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a b s t r a c t 

The automated discovery of physical laws from discrete noisy data is significant for eval- 

uating the response, stability, and reliability of dynamic systems. In contract to the exist- 

ing work on the discovery of differential laws, this paper presents a data-driven method 

to discover the variational laws of physical systems. The effectiveness and robustness to 

measurement noise are demonstrated with five physical cases. Two features of variational 

laws, the compact form and holistic viewpoint, lead to two intrinsic advantages in the 

data-driven discovery of variational laws, namely, reduced data requirement and robust- 

ness to noise. The presented data-driven method can be applied to discover variational 

laws in real time for physical fields or more complicated social sciences, with or without 

prior knowledge. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The extraction of knowledge from measured discrete data has played a pivotal role in scientific discovery, such as in the

case of Kepler’s laws of planetary motion based on Brahe’s observation data. In the history of physics, scientific discoveries

have established physical laws and theories, always requiring enormous costs in terms of time and effort, and, more im-

portantly, an ingenious imagination to extract nontrivial equal or nonequal mathematical relations (i.e., the laws) from large

amounts of data. Such manual data-driven discoveries of physical laws in history define the “giants of science”. With the

advancement of data science and computing power, it is becoming possible to automatically and rapidly discover physical

laws from discrete noisy data ( Wang et al., 2016 , Langley et al., 1987 ). 

There are two mainstream methods employed to discover the governing equations of physical systems in differential

form, i.e., symbolic regression ( Bongard and Lipson, 20 07 , Schmidt and Lipson, 20 09 , Quade et al., 2016 ) and sparsity-

promoting optimization ( Brunton et al., 2016 , Wang et al., 2011 , Schaeffer et al., 2017 ) methods. By searching a space of

mathematical expressions constructed by prescribed and nearly unbounded analytical functions, algebraic operators, and

constant coefficients until reaching minimized metrics of error, the symbolic regression method can extract “free-form”
∗ Corresponding author. 
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Fig. 1. Comparison of the variational laws-based finite element method and the variational laws-based data-driven discovery. The data-driven discovery 

(lower row) can be regarded as the reverse process of the finite element method (upper row). The finite element method starts from variational laws (I), 

partitions the spatial domain (II), and obtains discrete spatiotemporal data (IV) by solving linear equations (III), while the data-driven method starts from 

discrete data (I), partitions the temporal domain (II), and obtains the variational laws (IV) by solving linear equations (III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

physical laws, of any kind in theory, such as the Hamiltonian, Lagrangian, momentum conservation and governing equation

of motion for some simple and crucial physical systems ( Schmidt and Lipson, 2009 ); however, this process can be extremely

time-consuming. The sparsity-promoting optimization method can identify first-order differential equations of nonlinear dy- 

namical systems by expressing the first-order derivatives as linear combinations of a set of preselected basis functions and

then, determining the unknown coefficients of the linear combinations to minimize the residuals between the assumed

differential laws and discrete data ( Brunton et al., 2016 ). The sparse-promoting optimization method is quite efficient and

has been generalized to successfully discover partial differential equations ( Rudy et al., 2017 , Schaeffer, 2017 , Mangan et al.,

2017 , Zhang and Lin, 2018 ), stochastic differential equations ( Boninsegna et al., 2018 ), and model predictive control in the

low-data limit ( Quade et al., 2018 , Brunton et al., 2016 , Kaiser et al., 2017 ). 

The differential laws of physical systems targeted by symbolic regression, sparse-promoting optimization, and their vari-

ants ( Schaeffer et al., 2018 , Schaeffer and McCalla, 2017 ) generally have an associated variational counterpart. Differential

laws describe the evolutional relations between state variables at adjacent instants, while variational laws describe the

concerned motions from a holistic viewpoint and are suitable for developing numerical methods to solve the differential

laws, e.g., the finite element methods that have been adopted by almost all engineering subjects. Finite element methods

( Belytschko et al., 2014 , Fries and Belytschko, 2010 ) start from the variational laws of physical systems, such as mechanical,

electrical, thermal or coupled systems, and obtain discrete spatiotemporal data, such as displacement, electric current, tem-

perature or coupled quantities at discrete nodes and discrete instants by solving linear equations. As shown in Fig. 1 , the

reverse process of the finite element method is just a data-driven method that discovers the variational laws of physical sys-

tems directly from discrete data. This paper reports a new data-driven physical law discovery in variational form. Compared

with the differential form data-driven physical law discovery, the present method has inherent significant merits, includ-

ing a reduced data requirement, higher robustness to measurement noise, and an explicit embodiment of system/excitation

parameters. 

2. Data-Driven automated discovery of variational laws 

The variational principle is considered to be the most ubiquitous principle in physics for both conservative and non-

conservative systems. The fundamental assumption of the integral variational framework states the following: for a general

physical system, the actual motion q (such as displacement or electric current, which is the output of this physical system)

in any time interval [ T 1 , T 2 ] obeys the variational relation ( Whittaker, 1917 , Lurie, 2002 ), ∫ T 2 

T 

(
δU 0 + U j δq j 

)
dt = 0 , (1) 
1 
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Fig. 2. Whole processes of the data-driven method used to discover the variational laws of physical systems. Step 1: Identify the system attributes s and the 

concerned motion q . Step 2: Construct the integrands U 0 and U j based on dimensional analysis. Step 3: Collect the data. Step 4: Generate arbitrary variations 

of q . Step 5: Perform the integration. Step 6: Solve overdetermined linear algebraic equations to determine the coefficients of the linear combinations (the 

number of equations equals the product of the number of cases L , the number of partitions of each case N , and the number of variational forms M ). 
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in which U 0 (with the unit of energy) and U j are functions of the system attributes s (such as the stiffness and capacitance,

as shown in Fig. 2 ), q and its time derivative ˙ q . δq j ( t ) represent arbitrary variations of the actual motion with the constraints

δq j ( T 1 ) = 0 and δq j ( T 2 ) = 0 . The Einstein summation convention has been adopted. This relation is a more general version of

the principle of least action, one of the cornerstones of physics, which has been used to derive fundamental physical laws,

such as the Newtonian, Lagrangian, and Hamiltonian descriptions and general relativity ( Glodstein, 1980 , Longair, 2003 )

by giants of science. The variational relation is acknowledged to be the most elegant and compact form of physical laws

( Lanczos, 2015 , Landau and Lifshitz, 20 0 0 ), and the actual motion is completely described once the integrands (i.e., U 0 and

U j in Eq. (1) ) are specified. Different from the trial-and-error method advised by Richard Feynman ( Feynman et al., 2010 ), the

data-driven method aims to automatedly determine the integrands from discrete data. Once the integrands are determined

in terms of s, q , and ˙ q , the variational laws obeyed by physical systems are completely determined. 

Fig. 2 illustrates the processes of the data-driven method implemented to discover the variational laws of physical sys-

tems. The processed consist of step 1, identifying the system attributes s that may influence the motion q ; step 2, construct-

ing the to-be-determined integrands U 0 and U j based on dimensional analysis and linear combinations of the associated

parameter clusters; step 3, collecting discrete data (i.e., { q ( t i )} and { ̇ q ( t i ) } ); step 4, generating arbitrary variations of q (i.e.,

δq j ( t )) based on the constraints at the initial and final instants; step 5, performing the integration given by Eq. (1) ; and

finally step 6, solving an overdetermined linear algebraic equation to determine the coefficients of the linear combinations

given by step 2 and thus formulating the integrands. 

It should be noted here that prior physical knowledge is required to grasp the physical attributes, e.g., mass m , damping

c and stiffness k for a mechanical system and capacitance C , inductance L , and resistance R for an electrical system, as

well as the concerned physical motions, i.e., displacement for a mechanical system and electric current for an electrical

system. The to-be-determined integrands U 0 ( s ; q , ˙ q ) and U j ( s ; q , ˙ q ) are expressed as linear combinations of the parameter

clusters constituted by the physical attributes s , concerned physical motion q and its time derivate ˙ q . Although the linear

combinations should include infinite terms, only the terms with lower-order powers are of great significance according to

the parsimonious criterion ( Brunton et al., 2016 ). Dimensional analysis is utilized to determine the power functions of the

arguments (i.e., the parameter clusters). 

In any physical system, a physical quantity with a unit can always be expressed by basic units ( Bridgeman, 1963 ), such

as mass [M], length [L], time [T], and electric current [A], where [ · ] denotes the dimension of the quantity “ · ”. Thus,

the integrand U 0 that possesses the dimension of energy can be expressed as a linear combination of any clusters with

the dimension of [M] 1 [L] 2 [T] −2 constituted by the physical attributes s , physical motion q and it time derivate ˙ q ; i.e.,

 0 ( s , q , ˙ q ) = A i ( [M] 
1 
[L] 

2 
[T] 

−2 ) i , and A i are dimensionless coefficients. The integrands U j can be written with the same means

given that its dimension is [M] 1 [L] 2 [T] −2 

[ q j ] 
; i.e., U j ( s , q , ˙ q ) = B i ( 

[M] 1 [L] 2 [T] −2 

[ q j ] 
) i , where B i are dimensionless coefficients. Substitut-
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ing the integrands into Eq. (1) , performing the variational calculus on δU 0 , and rearranging the integrands according to δq i 
and δ ˙ q i , Eq. (1) becomes 

∫ T 2 

T 1 

{ 

C i 

( 

[ M ] 
1 
[ L ] 

2 
[ T ] 

−2 [
˙ q j 
]

) 

i 

δ ˙ q j + D i 

( 

[ M ] 
1 
[ L ] 

2 
[ T ] 

−2 [
q j 

]
) 

i 

δq j 

} 

dt = 0 . (2) 

Data acquisition is then performed by any means (e.g., with experiments or simulations), i.e., collecting discrete data

{ q ( t i )} and { ̇ q ( t i ) } in the prescribed time interval, where t i represent discrete time instants. Before the data are applied to

determine the coefficients C i and D i , the variations δq and δ ˙ q need to be specified. The choice of variation is arbitrary in the

arbitrary subinterval of the prescribed time interval but requires vanishing variations for the initial and final instants, such as

δq ( t j ) = 0 , δq ( t j+1 ) = 0 for the j th partition [ t j , t j+1 ] . For example, without loss of generality, δq i (t) = ( t − t j ) 
m ( t − t j+1 ) 

n ε,

where ɛ is a small parameter and m and n are positive integers. By substituting the discrete data (i.e., { q ( t i )} and { ̇ q ( t i ) } )
into a certain partition (e.g., [ t j , t j+1 ] , a subinterval of a prescribed time interval, where t i ∈ [ t j , t j+1 ] ) and the prescribed

variations δq and δ ˙ q = 

d 
d t 

( δq ) into Eq. (2) , one obtains a homogeneous linear algebra equation with respect to the coeffi-

cients C i and D i . Since both the subinterval [ t j , t j+1 ] and the variations δq can be selected arbitrarily, homogeneous linear

algebraic equations with enough equations (i.e., overdetermined equations) to solve the coefficients C i and D i can be ob-

tained. In solving the homogeneous linear algebraic equations, one coefficient of C i and D i is initially set to 1 or −1, and

then one needs to solve the nonhomogeneous linear algebraic equations by various means. Once the coefficients C i and D i 

are solved, the data-driven discovery of the variational laws of physical systems is completed. 

2.1. Toy example – free-falling object 

Here, we illustrate the whole process of the data-driven method with a simple example of a free-falling object, a fun-

damental problem in Newtonian physics. Consider a particle with mass m falling under the sole influence of gravity with

gravitational acceleration g , which defines the physical attributes (i.e., s 1 = m, s 2 = g). The coordinate of the particle q ( t ) is

the concerned output. Now, we utilize the discrete data of the output { q ( t i )} to extract the variational law of a free-falling

object. This classical problem is chosen, because the exact solution is known: i.e., the differential law q̈ (t) = g, velocity

˙ q (t) = gt + ˙ q 0 , and displacement q (t ) = 

1 
2 g t 

2 + ˙ q 0 t + q 0 , where q 0 is the initial displacement and ˙ q 0 is the initial velocity. 

After identifying the physical attributes and system output as described in step 1 in Fig. 2 , the to-be-solved integrands

U 0 and U 1 are expressed as linear combinations of the parameter clusters constituted by m, g, q , and ˙ q based on dimensional

analysis. Considering the units of m, g, q , and ˙ q , for the sake of simplicity, we select three of these four terms to construct

the parameter clusters of U 0 and U 1 , yielding U 

0 
( s ; q, ˙ q ) = A 1 mgq + A 2 m ̇ q 2 and U 1 ( s ; q, ˙ q ) = B 1 mg, where A 1 , A 2 , and B 1 are

unknown constants. Substituting U 0 and U 1 into Eq. (1) and rearranging the integrands according to δq, δ ˙ q yield an integral

similar to Eq. (2) , 
∫ T 2 

T 1 
( C 1 m ̇ q δ ˙ q + D 1 mgδq ) dt = 0 , where C 1 and D 1 are two to-be-determined coefficients. Now, step 2 in

Fig. 2 is completed. It should be noted that all four terms can be used to construct the parameter clusters if three terms

cannot achieve satisfactory results. 

Step 3 involves obtaining the discrete data { q ( t i )} and { ̇ q ( t i ) } , which can be achieved by experimental observations. Here,

to demonstrate the process of this data-driven method, { q ( t i )} and { ̇ q ( t i ) } are first obtained analytically. Figs. S1 and S2 show

the discrete data in the time interval [0, 10]s with the sampling interval 10 −3 s (see Supporting Information for details). Step

4 applies the arbitrary variation δq ( t ) to the integral. The following is adopted in this example: δq (t) = ( t − t j )( t − t j+1 ) ε,

and δ ˙ q (t) = ( 2 t − t j − t j+1 ) ε, where t j and t j+1 are the initial and final instants for subinterval [ t j , t j+1 ] and ε = 1 . In step

5, the discrete data (i.e., { q ( t i )} and { ̇ q ( t i ) } ) and the variations { δq (t) , δ ˙ q (t) } are substituted into the integral. Numerical

integration is performed to yield the homogeneous linear algebraic equation(s) with respect to undetermined coefficients

C 1 and D 1 . Setting D 1 = 1 . 0 , the undetermined coefficient C 1 is determined by solving the nonhomogeneous linear algebraic

equation(s). 

In this example, only one coefficient C 1 needs to be determined. Only one partition is used, i.e., t 1 = 0 and t 2 = 10 . Sub-

stituting the discrete data and infinitesimal variation into the variational formula and performing the numerical integration

of 
∫ t 2 

t 1 
( C 1 m ̇ q δ ˙ q + D 1 mgδq ) dt = 0 yield C 1 = 1 . 0 0 0 . Thus, the variational law obeyed by the motion of the free-falling particle

is obtained as, ∫ T 2 

T 1 

( 1 . 0 0 0 × m ̇

 q δ ˙ q + 1 × mgδq ) dt = 0 , 

which rebuilds the well-known variational law of a free-falling object in Newtonian physics, i.e., 
∫ T 2 

T 1 
δ( 1 2 m ̇ q 2 + mgq ) dt = 0 .

As shown in the Supporting Information ( Figs. S3 and S4 ), if the discrete data (i.e., { q ( t i )} and { ̇ q ( t i ) } ) are accurate, even for

a few data points (for example, only three data points at t i = 0, 5, 10 s, instead of 10,001 data points in the time interval

[0, 10]s), this method can still obtain the same variational law. 

Another important characteristic of employing the data-driven method to identify physical laws is robustness to mea-

surement noise. Here, Gaussian noise with zero mean and a standard deviation of 10 is imposed in exact dataset ( Figs.

S1 and S2 ), as shown in Figs. S5 and S6 . Using the same method, the variational law discovered from the noisy data is∫ T 2 
T 

[ ( 1 + 0 . 66 × 10 −3 ) × m ̇ q δ ˙ q + 1 × mgδq ]d t = 0 . This suggests that the present method is robust to measurement noise. 

1 
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Fig. 3. Summary of the physical laws discovered from the data-driven method. First row: free-falling object. Second row: relativistic particle moving in an 

electric field. Third row: van der Pol oscillator. Fourth row: Duffing oscillator. Fifth row: two-degree-of-freedom dissipative system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 summarizes the cases we have studied in this paper, and in the following, we further show the capability and

robustness of this method. A detailed discussion can be found in the Supporting Information. 

2.2. Relativistic particle moving in an electric field 

Consider a small particle with charge Q and mass m rapidly moving in a homogenous electric field E along the di-

rection of the electric field. This is a classical problem in the theory of relativity. The known differential equation is
d 
d t 

( 1 √ 

1 − ˙ q 2 / c 2 
m ̇ q ) − QE = 0 , where c is the velocity of light and q ( t ) is the coordinate of the particle. Now, we use the data-

driven method to rediscover the variational law. Prior physical knowledge is required to determine the observable output of

this problem as the coordinate of the particle q ( t ) and the physical attributes as the mass m ( = s 1 ) , charge Q( = s 2 ) , intensity

of the electric field E( = s 3 ) , and light velocity c( = s 4 ) . As detailed in the Supporting Information, the dimensional analysis

expresses U 0 and U 1 as linear combinations, i.e., U 0 ( s ; q, ˙ q ) = A 1 QEq + A 2 mc ̇ q + A 3 m ̇ q 2 + A 4 m c −1 ˙ q 3 + A 5 m c −2 ˙ q 4 + A 6 m c −3 ˙ q 5 +
A 7 m c −4 ˙ q 6 + · · · , and U 1 ( s ; q, ˙ q ) = B 1 Q E + B 2 Q E c −1 ˙ q + B 3 Q E c −2 ˙ q 2 + B 4 Q E c −3 ˙ q 3 + B 5 Q E c −4 ˙ q 4 + · · · , in which A i , B i are constant

coefficients. Substituting linear combinations into Eq. (1) and rearranging based on Eq. (2) yield the following equation: 

∫ T 2 

T 1 

[ ∑ 

i =1 

C i mc 

(
˙ q 

c 

)i 

δ ˙ q + 

∑ 

i =1 

D i QE 

(
˙ q 

c 

)i −1 

δq 

] 

d t = 0 (3)

The same variational function δq ( t ) as in the previous case is used. The data are collected in the time interval [0, 10]s

with the sampling interval 10 −3 s. Here, ten identical segments are utilized in this time interval; i.e., Eq. (3) leads to ten

equations. Thus, ten linear algebraic equations are used to determine the coefficients C i and D i . 

It should be noted that the actual variational form for this problem is 
∫ T 2 

T 1 
δ[ −

√ 

1 − ( ˙ q 
c ) 

2 
m c 2 + QEq ] dt =

0 , which can be expanded based on the relative velocity of the particle (i.e., ˙ q 
c ); i.e.,∫ T 2 

T 
[ ( m ̇ q + 

1 
2 m c −2 ˙ q 3 + 

3 
8 m c −4 ˙ q 5 + 

5 
16 m c −6 ˙ q 7 + · · · · · ·) δ ˙ q + QEδq ]d t = 0 . This explains the infinity terms in Eq. (3) . As
1 
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shown in the Supporting Information, depending on the orders of the coefficient of δ ˙ q truncated in Eq. (3) , the present

method can accurately reproduce the actual variational form. For example, when truncating at ( ˙ q 
c ) 

7 , the present method

gives ∫ T 2 

T 1 

[ (
1 − 0 . 94 × 10 

−14 
)
m ̇

 q − 0 . 296 × 10 

−13 m c −1 ˙ q 2 + 

(
1 

2 

− 0 . 513 × 10 

−9 
)

m c −2 ˙ q 3 − 0 . 422 × 10 

−9 m c −3 ˙ q 4 

+ 

(
3 

8 

+ 0 . 133 × 10 

−5 
)

m c −4 ˙ q 5 − 0 . 6 6 6 × 10 

−5 m c −5 ˙ q 6 + 

(
5 

16 

+ 0 . 918 × 10 

−3 
)

m c −6 ˙ q 7 
] 
δ ˙ q + 1 × QEδq d t = 0 , 

which agrees very well with the expansion form of the actual variational form. 

We also study the sensitivity of the quality of the discovered variational law to the amount of data. Instead of using

10 −3 s as the sampling interval, a sampling interval of 0.5 s is used in the same [0, 10] s time interval. In other words,

only 21 data points are provided, instead of the original 10,001 data points. The same ten identical segments are used, i.e.,

only three data points for each segment. As detailed in the Supporting Information, if the data are accurate enough, the

variational laws discovered from fewer data points still agree very well with those discovered using a large amount of data.

2.3. van der Pol oscillator and Duffing oscillator 

Now, we consider two nonlinear dynamic examples, namely, a van der Pol oscillator ( van der Pol, 1920 ) consisting of a

semiconductor component with threshold a and strength α for energy injection/ dissipation, an inductor L and a capacitor

C , and a Duffing oscillator ( Nayfeh and Mook, 1979 ) consisting of a block with mass m , a spring with linear stiffness k 1 , a

nonlinear stiffness k 3 , and a damper c , excited by a time-varying external force F ( t ), as shown in Figs. S11 and S24 , respec-

tively. A van der Pol oscillator is a nonconservative oscillator with nonlinear damping and has been extensively studied in

the physical and biological sciences ( Fitzhugh, 1960 , Cartwright et al., 1999 ). The known governing equation in differential

form is L ̈q + α( 3 q 2 − a ) ̇ q + q/C = 0 , where q is the current. The Duffing oscillator is an important dynamical system exhibit-

ing chaotic and frequency hysteresis behaviors ( Novak and Frehlich, 1982 ). The known governing equation in differential

form is m ̈q + c ̇ q + k 1 q + k 3 q 
3 = F (t) , where q is the displacement of the block. As detailed in the Supporting Information, the

present data-driven method can discover the variational laws of the van der Pol oscillator and the Duffing oscillator with

good accuracy, even with a small amount of exact data. 

Moreover, the influence of measurement noise on the quality of the discovered variational laws is also studied. The noisy

data are generated by adding Gaussian noise with zero mean and standard deviation σ into the exact data by numerically

solving the differential equations. It is found that even in the cases with strong noise, the data-driven method discovers

variational laws with acceptable accuracy. Specifically, for a standard deviation of σ = 0 . 05 , the mean values and standard

deviations of the error of the discovered variational laws are E[ Error ] = 0 . 390 × 10 −2 and σ [ Error ] = 0 . 481 × 10 −2 for the

van der Pol oscillator, and E[ Error ] = 0 . 526 × 10 −3 and σ [ Error ] = 0 . 401 × 10 −3 for the Duffing oscillator, respectively (the

error is defined in Eq. (8) in the Supporting Information). 

Undoubtedly, noisy data from the same system with different parameter values and different initial conditions (i.e., the

same system with different cases) can provide more information with respect to the system itself and may reduce the

influence of measurement noise on the results. The accuracy of the discovered variational laws will be improved dramatically

by utilizing data from several cases simultaneously. The values of the parameters and initial conditions for five cases are

listed in Table S3 (for the van der Pol oscillator) and Table S5 (for the Duffing oscillator). The relations of the error of the

discovered variational laws with respect to the number of cases are depicted in Figs. S20 (for the van der Pol oscillator) and

S31 (for the Duffing oscillator). As expected, the error of the discovered variational laws monotonically decreases with an

increase in the number of cases. 

We also discuss the influence of the number of partitions of the time interval, the length of the time interval and the

selection of variation styles on the quality of the discovered variational laws. As shown in Figs. S21 (for the van der Pol

oscillator) and S34 (for the Duffing oscillator), the error of the discovered variational laws depends on the number of parti-

tions of the time interval, and there exists an optimal length of the segment, approximately 1/4–1/8 of the oscillation period,

to minimize the error. This length of the segment balances the information included in each segment and the number of

linear equations available. Notably, more information can be included in the model by using a longer time interval. Thus,

the error of the discovered variational laws decreases monotonically with an increase in the length of the time interval, as

shown in Figs. S22 (for the van der Pol oscillator) and S35 (for the Duffing oscillator). It is also found that the error of the

discovered variational laws only slightly fluctuates with changes in the variation style, which suggests an insensitivity of the

data-driven method to the variation styles. 

2.4. Two-Degree-of-Freedom dissipative system 

To demonstrate the application and efficacy of the data-driven method to multi-degree-of-freedom dissipative systems, 

here we study a specific mechanical system in which a linear spring (with stiffness coefficient k 2 ) is in series with a dashpot

(with damping coefficient c ) and then in parallel with another linear spring (with stiffness coefficient k 1 ) and excited by a

time-varying external force F ( t ), as shown in Fig. S37 . This mechanical system is inspired by the Maxwell representation

of a standard linear solid model. The known governing equations in differential form are −k q + F − c( ̇ q − ˙ q ) = 0 and
1 1 1 2 
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−k 2 q 2 + c( ̇ q 1 − ˙ q 2 ) = 0 , where q 1 describes the position of the free endpoint, and q 2 describes the position of the connection

point between the dashpot and the spring. 

Similar to the aforementioned examples, the variational law for this two-degree-of-freedom system can be discovered

using exact or noisy data. Again, the robustness to measurement noise and the need for small amount of data have been

shown for this example. Furthermore, the effects of the other parameters, such as the number of partitions and the length of

the time interval have been studied. Different from the four one-degree-of-freedom examples in which only one differential

equation associated with the variational law is discovered, a two-degree-of-freedom problem can lead to the discovery of

two differential equations associated with the variational law, and these two differential equations can be expressed as an

equivalent transformation of the exact differential equations. For more details, please refer to the Supporting Information. 

2.5. One-Dimensional continuous system 

The present data-driven method is not limited to discrete systems, although the aforementioned examples are only dis-

crete systems. The method can be readily generalized to discover the variational laws of continuous systems. Here, we

adopt a one-dimensional continuous system as a simple example to illustrate the generalization and implementation of the

method. 

For one-dimensional continuous systems, the fundamental assumption of the integral variational framework is the fol-

lowing: the actual motion q ( x, t ) in any time interval [ T 1 , T 2 ] obeys the variational relation: ∫ T 2 

T 1 

{
δ

[∫ L 2 

L 1 

U 0 

(
s ; q, ˙ q ; q ′ , q ′′ ... 

)
d x 

]
+ 

∫ L 2 

L 1 

[
Ū 

(
s ; q, ˙ q ; q ′ , q ′′ ... 

)
δq 

]
d x 

}
d t = 0 (4)

where the integrands U 0 ( s ; q, ˙ q ; q ′ , q ′′ ... ) (with the unit of energy density) and Ū ( s ; q, ˙ q ; q ′ , q ′′ ... ) are functions of the system

attributes s , actual motion q , its time derivative ˙ q and various-order spatial derivatives ( q ′ , q ′′ ...). δq ( x, t ) represents arbitrary

variations of the actual motion satisfying the temporal constraints δq ( x, T 1 ) = 0 and δq ( x, T 2 ) = 0 and the spatial constraints

at the boundaries x = L 1 and x = L 2 . 

The ultimate objective is to obtain the analytical expression of the to-be-determined integrands U 0 and Ū from a set

of exact or noisy discrete data. First, we construct the parameter clusters with the dimensions of the integrands U 0 and
¯
 , and express the integrands as linear combinations of the associated parameter clusters. By assuming arbitrary variations

of q ( x, t ) (i.e., δq ( x, t )) based on the temporal and spatial constraints and performing the integration, one obtains a set of

overdetermined linear algebraic equations with respect to the coefficients of the linear combinations. Once the coefficients

of the linear combinations are determined, the variational law of the continuous system is then discovered. 

As shown in the Supporting Information, the proposed data-driven method successfully discovers the variational law of

a free-vibrating straight beam with simply supported constraints (as shown in Fig. S50 ). 

3. Discussion 

In this paper, we have established a data-driven method to automatedly discover variational laws hidden in physical

systems from discrete data, which can be exact or noisy. As the most ubiquitous principle and the counterpart of differential

laws, variational laws have two features, namely, the compact form and holistic viewpoint to the description of physical

behaviors, that provide the data-driven method with great advantages. The compact form with fewer to-be-determined

quantities requires a small amount of data for the discovery of physical laws; the holistic viewpoint with integral calculus

leads to robustness to measurement noise. The advantages of these two features, i.e., the reduced data requirement and

robustness to noise, enable real-time discovery of physical laws with the data-driven method, which is of great significance

to time-sensitive prediction and control of dynamic events, such as in earthquake and extreme climate scenarios. 

The present data-driven method utilizes some prior physical knowledge (i.e., the dimensions of the system attributes) to

simplify the selection of the integrands. We must emphasize that it is not necessary to include dimensional analysis in the

method used to discover variational laws. As shown in the Appendix, one can simply expand the integrands as linear com-

binations of functions (which are not limited to polynomial functions and can be sinusoidal or exponential functions) of the

concerned physical motion and its time derivative, determine a series of coefficients for each function for the same system

with different values of attributes, and then derive explicit relations between each coefficient and the system attributes by

symbolic regression. In this way, the presented data-driven method can be extended to new fields with little prior knowl-

edge. In fact, such new fields may not necessarily be physical fields; they can be fields in the social sciences ( Dale and

Bhat, 2018 ), since the concerned motions (e.g., the response of a specific population to an event) are often time-dependent.

In summary, the presented data-driven method in variational form possesses two intrinsic advantages, namely, a re-

duced data requirement and robustness to measurement noise, which enable its applicability to the discovery of governing

equations in real time for physical fields or more complicated social sciences, with or without prior knowledge. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 



8 Z. Huang, Y. Tian and C. Li et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103871 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRediT authorship contribution statement 

Zhilong Huang: Supervision, Writing - review & editing. Yanping Tian: Conceptualization, Methodology, Software. 

Chunjiang Li: Software. Guang Lin: Supervision. Lingling Wu: Writing - review & editing, Visualization. Yong Wang: Con- 

ceptualization, Methodology, Software, Writing - original draft, Writing - review & editing. Hanqing Jiang: Conceptualization,

Methodology, Software, Writing - original draft, Writing - review & editing. 

Acknowledgments 

YW acknowledges the National Natural Science Foundation of China under Grant Nos. 11872328 and 11472240 . HJ ac-

knowledges the Guang Biao Professorship of Zhejiang University. ZL acknowledges the National Natural Science Foundation

of China under Grant Nos. 11532011 and 11621062 . GL would like to acknowledge the support from the National Science

Foundation (DMS- 1555072 , DMS- 1736364 , and DMS- 1821233 ). YW and HJ would like to thank Prof. JQ Lu and Prof. XL Jin

from Zhejiang University for helpful discussions. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmps.2020.

103871 . 

Appendix. Discovery of a Variational Law Without Prior Physical Knowledge 

The generalized data-driven method can discover the variational law of a system without prior physical knowledge (i.e.,

the dimensions of the system attributes) and includes the following seven steps: step 1, determining the attributes and

measures s and the concerned motion q ; step 2, expanding the integrands U 0 and U j as polynomials of physical motion q

and its time derivative ˙ q with undetermined coefficients; step 3, collecting the data of the system with different values of

attributes; step 4, generating arbitrary variations of q ; step 5, performing the integration; step 6, solving overdetermined

linear algebraic equations to determine a series of coefficients for the system with different values of attributes; and finally

step 7, establishing explicit relations between the coefficients and attributes by symbolic regression. 

Here, we illustrate the whole process of the generalized data-driven method through the one-dimensional motion of a

particle subjected to a constant mechanical action. Step 1: select the system attributes (i.e., s 1 = m to measure the weight

of the particle and s 2 = F to measure the constant action) and the coordinate of the particle q ( t ) to describe the concerned

motion. Step 2: express the to-be-determined integrands U 0 and U j by the 2nd-order polynomials of the coordinate q ( t ) and

its time derivative ˙ q , i.e., U 0 = A 1 q + A 2 ̇ q + A 3 q ̇ q + A 4 q 
2 + A 5 ̇ q 

2 , U 1 = B 1 + B 2 q + B 3 ̇ q + B 4 q ̇ q + B 5 q 
2 + B 6 ̇ q 

2 . Here for the sake

of simplicity, only the 2nd-order polynomials are considered, though different orders can be adopted. Substituting U 0 and

U 1 into the variational relation in Eq. (1) and rearranging the integrand according to δq, δ ˙ q yield ∫ T 2 

T 1 

( C 1 + C 2 ̇ q ) δ ˙ q + 

(
D 1 + D 2 q + D 3 ̇ q + D 4 q ̇ q + D 5 q 

2 + D 6 ̇ q 
2 
)
δqdt (A1) 

in which, C i and D i are the to-be-determined coefficients. 

Step 3: collect the discrete data { q ( t i )} and { ̇ q ( t i ) } from the exact solution of the particle motion (i.e., q (t ) = 

1 
2 

F 
m 

t 2 +
˙ q 0 t + q 0 and ˙ q (t) = 

F 
m 

t + ˙ q 0 ) in the time interval [0, 1]s with a sampling interval of 10 −2 s, where the initial displacement

is q 0 = 0 and the initial velocity is ˙ q 0 = 0 . Several sets of values of attributes are listed in Table S10 , and the discrete data

associated with these sets of values of attributes are depicted in Figure S51 . 

Step 4: set the arbitrary variation as δq (t) = ( t − t j )( t − t j+1 ) ε, and then use δ ˙ q (t) = ( 2 t − t j − t j+1 ) ε, where t j and t j+1 

are the initial and final instants for the subinterval [ t j , t j+1 ] and ε = 1 . Step 5: separate the time interval [0, 1]s into ten

equal segments. Substituting the discrete data and the variations { δq (t) , δ ˙ q (t) } into the variational relation and completing

the integration yield one set of overdetermined linear algebraic equations for each set of values of attributes. Step 6: set

D 1 = −1 . 0 , and solve the overdetermined linear algebraic equations to determine a series of coefficients for the functions of

the system with different values of attributes, as shown in Table S11 . 

Step 7: establish the explicit relations between the coefficients and the attributes by symbolic regression, as follows: 

C 1 = D 2 = D 3 = D 4 = D 5 = D 6 = 0 , D 1 = −1 , C 2 = −m 

F 
(A2) 

Thus, the discovered variational law is ∫ T 2 

T 1 

−m 

F 
˙ q δ ˙ q − 1 × δqdt (A3) 

which rebuilds the well-known variational law of a particle under mechanical action, i.e., 
∫ T 2 

T 
δ( 1 2 m ̇ q 2 ) + F qdt = 0 . 
1 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
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