pol system

for six cases

m c1 c2 k D

Case I 1.0 - 0.1 0.3 2.0 0.4

Case II 1.0 - 0.15 0.25 3.0 0.1

Case III 1.0 - 0.2 0.2 1.5 0.2

Case IV 1.0 - 0.25 0.15 2.5 0.5

Case V 1.0 - 0.3 0.1 1.0 0.05

Case VI 1.0 - 0.05 0.4 0.5 0.25
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Fig. 9 Statistically evaluated approximate stationary probability density of van der Pol system. a Case I; b Case II; c Case III; d Case

IV; e Case V; f Case VI
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Fig. 10 Contour maps of stationary probability density of van der Pol system. The upper six figures depict the approximate probability

density for Cases I–VI (a ¼ 0:01); the lower six figures depict the derived solution for Cases I–VI
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Fig. 11 Dependence of the error R on the value of parameter a
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Fig. 12 Dependence of the error R on the number of data points
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Fig. 13 Dependences of the error R on mass and linear

damping coefficient. a Mass; b linear damping coefficient
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