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Switched systems, i.e., systems changing the parameter values (even structural forms) abruptly and randomly at arbitrary
instants, have been extensively utilized in many fields of modern industries. Rapid identification of switched systems, i.e.,
capturing all the changing instants and reconstructing the mathematical models rapidly, is of great significance for behavior
prediction, performance evaluation and possible control, but is restricted by small data amount available. Here, the rapid
identification problem is successfully solved by a data-driven method in variational framework. The data-driven method only
requires a small amount of data due to the compact form of the variational description, and is robust to data noise due to the
holistic viewpoint. Two numerical examples, i.e., Duffing oscillator and van der Pol system (as two representative systems in
nonlinear dynamics), are adopted to illustrate its application, efficiency and robustness to noise.
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1 Introduction

In modern industries, a lot of systems change their parameter
values and structural forms actively or passively. For in-
stance, a variable-wing aircraft switches the configuration of
wings actively to execute various missions [1,2]. A ma-
chinery operating in extreme circumstances (e.g., an aircraft
exposed to high temperature and strong jet noise) changes its
parameter values (e.g., damping and stiffness) passively. The
common characteristic of the above systems is that para-
meter values and structural forms change ceaselessly, rapidly
or slowly, continuously or abruptly. Here, we define swit-
ched systems explicitly as below: systems with parameter
values changing abruptly in time and randomly in amplitude
at arbitrary instants, and systems with structural forms
changing (e.g., add or delete terms, or response character-

istics changes) at arbitrary instants. In accordance with this
definition, the time-variable systems [3,4] do not belong to
the switched systems. The analytical procedures for the
switched systems, however, can be readily generalized to
time-variable systems.
The dynamic properties and operating performances of

switched systems dramatically vary with time. Thus, it is
quite important to grasp the mathematical description (i.e.,
the governing equations of motion) in real time, which helps
us predict behaviors and evaluate performances [5]. Due to
the rapidness, randomness and diversity of switches, it is
impossible to identify the mathematical description pre-
liminarily in the process of design. There is only one way
left, i.e., rapidly identify and reidentify the mathematical
description from the captured noisy data.
Due to the abrupt switches of switched systems, there is

only small data amount available and only extremely short
time to execute the identifying and reidentifying processes.
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The rapid development of machine learning and computer
technology has given birth to many new algorithms for
system identification [6,7]. Most of them, however, tend to
be not appropriate to identify switched systems. For instance,
neural networks [8–10] have been applied to system identi-
fications for decades, but massive training data and com-
puting time are required in order to gain viable models. Other
classical methods (such as Kalman filters [11], eigensystem
realization algorithm [12], autoregressive models [13], to
name only a few) also provide a prediction of subsequent
values of some specific quantities, and cannot derive the
analytical expression describing system behaviors. System
models identified by all of these methods lack simplicity and
interpretability.
Symbolic regression method [14–16] and sparse regres-

sion method [17–19] are two recent advances in the field of
system identification. These two methods are in the differ-
ential framework, i.e., identifying the differential equations
of motion by discrete data captured from simulations or
experiments. The identified differential equations are sim-
plified by adopting the Pareto criteria [15] and parsimonious
rule [15,20] which induce the eminent interpretability.
Technically, the symbolic regression method can identify
arbitrarily complex nonlinear systems, but, in fact, it is rather
prone to overfitting if the parsimony and accuracy are not
well balanced, and specially, is extremely time-consuming
[14,15]. Thus, it is not reasonable to identify and reidentify
switched systems by the symbolic regression method. The
sparse regression method has successfully identified the
differential equations of state variables of various nonlinear
dynamical systems [17], and has been generalized to the
rapid model recovery of nonlinear dynamical systems with
switched parameters and structures [21]. By combining with
the model predictive control strategy, it has been adopted to
control nonlinear dynamical systems in the low-data limit
[22].
Recently, a data-driven method in variational framework

has been established and successfully applied to the varia-
tional law identification of physical systems [23]. This data-
driven method (i.e., identify variational equations) can be
regarded as a counterpart of symbolic regression and sparse
regression methods (i.e., identify differential equations). It
inherits the advantages of sparse regression method, at the
same time has its own advantages. To be specific, the data-
driven method only requires a small amount of data due to
the compact form of variational description, and is robust to
data noise due to the holistic viewpoint (that is to say, the
characteristics of integration). Thus, it is appropriate to
generalize this data-driven method to rapidly identify and
reidentify the variational equations of switched systems. This
paper devotes to this subject.
The main structure of this paper is as follow. First, the

data-driven methodology of rapidly identifying switched

systems is presented in detail. Second, two representative
switched systems, i.e., a switched Duffing oscillator with
parameter variations and a switched van der Pol system with
structure changing, are investigated to demonstrate the ap-
plication, efficiency and robustness of this data-driven
method. Finally, a brief conclusion is given to illustrate the
potential applications of the rapid identification method to
the real-time control of switched systems.

2 Data-driven method to rapidly identify swit-
ched systems

For a given switched system, we real-timely capture the
discrete data of state variables (and inputs if exist) at discrete
instants by various sensors. The time delay induced by
sensors can be reduced dramatically by the advances of
sensing technologies [24], and so can be omitted. The dis-
crete data captured from experiments are unavoidably con-
taminated by noises, and so must be discussed in detail. Our
objectiveness is to establish a data-driven method, which can
identify the variational equation governing the dynamic be-
haviors only through a small amount of discrete data, and can
track the switches of parameter values and structural forms,
with fast analysis speed and high robustness to measurement
noise.
Here, the data-driven method is established aimed to

switched systems with finite degree-of-freedoms. That is to
say, these systems are described by ordinarily differential
equations or integral-variational equations in temporal do-
main. The flow chart of the whole process of this method is
shown in Figure 1. This whole process consists of the fol-
lowing three successive steps: step 1, capture the discrete
data in real time; step 2, identify the variational equation
governing the dynamic behaviors of switched system; step 3,
detect the occurrence of switches, and reidentify the renewed
variational equation once a switch occurs.

2.1 Step 1: Capture discrete data in real time

First, we determine the state variables q, q (such as dis-
placements and velocities for mechanical systems, and
charges and currents for electric systems), and the excitations
F which may influence the dynamic behaviors (such as ex-
ternal forces for mechanical systems, and voltages for elec-
tric systems). Then, we configure the appropriate sensors to
detect and record the discrete data of state variables and
excitations at discrete instants, i.e., { }t t tq q F( ), ( ), ( )i i i . If only
q(ti) (or tq( )i ) are detected by sensors, another quantity tq( )i
(or q(ti)) must be calculated by various efficient algorithms
of numerical differentiation or numerical integration. This
data-driven method is based on and only based on the dis-
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crete dataset, not only for identifying and reidentifying the
variational equations, but also for detecting the occurrence of
switches.

2.2 Step 2: Identify the integral-variational equation

For a general physical system, the state variables satisfy the
following integral-variational equation [23,25,26]:

U U q tq q q q F( , ) + ( , , ) d = 0, (1)
T

T

j j j0
1

2

where U0 and Uj are functions of the state variables (i.e., the
motion q(t) and its time derivative tq( )) and the excitations
F(t). δqj(t) are arbitrary variations of the actual motion q(t)
with the constraints at starting and ending instants, that is
δqj(T1)=0 and δqj(T2)=0. The integral-variational equation
keeps right for arbitrary integral interval [T1, T2] and for
arbitrary variations δqj(t). The identification of the integral-
variational equation is then converted to the identification of
the undetermined integrands U0 and Uj.
The undetermined integrands U q q( , )0 and U q q F( , , )j can

be generally expanded on the associated complete bases,
respectively, i.e.,

U C fq q q q( , ) = ( , ), (2a)
i

i i0
=1

U D gq q F q q F( , , ) = ( , , ). (2b)j
i

j j
=1 i i

Here, the functions fi and g ji
constitute the associated com-

plete bases. For simplicity, they can be directly selected as
the power functions of q, q and F, i.e.,

f q q q q q qq q( , ) = , (3a)i
i i
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where n is the degree of freedoms, and is, jil are non-negative
integers. U0 and Uj can be regarded as the linear functions
with undetermined coefficients Ci and Di, respectively.
Theoretically, the expansions of U0 and Uj should include
infinite terms. In practice, however, only the terms with
lower-order power are of great significance according to the
parsimonious rule [17]. Then, the system identification
comes down to the determination of the undetermined
coefficients Ci and Di with finite numbers.
For a given integral interval [T1, T2] and a selected varia-

tion of motion δq(t), we derive a linear algebraic equation
with respect to the undetermined coefficients Ci and Di by
substituting the expansions in eqs. (2a) and (2b) into the
integral-variational eq. (1) and then executing the numerical
integration by utilizing the captured discrete data. Due to the

Figure 1 (Color online) Flow chart of the proposed methodology. The whole process consists of three successive steps: step 1, capture the discrete data in
real time; step 2, identify the variational equation governing the dynamic behaviors of the switched system; step 3, detect the occurrence of switches
ceaselessly, and reidentify the renewed variational equation once a switch occurs.
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arbitrary of the integral interval and the variation of motion,
we can establish a set of linear algebraic equations with
enough numbers to solve the undetermined coefficients Ci
and Di. Solving the overdetermined linear algebraic equa-
tions by the pseudo-inverse algorithm [27] yields the optimal
values of the undetermined coefficients, denoted by Ci and
Di . So far, the integral-variational equation is identified
completely, from which we can predict the dynamic beha-
viors by directly solving the integral-variational equation or
solving the associated differential equations.

2.3 Step 3: Detect the occurrence of switches and re-
identify the renewed variational equation

Once the initial mathematical description of the switched
system is obtained from the discrete data, the dynamic be-
haviors can be easily predicted by numerically solving the
integral-variational equation or the associated differential
equations with the initial conditions defined by discrete data.
The predicted responses are then compared with the actual
responses observed by sensors, and the comparison of the
predicted and observed responses is executed ceaselessly.
Once the deviation between them (according to some defi-
nition) exceeds a prescribed threshold, the system is con-
sidered to be switched.
There exist many different definitions of deviations, as

shown in refs. [28,29]. Here, we adopt an intuitive definition
of deviation, i.e., the relative deviation between the predicted
trajectory and tested trajectory in a preselected time interval
T. Sum up the absolute value of the difference between the
predicted data qpredicted, qpredicted and observed data qobserved,
qobserved at each discrete instant ti, and then divide it by the
point numbers in time interval T. That is,

t t t tq q q q
Error=

( ) ( ) + ( ) ( )

1
.( )

( )

i t T
i i i i

i t T

predicted observed predicted observed
i

i

(4)
The time interval T to calculate the difference and the

threshold to judge the occurrence of switches are initialized
at the beginning, and adjusted gradually with the further
comprehension on the essential properties of the switched
system. At a first glance, if a short time interval and a small
threshold are chosen, the procedure will react quickly to the
switches. The smaller the time interval and the threshold, the
quicker the reaction of the procedure. In fact, for a short time
interval the data noise will dramatically influence the value
of error, and for a small threshold, the procedure may falsely
judge the occurrence of switches. On the contrary, a long-
time interval and a large threshold will induce the procedure

reacting slowly to the switches. To summarize, adjusting the
time interval and the threshold automatically is quite im-
portant for the data-driven method to track the switches ac-
curately and timely. Furthermore, different weights can be
allocated to the absolute differences of the motion and its
time derivative from practical considerations.
Once a switch occurs, we will capture the new discrete

data, execute the data-driven procedure again and reidentify
the renewed integral-variational equation in eq. (1). That is,
we update the undetermined coefficients Ci and Di, the in-
tegrandsU0 andUj, and then the integral-variational equation
governing the present behaviors of the switched system. The
close-loop procedure, i.e., the initial identification, detection
of deviation, judgement of switches and reidentification, lets
us tracking the switched systems in real time.
Here, we provide some comments on the executing time of

each step. In the initially-identifying and reidentifying pro-
cedures, the integral interval in the integral-variational
equation can be arbitrary specified. Thus, we do not need a
long-time interval to obtain the linear algebraic equations
with enough numbers due to the arbitrary of variations. The
time to solve the overdetermined equations can be ignored.
The time to evaluate the relative deviation is determined by
the length of the preselected time interval, while the time to
compare the relative deviation with the threshold can also be
ignored. Apparently, the noise in the discrete data influences
the effectiveness and efficiency of the data-driven procedure.
With the increase of noise intensity, the effective information
hidden in data decreases, and the integral interval in the
initially-identifying and reidentifying procedures and the
preselected time integral in the deviation evaluation should
be extended. It is necessary that the efficacy of the data-
driven method deteriorates with the increase of noise in-
tensity, and an important work that should be done is to
evaluate the robustness of this method to data noise.

3 Numerical example 1: Switched Duffing os-
cillator

From now on, two numerical examples, i.e., Duffing oscil-
lator with parameter switching and van der Pol system with
structure switching, are adopted to illustrate the application
and efficacy of this data-driven method, and to discuss its
robustness to data noise. Two typical excitations, i.e., the
harmonic excitation with amplitude and frequency switching
abruptly and randomly, and the random excitation described
by Gaussian white noise are considered successively. In
these numerical examples, the discrete data are generated by
numerically simulating the equations of motion with given
time step, and some noise described by Gaussian white noise
are deliberately added into the exact simulated data to reflect
the unavoidable noise induced by sensing and collecting in
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experiments.
We first identify and reidentify the integral-variational

equations of switched Duffing oscillator from the exact
discrete data, and then, discuss the influence of data noise on
the identifying accuracy and efficiency.

3.1 Case I. Duffing oscillator with sinusoidal excitation

A Duffing oscillator with external excitation and system
parameter changing satisfies the following differential
equation of motion [30]:

mq cq k q k q F t¨ + + + = ( ), (5)1 3
3

where m is mass, c linear damping coefficient, k1 and k3
linear and cubic nonlinear stiffness coefficients, respectively,
F external excitation. Here, we consider the case with sinu-
soidal excitation F(t)=Psinωt. The damping coefficient c, the
linear and nonlinear stiffness coefficients k1 and k3, and the
amplitude P and circular frequency ω, change abruptly and
randomly. The switching values and switching sequences of
system parameters are shown in the first row of Figure 2.
Step 1: by numerically simulating eq. (5), we collect the

discrete data of excitation and state variables with prescribed
sampling frequency (such as 0.001 s here), as shown in the
second row of Figure 2. Step 2: identify the integral-varia-
tional equation initially from the captured discrete data.
Guided by the rule of dimensional consistency [31], we se-
lect appropriate base functions of undetermined integrands
U0 andU1 (i.e., q, q

2, q 2 forU0, and 1, F, q, q, q 3 forU1). That

is to say, some prior knowledges are included in the selection
of base functions. Substituting the linear expansions of U0

and U1 on the associated bases (with coefficients Ci and Di)
into eq. (1) and executing the variational calculus yield

( )A q q B B F B q B q B q q t+ + + + + d = 0, (6)
T

T
1 1 2 3 4 5

3

1

2

where the undetermined coefficients Ai and Bi are the linear
combinations of coefficients Ci and Di. The integral-varia-
tional equation of the first stage is identified by using the
discrete data in the initial 1 s, as shown in the third row and
first column in Figure 2. Step 3: by setting the preselected
time interval T (0.5 s here) and the threshold of relative de-
viation (0.05 here), the identified integral-variational equa-
tions of successive stages are shown in the third row in
Figure 2.
The exact integral-variational equation of motion of

Duffing oscillator is

( )mq q F k q cq k q q t+ + + + d = 0. (7)
t

t
1 3

3

1

2

It is obvious that the identified integral-variational equa-
tion for each stage coincides very well with the exact
equation, and the predicted trajectory tracks the observed
trajectory accurately and rapidly (with only 1.5 s delay), as
shown in the fourth row in Figure 2.

3.2 Case II. Duffing oscillator with random excitation

In this data-driven method, there is not any limitation on the

Figure 2 (Color online) Demonstration of the switched Duffing oscillator with sinusoidal excitation. First row: physical model of Duffing oscillator with
preset values of system parameters and moments of switches; second row: captured data of sinusoidal excitation and state variables with sampling frequency
0.001 s; third row: identified variational equation for each stage; fourth row: comparison of predicted trajectory and captured data.
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style of excitations. Here, we demonstrate its application and
efficacy to rapidly identify the switched Duffing oscillator
with random excitation. The random excitation is described
by Gaussian white noise ξ(t) [32] with zero mean and ex-
citation intensity 2D (2D=3.0 here). The switching values
and switching sequences of system parameters are the same
as above. The discrete data captured from a sample of ran-
dom excitation, the discrete data of the associated random
response and the predicted trajectory from the identified
integral-variational equations are depicted in Figure 3. The
predicted trajectory tracks the captured data with high pre-
cision and a short time delay (4 s here).

3.3 Discussions on the influence of data noise: the ro-
bustness to data noise

The noise in the captured data will dramatically influence the
identifying accuracy and efficiency. The relative deviation
between the captured data and the predicted data increase
with the intensity of data noise. We should set larger
threshold for the captured data with stronger noise, if not,
this procedure will get stuck in an endless loop between the
judgement of switches and reidentification of integral-var-
iational equation.
Here, the error between the identified/reidentified equa-

tions and the exact equations is evaluated by the relative
error between the coefficients of integrand terms, that is,

( )
( )

e
A A B B

A B
=

( ) +

( ) +
. (8)i i i j j j

i i j j

exact 2 exact 2

exact 2 exact 2

The switched Duffing oscillator with sinusoidal excitation
is adopted to demonstrate the robustness of this data-driven
method to data noise. The relation of the relative error e to
the noise intensity of the Gaussian white noise deliberately

adding into the exact simulated data are shown in Figure 4,
with different integral intervals (5, 6, 8, 12, 30 s) for system
identification. The relative error increases monotonically
with the noise intensity and decreases monotonically with
the prolongation of the integral interval. As the integral in-
terval is over twice of the period of the associated linear
system, the improvement of the identifying accuracy be-
comes not obvious by further prolonging the integral inter-
val. If the integral interval is less than half of this period, it is
unlikely to identify the results with acceptable accuracy.
Figure 5 depicts the captured noisy data with noise intensity
0.1 and the predicted trajectory identified from the integral
interval in 12 s. In this case, the relative error e equals
2.58×10−4, and the identifying result coincides very well with
the exact result.

Figure 3 (Color online) Demonstration of the switched Duffing oscillator
with random excitation. Top row: captured discrete data of random ex-
citation; bottom row: comparison of predicted trajectory and captured data.

Figure 4 (Color online) The relation of the relative error of Duffing os-
cillator with sinusoidal excitation to the noise intensity for five different
integral intervals.

Figure 5 (Color online) Comparison of predicted trajectory to captured
data for switched Duffing oscillator with sinusoidal excitation (noise in-
tensity 0.1, and integral interval 12 s).
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4 Numerical example 2: Switched van der Pol
system

Here, the van der Pol system with structure switching is
adopted as the second example, with the objective to de-
monstrate the ability of the data-driven method to rapidly
judge structure switches and reidentify the variational
equation of motion. The classical van der Pol system stem-
ming from the electric field is generally known for the ex-
istence of limit circle [30]. Here, we set the switched van der
Pol system changing its structural form abruptly, that is,
switching from limit circle to focal point, vice versa.
The differential equation of motion of van der Pol system

is

Lq q a q q
C V¨ + ( ) + = , (9)2

and the associated integral-variational equation is

Lq q V
C

q q q aq q t+ + 1 + d = 0, (10)
T

T 2

1

2

where L is the inductor, C is the capacitor, a is a threshold, α
is the strength for energy injection/dissipation, and V is the
voltage. System parameters change abruptly and randomly
which induce the changing of response characteristics, as
shown in the first and second rows in Figure 6. According to
the standard procedure mentioned above, the base functions
of integrands are set as polynomials of state variables and
external excitation. The integral-variational equation with

undetermined coefficients is expressed as

)

A A q q B B F B q

B q B q B q B qq B q B q

B q q B qq q t

( + ) + ( + +

  + + + + + +

  + + d = 0. (11)

T

T
1 2 1 2 3

4 5
2

6
2

7 8
3

9
3

10
2

11
2

1

2

We do not include the prior knowledge (e.g., dimensions of
system parameters) in the selection of base functions, thus
the integral-variational eq. (11) for van der Pol system in-
cludes more base functions and more undetermined coeffi-
cients compared to the integral-variational eq. (6) for
Duffing oscillator.
For the case with sinusoidal excitation, the captured dis-

crete data, the identified integral-variational equation for
each stage, and the comparison of the predicted phase dia-
gram and the observed phase diagram are shown in the
second row, third row and fourth row in Figure 6, respec-
tively. The tracking of switched van der Pol system with
random excitation is shown in Figure 7. The data-driven
method identifies the integral-variational equation rapidly
and successfully tracks the van der Pol system with structure
form switching. The relation of the relative error to the noise
intensity is depicted in Figure 8, for several different integral
intervals, 16, 20, 24, 30 and 40 s. The comparison of the
captured data with Gaussian white noise with noise intensity
0.05 to the predicted trajectory of the data-driven method
with integral interval 24 s is shown in Figure 9, which cor-
responds to the asterisked point in Figure 8. Similar con-

Figure 6 (Color online) Demonstration of the switched van der Pol system with sinusoidal excitation. First row: physical model of van der Pol system with
preset values of system parameters and moments of switches; second row: captured phase diagram with sampling frequency 0.001 s; third row: identified
variational equation for each stage; fourth row: comparison of predicted phase diagram and captured phase diagram.
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clusions are drawn as those for switched Duffing oscillator.

5 Conclusions

A data-driven method in variational framework was pro-
posed for rapidly identifying switched systems from the
discrete data captured from numerical simulations or ex-
perimental tests. It consists of several successively steps, i.e.,
capturing and recording the discrete data by various sensors,
identifying the integral-variational equation of the initial
stage, detecting deviation, and reidentifying the integral-
variational equations of switched stages. The identifying
procedure only needs a small amount of data due to the
compact form of variational description, and is robustness to
data noise due to the holistic viewpoint of variational de-
scription. Two representative examples were adopted to de-
monstrate its application, efficacy and robustness to data
noise.
This data-driven method successfully tracks the abrupt and

random switches of system parameters and structure forms.
Thus, by combining with real-time control strategies, we can
establish real-time control strategies of nonlinear systems by
identifying the integral-variational equation of motion and
calculating the feedback control through existing strategies
(e.g., model predictive control [33,34] and direct control
[35]). Some limitations of this data-driven method exist
which leave room for future improvements. The numbers of
the base functions of integrands increase dramatically with
system dimension, which induces large computational cost
for calculating undetermined coefficients. In addition, al-
though this data-driven method tracks system switching with
small time delay, it will fail if the system switches too ra-
pidly, e.g., parameters or structural forms switches within
half natural period of the associated linear system. For the
switched systems with extremely high switching speed (with
the totally random systems as limitation), there is not enough
time remaining to captured discrete data, detecting deviation
and reidentifying integral-variational equation timely.
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