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ReseaRch aRticle

3D Programmable Metamaterials Based on Reconfigurable 
Mechanism Modules

Weiqi Liu, Hanqing Jiang, and Yan Chen*

Mechanical metamaterials are of tremendous research interest due to their 
unconventional properties that arise from unit microstructure. Shape-
reconfiguration is an effective method to realize programmability on 
various properties for different tasks of a structure or system, while existing 
researches focus on multiple degree-of-freedom (DOF) systems or limited 
configurations that morph along a single kinematic path. Here, starting 
from a one-DOF Wohlhart polyhedron module, its interesting topological 
transformation is explored along multiple motion paths through kinematic 
bifurcations, accompanied by tunable mechanical properties, including 
Poisson’s ratio, chirality, and stiffness. Furthermore, these modules are 
tessellated into 3D metamaterials to harness their reconfigurability to 
independently program the Poisson’s ratios in orthogonal planes within a 
wide range of negative Poisson’s ratio, positive Poisson’s ratio, and even zero 
Poisson’s ratio. This work opens up avenues for the design of programmable 
metamaterials based on the perspective of kinematic bifurcation generating 
from single DOF systems, which can readily be applied in shape-morphing 
systems in various fields, such as flexible metamaterials, morphing 
architectures, and deployable structures.
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properties that cannot be achieved in natural 
materials, including negative or zero Pois-
son’s ratio,[4–9] negative compressibility,[10–11] 
vanishing shear modulus,[12–13] negative 
thermal expansion,[14–15] etc. Generally, the 
mechanical properties of metamaterials are 
derived from the geometry and spatial tes-
sellation of cell microstructure rather than 
material composition.[16] For example, a 
large number of 2D or 3D artificial negative 
Poisson’s ratio structures have emerged, 
which are obtained by periodically assem-
bling transformable elements via rotation, 
array, or mirror image, e.g., re-entrant struc-
tures,[17–21] chiral structures,[22–23] rotating 
units,[24–26] and origami units.[27–28] How-
ever, in most of the current researches, the 
unit cells in the metamaterial tessellation 
are of one type with identical deformation 
properties, which leads to the fact that the 
resultant metamaterials’ characteristics are 
limited to a small range during the flexible 
deformation,[29–30] making it suitable only 
for a task with specific functional require-

ments. Therefore, it is critical to rationally design unit cells’ 
microstructure and spatial arrangement to achieve reconfigurable 
properties for the multifunctional requirements.[31–32]

The programmability of metamaterials refers to the fact that 
the desired mechanical property is a function of controllable 
parameters, e.g., geometric parameters, boundary conditions, 
and external constraints.[33–37] Recently, the shape-reconfigurable 
system through structural instability or structural deformation 
has also been identified as an effective method to realize tunability 
and programmability in mechanical metamaterials. For example, 
mechanical properties, e.g., stress–strain curves or shapes, can be 
encoded by switching among different stable states of bistable or 
multistable modules.[38–40] In addition, origami-inspired designs 
that can fold along predefined creases have been widely used in 
metamaterials to achieve tunable and programmable properties, 
e.g., Poisson’s ratio,[28,37] chirality,[41] or stiffness,[42] due to pow-
erful continuous morphing ability. Of particular interest here are 
mechanism-based metamaterials with the capability of under-
going large shape morphing, where rigid elements are assem-
bled and then acted as planar, spherical, or spatial mechanisms. 
On one hand, the characteristic of reliable deformation path is 
essential for tunable and programmable properties, which makes 
mechanism-based metamaterials widely used in designing the 
microstructure of metamaterials, particularly in rigid origami 
and kirigami inspired ones.[27–28,37,41,43–52] On the other hand, the 
deformation pattern of these mechanism-based metamaterials 

1. Introduction

Mechanical metamaterials[1–3] are classified as artificially designed 
structures and exhibit intriguing and sometimes counterintuitive 
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is similar to the zero-energy motions of the underlying mecha-
nism.[53] Therefore, external forces easily excite deformation. 
However, the current works focus on programmable metamate-
rials that reconfigure along a single deformation path.[27–28,43–45] 
Efforts have also been made to investigate enhanced reconfigur-
able ones with multiple motion paths for programmable meta-
materials including 3D reconfigurable architected materials,[49] 
transformable modular kirigami,[50] etc., yet it turns out to be 
typically multiple degree-of-freedoms (DOFs),[48–52] resulting in a 
challenging controllable deformation process.

Due to the lack of guidance from the underlying mecha-
nism, the designs of reconfigurable metamaterial with mul-
tipathway but one DOF are rare. One of the methods to achieve 
reconfigurability is kinematic bifurcation,[54] which refers to the 
intersection point of multiple motion paths. Kinematic bifurca-
tion differs from a multi-DOF system in that the former can 
only switch between its motion paths at the bifurcation point. 
Once it has passed through the point, the motion is determined 
by the selected path. Therefore, a single DOF system with kin-
ematic bifurcation capabilities makes it an excellent candidate 
for designing reconfigurable metamaterials with program-
mable functionality, since they can be morphed into various 
configurations while also having a predefined and reliable path.

This paper proposes a one-DOF reconfigurable module with 
multiple predefined and reliable deformation paths. This con-
struction module of the metamaterials can continuously bifurcate 
between expandable cube (EC) path, elongated prism (EP) path, 
and locked twist (LT) path through inherent kinematic bifurcation, 
accompanied by negative Poisson’s ratio (NPR), positive Poisson’s 
ratio (PPR), and zero Poisson’s ratio (ZPR) behaviors as well as 
local and global chirality and tunable stiffness. Further, configura-
tions of the module in EC and EP paths are used to construct 3D 
metamaterials yet without the frustration that impedes function-
ality due to compatible topological features. By regulating the pro-
portion of modules in PPR or NPR states through reconfiguration, 
Poisson’s ratios of metamaterials can be programmed indepen-
dently in orthogonal planes within a wide range of NPR, PPR, and 
even ZPR for the first time. This work paves a new way to design 
programmable metamaterials through kinematic bifurcation.

2. Results

2.1. The Mechanism Module

We begin with the Wohlhart polyhedron[55] in Figure 1a, which 
acts as the mechanical basis of the module. First, the planar 
link group (PLG) is constructed with four identical rigid links 
of sides a and b attached to the square center body (side length 
a × a × b) through revolute (R) joints. The folding angle α deter-
mines the configuration of PLG by keeping rigid links rota-
tionally symmetric and rotate about the center O clockwise or 
anticlockwise. Second, six identical clockwise rotation PLGs 
lying on faces of regular hexahedron are interconnected by R 
joints on the edges of cube connectors (side length b) to form a 
Wohlhart polyhedron, which is a highly overconstrained system 
with only one DOF working as an expandable cube.[55–56] Our 
focus here is on its reconfigurability and how to design pro-
grammable metamaterials with this mechanism as module.

The analysis on the kinematic characteristics of Wohlhart 
polyhedron reveals that there are three distinct motion paths, 
i.e., EC, EP, and LT paths, and two bifurcation points between 
EC and EP paths, EP and LT paths as shown in Figure  1b  
(Section S1 and Video S1, Supporting Information). Consid-
ering whether the rotation direction of each rotation PLG is 
clockwise or anticlockwise about coordinate axes, there are 
a total of 32 (=26/2, it is considered as one case when all the 
PLGs rotate in the opposition direction after passing B0 if no 
bifurcation occurs) cases for EC path, i.e., ECf

i–ECp 
i  –B0, where 

the subscript i (=1, …, 32) represents the ith path, and super-
script f and p represent fully folded and partially folded con-
figurations, respectively. Meanwhile, EP path is divided into 
three cases (EPx, EPy, and EPz) according to the orientation, 
and so is LT path (LTx, LTy, and LTz). Configuration B0 is one of 
the kinematic bifurcation points where this module can switch 
between EC and EP paths. Configurations Bx, By, and Bz, the 
folded state of the module in EP path as well as the unfolded 
state of the module in LT path, are also another type of bifurca-
tion points, where the module can switch between EP and LT 
paths. Figure 1c demonstrates a complete motion process of the 
prototype from ECf

1 to LTf
z, where parameters are selected as 

a = 80 mm, b = 40 mm (detailed fabrication in the Experimental 
Section, and Section S2 in the Supporting Information). Due 
to the similarity in three orthogonal directions, we only discuss 
the property in z-direction in the following analysis.

Apparently, the geometric dimensions of the module, i.e., the 
width (W), breadth (B), and height (H) in x, y, and z directions, 
have undergone significant changes during the motion pro-
cess. The completed motion curves of this module with three 
paths are shown in Figure 2a. Here, we take the detailed path  
ECp

1–B0–EPp
z–Bz–LTp

z as an example to demonstrate the proper-
ties of the module. It can be observed that the module in EC 
path is expanded from a smaller cube to the largest size at B0 
then continuously folded up as the rotation angles in ortho-
gonal planes increase with α = β = γ.

The geometrical dimensions of the module in EC path are

W B H a a a bα α α= = = + + +sin cos sin 2 2  (1)

in which α ∈ [0, π/2]. Thus, its Poisson’s ratios νHB and νBW 
are always −1 independent of geometric parameters (solid 
lines in Figure  2b) (Section S3, Supporting Information). 
Once the module reaches the bifurcation point B0 (α = β = γ = 
π/4), there are two possible paths, one is that the module is 
kept in the EC path as a cube to fold up with α = β = γ moving 
toward π/2 (red line in Figure  2a), the other one is that the 
module switches into EP path (blue line in Figure  2a) with 
PLGs on the four side faces shrink inward in a translational 
way. In this case

β γ α α α α
= =

+ + −





arcsin
sin cos 2sin cos 1

2
 (2)

and

W B a a bβ= = + +2 sin 2  (3)

H a a bβ= + +2 cos 2  (4)
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in which β ∈ [0, π/4].
It is evidently observed that the motion of the module in 

EP path is PPR behavior, and corresponding Poisson’s ratios 
with a/b  = 2 are illustrated in Figure  2c (solid lines). The-
oretical results also suggest that the Poisson’s ratios in EP 
path are insensitive to variations in geometrical parameters 
a/b (Section  S3, Supporting Information). When β  = 0 on 
the EP path, α  = 0 or π/2 depending on the rotation direc-
tion of PLGs on the top and bottom faces, the module 
reaches Bz bifurcation configuration, where the EP path is 
at limited end. Hence, the module can return on the EP path 
or bifurcate to the LT path with two rotation PLGs on top 
and bottom faces are locked at α = 0 or π/2, and four PLGs 
on the side faces twist clockwise or anticlockwise about z-
axis when β  = γ. Here, the variation of geometric dimen-
sions of the module in LT path is mainly divided into two 

stages with a/b  > 1 (Section S3, Supporting Information). 
When β  = γ  ≤ arcsin(b/a), the projection of four PLGs on 
the side faces in the x–y plane is always within the projec-
tion of the rotation PLG (α  = 0 or π/2) on top and bottom 
faces, resulting in W and B remain constant a+2b. When the 
folding angle β = γ > arcsin(b/a), W and B become elongated 
simultaneously. Therefore, the geometrical dimensions of 
the module in LTz path are

W B
a b b a or a b
a a b a and a b

β
β β= =

+ ≤ ≤
+ > >







2 , if sin /
2 sin , if sin /  (5)

and

H a b a β= + +2 2 cos  (6)

Figure 1. The mechanism basis of the module. a) The Wohlhart polyhedron is formed by connecting PLGs with cube connectors. The geometry of 
rigid link, square center body, and cube connector (left). Views of the clockwise rotation PLG and the anticlockwise rotation PLG (middle). Overview 
of the Wohlhart polyhedron (right). b) Kinematic bifurcation of the Wohlhart polyhedron. The motion paths of the module are divided into expandable 
cube path, elongated prism path, and locked twist path. B0, Bx, By, and Bz are bifurcation configurations. c) The reciprocate process of the prototype 
from ECf

1 to LTf
z with a = 80 mm and b = 40 mm.

Adv. Funct. Mater. 2021, 2109865



www.afm-journal.dewww.advancedsciencenews.com

2109865 (4 of 10) © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Figure 2. Mechanical properties of a single module. a) The kinematic paths, and overall, front and top views of typical configurations. The variations 
of geometric dimensions of the module, the width (W), breadth (B), and height (H), in the x, y, and z directions are characterized by rotation angles 
α, β, and γ. Kinematic paths defined as angle relations during its reconfiguration in EC, EP, and LT paths. The module cannot switch into LT paths 
from the fully folded configuration in EC path at α = β = γ = 0 or π/2, although there is an intersection point. The red arrow-arcs on PLGs and the 
module indicate the local and global chiralities, respectively, when the module switches between different paths. b–d) The theoretical and experimental  
Poisson’s ratios of a module in EC, EP, and LT paths with a/b = 2, respectively. Black speckles on the specimen are used to measure the dimensions 
with a digital image correlation system (DIC). e) Stiffness Ki (i = EC, EP, and LT) of the module in different paths. The normalized height is expressed 
as H/Hmax, where Hmax is the maximum height of the module at configuration Bz.
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in which β ∈ [0, π/2].
Consequently, Poisson’s ratios of the module in LT path with 

a/b  = 2 is discontinuous as shown in Figure  2d (solid lines), 
i.e., Poisson’s ratios νHB and νBW remain 0 first (ZPR mode), 
then νHB suddenly increases to a positive value and then gradu-
ally decreases to 0 while νBW suddenly drops to and remains 
at −1. We can further program this step point of Poisson’s 
ratios by changing the geometrical parameters a/b (Section S3,  
Supporting Information). The interval of the ZPR mode 
lengthens as the value of a/b decreases, eventually reaching a full 
ZPR mode throughout the deformation process once a/b ≤ 1.

The tension and compression experiments for a single 
module were then conducted to validate the aforemen-
tioned theoretical analysis (see the Experimental Section, and  
Section S4 in the Supporting Information). The recorded defor-
mation process shows that W, B, and H of the module in EC 
path increase simultaneously during tension (i–v in Figure 2b) 
(Video S2, Supporting Information). Then, the specimen goes 
through another stage (vi–x in Figure 2c) after passing through 
the bifurcation configuration B0, where W and B decrease while 
H increases continuously (Video S3, Supporting Information). 
After bifurcation point Bz, both W and B of the specimen in LT 
path are equal to a+2b (xi–xii in Figure 2d) during compression, 
until the projection of rotation PLGs (α = 0 or π/2) on the x–y 
plane cannot cover that of four PLGs on the side faces (xiii–xv 
in Figure 2d) (Video S4, Supporting Information). We find that 
the quantitative values of the experimental results are in good 
agreement with theoretical νHB and νBW, although results differ 
slightly at the 75–100% stage due to gravity.

From the experiments (Videos S2–S4, Supporting Informa-
tion) and the red arrow-arcs marked in Figure  2a, we can tell 
that this module also exhibits distinct chirality property when 
moving along different kinematic paths. First, in the EC path, 
all six rotation PLGs on six faces rotate clockwise or anti-
clockwise independently to generate enhanced local chirality; 
second, in the EP path, only two rotation PLGs on two opposite 
faces normal to the elongated direction has the local chirality 
while the rest four have the translation with no chirality; third, 
in the LT path, two rotation PLGs on top and bottom faces are 
locked at α = 0 or π/2, and four PLGs on the side faces twist 
clockwise or anticlockwise about z-axis when β = γ to produce 
a global chirality. Based on the properties on the Poisson’s 
ratios and chirality, we can also find that the reconfiguration 
of one module among three kinematic paths can be controlled 
through the relative displacements of the cube connectors or 
the combination of force or torque applied to the square cen-
tral bodies at the bifurcated points (Section S5, Supporting 
Information). Additionally, the stiffness will also change sig-
nificantly when the module is switched between different paths  
(Section  S6, Supporting Information). We assume that each 
joint in the module is considered as a linear elastic spring 
hinge,[47] and fully folded configuration ECf

1 is the natural state 
of spring. To follow the movement path in Figure 2a, the stiff-
ness of the module is shown in Figure  2e. The tension stiff-
ness KEC of the module in the EC path increases sharply as all 
spring joints move from 0 to π/4. At the bifurcation point B0, 
the module deformation energy is at an unsmooth increasing 
state (nondifferentiable point) as some of the spring joints are 
further rotated as the others return toward the natural state, 

resulting the force is discontinuous and the stiffness switches 
from +∞ to −∞ (Figure S11, Supporting Information). Subse-
quently, the stiffness KEP in the EP path will undergo a change 
from negative to positive with the increase of deformation. 
Meanwhile, the bifurcation point Bz, is also a nondifferentiable 
point of system energy and the stiffness KLT of the module in 
LT path increases at a lower level under compression as the 
joints on top and bottom faces are locked.

If tessellating the module through translation and array in 
3D space, we obtain periodic metamaterials, whose properties 
are determined by the single module. The metamaterial will 
have the capability to continuously switch between NPR, PPR, 
and ZPR modes, relying on modules reconstructing between 
EC, EP, and LT paths (Section S7, Supporting Information). 
However, its programmability is still very limited as theoretical 
results (Section S3, Supporting Information) suggest that the 
Poisson’s ratios in EC and EP paths are insensitive to variations 
in geometrical parameters a/b.

2.2. 3D Metamaterials with Programmable Properties

2.2.1. The Series Assembly with (mz + nz) Modules

To enhance the programmability of metamaterials, we propose 
a combinatorial design strategy as shown in Figure 3a. Gener-
ally, under uniaxial tension F, PPR material tends to contract in 
the direction perpendicular to the applied load (Figure 3a left). 
In contrast, the NPR material elongates simultaneously along 
and perpendicular to the load directions when stretched. If the 
deformation of two neighboring units in the loading direction 
is consistent all the time, the two units can be stacked together 
in the direction perpendicular to the applied load. This combi-
national rule can also be extended to 3D PPR material and NPR 
materials (Figure  3a middle). Take two modules, one in PPR 
state on EP path, and one in NPR state on EC path (Figure 3a 
right). The dimensions of rotation PLGs are equal as long as 
their folding angle α is the same, which provides the possibility 
to connect two modules in EP and EC paths through the shared 
faces of four cube connectors (see orange lines in Figure  3a 
right). For ease of visualization, we use green right square 
prism and blue regular hexahedron with bumps and dents tex-
ture for connection to schematically represent the modules in 
PPR (state “1”) and NPR (state “0”) modes, respectively.

The series assembly with (mz  + nz) modules in Figure  3b 
is then constructed, of which mz modules in PPR state and 
nz modules in NPR state. Each module is equipped with the 
ability to switch between the state “1” and “0” through their 
inherent kinematic bifurcations (Figure 3b). Thus, this unique 
series assembly after fabrication is expected to be reconstructed 
into ones with arbitrary proportions and arrangement order of 
PPR and NPR modules. For example, if partial modules switch 
from the “1” state to the “0” state or vice versa without changing 
the total number of units (mz1 + nz1 = mz2 + nz2 = mz3 + nz3), 
the proportion of NPR and PPR modules nz/mz changes. As 
mz and nz are any non-negative whole number, nz/mz could be 
any rational number within [0, +∞). The width W and breadth 
B of this series assembly are equal, so the value of Poisson’s 
ratio νBW is always −1 (Section S8, Supporting Information). 
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Figure 3. The series assembly with (mz + nz) modules, with mz modules in PPR state and nz modules in NPR state. a) Schematic diagram of a two-
module assembly with one in PPR state (marked as state “1”) and one in NPR state (marked as state “0”). The modules in PPR and NPR states are 
represented schematically by the green right square prism and blue regular hexahedron with bumps and dents texture. b) Reconfiguration of module 
states to regulate nz/mz (mz1 + nz1 = mz2 + nz2 = mz3 + nz3). c) A series assembly of mz PPR and nz NPR modules with a/b = 2 and its contour plot of 
Poisson’s ratio νHB. d,e) Comparative plots of theoretical and experimental Poisson’s ratios of three modules stacked in series with nz/mz = 2 and 
nz/mz = 1/2. Data are expressed as the mean and standard deviation of three measurements.
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Its analytical contour plot indicates Poisson’s ratio νHB (Equa-
tion  (7)) of the series assembly with a/b  = 2 cover the entire 
design space (−∞, +∞) in Figure 3c as reconfiguration of module 
states is a rapid and effective way to regulate nz/mz. Specifically, 
νHB keeps negative during the whole folding motion if nz/mz ≥ 
1. Otherwise, νHB changes from a negative value to −∞ with β 
increasing, then switches to +∞ at β = arctan(nz/mz), and finally 
reaches a positive value. The series assembly with different 
values of nz/mz exhibits distinct but predictable mechanical 
properties, which provides a new paradigm for the programma-
bility of Poisson’s ratio.

B

H

H

B
am an b m n

n m a b

HB

z z z z

z z

ν

β β
β β

= − ×

= −
+ + + + +

− + +

d
d
(1 2cos ) (1 2sin ) 2 ( )

( tan )( (1 2sin ) 2 )

 (7)

where β ∈ [0, π/4] is the folding angle of the module in EP path.
Moreover, we conducted tension experiments with series 

assemblies (nz/mz = 2, nz/mz = 1, nz/mz = 1/2) in which mod-
ules are joined by a strong quick-drying glue (Videos S5–S7 
and Section S9, Supporting Information). The results for three-
module assembly with nz/mz = 2 in Figure 3d show that Pois-
son’s ratio νHB remains negative and decreases with the defor-
mation degree, while νBW fluctuates around −1. Then one of the 
PPR modules is reconstructed to NPR state to set nz/mz = 1/2 
(Figure 3e). We observe the transition of νHB from −852.89 to 
375.47, while νBW remains close to −1. Figure  3d,e shows that 
the natures and trends of mechanical response between theo-
retical and experimental results remain similar. But the differ-
ence of values νHB grows more prominent since the effect of 
gravity on deformation is more significant with the increase in 
the number of modules.

2.2.2. Metamaterials with the 3D Tessellation of Modules

The metamaterials can be further built in 3D space by tessel-
lating multiple series assemblies. Two design schemes for 3D 
metamaterials are proposed as follows.

Scheme I: Identical series assemblies composed of mz mod-
ules in PPR state and nz modules in NPR state are parallelly 
and periodically tessellated (Figure 4a). There are i and j such 
columns in x and y directions, respectively. Each column’s Pois-
son’s ratios are identical. Therefore, the Poisson’s ratios, of 
the whole metamaterial in Figure 4a, are the same as a single 
column, i.e., νHB can also be encoded by regulating the propor-
tion of modules in PPR or NPR states according to Figure 3c, 
while νBW remains −1.

Scheme II: Series assemblies with (mx  + nx), (my  + ny), 
and (mz  + nz) modules in x, y, and z directions, respectively, 
are implanted to form the frame of a cuboid tessellation 
(Figure  4b). Note that the corners are always NPR modules 
because its three common-point faces are used to connect other 
three modules simultaneously, i.e., ni  ≥ 2 (i  = x, y, z). There-
fore, ni/mi could be any rational number within [2/(2  + mi), 
+∞). The total number and proportion of modules in PPR or 
NPR states of series assemblies on parallel edges are identical, 
but the arrangement order of modules is not strictly limited.

In this case, Poisson’s ratios νHB in the y–z plane and νBW in 
the x–y plane are (Section S10, Supporting Information)

B

H

H

B
n m am an b m n

n m am an b m n

HB

y y z z z z

z z y y y y

ν

β β β
β β β

= − ×

= −
− + + + + +
− + + + + +

d
d

( tan )( (1 2cos ) (1 2sin ) 2 ( ))

( tan )( (1 2cos ) (1 2sin ) 2 ( ))

 (8)

and

W

B

B

W
n m am an b m n

n m am an b m n

BW

x x y y y y

y y x x x x

ν

β β β
β β β

= − ×

= −
− + + + + +
− + + + + +

d
d

( tan )( (1 2cos ) (1 2sin ) 2 ( ))

( tan )( (1 2cos ) (1 2sin ) 2 ( ))

 (9)

where β ∈ [0, π/4] is the folding angle of the module in EP path.
From Equations (8) and (9), we can tell that the Poisson’s 

ratios of the 3D metamaterial in Figure 4b can be programmed 
by regulating the combination ratios of PPR and NPR states on 
EP and EC paths in three directions, ni/mi (i  = x, y, z), inde-
pendent as well as the folding angle β related to the configura-
tion. First of all, let us fix a/b = 2 and β = π/6 to see the effect of 
ni/mi on the Poisson’s ratios. For νHB, there are two boundaries 
(Figure 4c), i.e., ny/my = tan β and nz/mz = tan β, which are the 
transitions of νBW between negative and positive, and divide the 
design space (−∞, +∞) into four regions. Poisson’s ratio νHB can 
be encoded as any negative values once ny/my and nz/mz ∈ (0, 
tan β), or nz/mz and nz/mz ∈ (tan β, +∞). Otherwise, νHB is pos-
itive. Apparently, nx/mx and ny/my play the same role in the pro-
gramming of νBW (see Figure 4d). Moreover, nz/mz and nx/mx 
are independent variables of νHB and νBW as characterized in 
Equations (8) and (9), implying that Poisson’s ratios νHB and 
νBW can be programmed independently. Meanwhile, similar 
as the single module and series assemblies, the Poisson’s ratios 
of the whole metamaterial can be tuned by configurations 
described by folding angle β, and they are not insensitive to var-
iations in geometrical parameters a/b (Section S10, Supporting 
Information).

To demonstrate the programming on the characteristics of 
metamaterials’ Poisson’s ratios, let us take an example with 
(mx + nx = 6), (my + ny = 5), (mz + nz = 8) modules and a/b = 2 
(Figure 4e). Every module except those eight on the cuboid cor-
ners can switch between the PPR and NPR states on EP and EC 
paths. Hence, there are totally 140 modes with distinct charac-
teristics of Poisson’s ratios. In the extremal mode that all the 
modules in the tessellation are in NPR state, the metamaterial 
will be of 3D negative Poisson’s ratios with νHB  = νBW  =  −1. 
Let us take a random mode with nx/mx = 2, ny/my = 3/2, and 
nz/mz  = 1 (Figure  4e, mode I), the metamaterial is with 3D 
negative Poisson’s ratios as both νHB and νBW decrease mono-
tonically in negative values due to ni/mi ≥ 1 (blue solid lines in 
Figure 4f,g). Then, two NPR modules in each x-direction series 
assembly are reconfigurated to PPR state to set nx/mx  = 1/2 
while keeping ny/my = 3/2, nz/mz = 1 (mode II). It is observed 
that νHB is the same as that of mode I (the gray dashed line coin-
cides with the blue solid line in Figure 4f), while νBW changes 
from negative to positive passing zero with the increasing 
folding angle β (gray dashed line in Figure 4g). Next, one NPR 
module in each y-direction series assembly is reconfigurated 
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Figure 4. Metamaterials with the 3D tessellation of mechanism modules. a) Design scheme I of 3D metamaterials created by tessellating series assem-
blies in 3D space. Each column consists of (mz + nz) modules. There are i and j such columns in x and y directions, respectively. b) Design scheme II 
of 3D metamaterials with (mx + nx), (my + ny), and (mz + nz) modules in x, y, and z directions, respectively, to form the frame of a cubic tessellation. 
c,d) The contour plots of νHB and νBW for 3D metamaterials in scheme II as function of ni/mi (i = x, y, z) when a/b = 2 and β = π/6. e–g) The recon-
struction of the metamaterial with (mx + nx = 6), (my + ny = 5), and (mz + nz = 8) modules (a/b = 2) through bifurcation in four typical modes and the 
corresponding Poisson’s ratios νHB and νBW, where nx/mx = 2, ny/my = 3/2, and nz/mz = 1 in mode I, nx/mx = 1/2, ny/my = 3/2, and nz/mz = 1 in mode 
II, nx/mx = 1/2, ny/my = 2/3, and nz/mz = 1 in mode III, and nx/mx = 1/2, ny/my = 2/3, and nz/mz = 1/3 in mode IV.
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to PPR state to set ny/my  = 2/3 while keeping nx/mx  = 1/2, 
nz/mz = 1 (mode III), both νHB and νBW have experienced sig-
nificant changes due to the change of ny/my. It is noted that 
νHB increases from −0.71 to +∞ with β, while νBW first increases 
from −0.78 to +∞, then switches to −∞ at β = 33.69°, and finally 
reaches −1.63 (black solid lines Figure 4f,g). Furthermore, if we 
set nz/mz  = 1/3 by reconfigurating two NPR modules to PPR 
state and keep nx/mx = 1/2, ny/my = 2/3, νHB will decrease from 
−1.86 to −∞, and then switches to +∞ at β = 18.42°, and finally 
reaches −0.41 (red dashed line Figure 4f) due to the change of 
nz/mz compared to mode III, while the value of νBW is the same 
with that in mode III as Poisson’s ratio νBW is independent of 
nz/mz (the red dashed line coincides with the black solid line in 
Figure 4g). These four modes present the typical characteristics 
of 3D Poisson’s ratios, i.e., both in-plane and out-plane negative 
ratios, one negative and one positive, or switching between the 
negative and positive several times during the deformation of 
metamaterials.

3. Conclusions

In this paper, by analyzing the kinematics of the Wohlhart poly-
hedron, we have revealed that this mechanism has three kinematic 
paths, EC, EP, and LT paths, interesting at bifurcation points, B0 
and Bx/By/Bz. Taking a single mechanism as the module, it can 
switch among distinct Poisson’s ratios, NPR, PPR, and ZPR under 
the EC, EP, and LT paths through the bifurcation. Hence, Pois-
son’s ratios can be tuned with the motion of module but are not 
sensitive to the geometric parameters. Such module also exhibits 
tunable chirality and stiffness along the different motion paths. 
Further studies found that modules in EC path with NPR state and 
that in EP path with PPR state can deform cooperatively due to 
compatible topological features, which provides a new paradigm 
to form a series assembly of the module, whose Poisson’s ratios 
can be programmed by regulating the proportion of modules in 
PPR or NPR states through the reconfiguration of each module 
between NPR and PPR states. Next taking this series assembly as 
column, 3D metamaterials can be constructed by implanting the 
columns as the frame of a cuboid tessellation. Owing to the recon-
figurability of the module, we can independently program the 
Poisson’s ratios in orthogonal planes within a wide range from −∞ 
to +∞ by adjusting the ratio of the number of modules in PPR and 
NPR states, which greatly enhances the flexibility in the design of 
3D metamaterials with programmable Poisson’s ratios.

Mechanism-based metamaterials have shown great poten-
tial and advantages in the design of metamaterials with various 
advanced properties.[50–51] This design strategy can be extended 
to other reconfigurable mechanisms to design metamaterials, 
especially those combining different types of modules.[31] The 
reconfiguration of the module, accompanied by program-
mable properties, enables 3D metamaterials to be transformed 
into various deformation modes without disassembly and 
reassembly, providing the possibility to adapt to multiple envi-
ronments and tasks. To achieve reconfigurability of metamate-
rials with a large number of modules, we can rely on certain 
materials, which can produce deformation responses based 
on external environmental stimuli such as magnetic, electric, 
light, or thermal fields, to synchronously drive modules at the 

bifurcated states. Meanwhile, in the kinematics of mechanism, 
the focus is on the topology and the relative geometric condi-
tion, thus mechanism-based metamaterials are generally scale 
free. Their detailed scale is decided by both the request from 
the specific applications, as well as the manufacture process.

The metamaterials with switchable Poisson’s ratio, local and 
global chirality and tunable stiffness in a wider tunable range 
are of great application potentials in shape-morphing systems 
for various fields, such as flexible metamaterials, morphing 
architectures, robotics, bioengineering tissue,[57] and deployable 
structures with both length and volume expansions.

4. Experimental Section
Fabrication of a Single Module: Cardboard was used to fold the 

center body (80 × 80 × 40 mm) and cube connector (40 × 40 × 40 mm) 
(Figure  S6, Supporting Information). The blue or pink cardboard strip 
(160 × 40 × 40 mm)  had  two incisions for joints. Before using glue to 
connect the center body, the connector, and the cardboard strip, a layer 
of polyethylene terephthalate (PET) (80 × 40 × 0.4 mm) was needed to 
be pasted in the middle of the cardboard strip to improve the stiffness 
of the link. First, each PLG was constructed with four identical rigid links 
attached to the square center body. Then, PLGs were interconnected to 
the edges of cube connectors to form a module.

Measurement of the Mechanical Properties of a Single Module: 
A tension and compression experiment for a single module was 
conducted (Videos S2–S4 and Section S4, Supporting Information) on 
a vertical testing machine (Instron 5982). The specimen was tensioned 
(compression) with 160 mm  displacement and a 0.5  mm s−1 loading 
rate. The deformation process was captured by a CSI Vic-3D9M digital 
image correlation (DIC) system with a camera resolution of 2704 × 
3384 pixels and a frame period of 500 ms.

Measurement of the Mechanical Properties of Series Assemblies: 
Horizontal tension experiments were conducted with series assemblies 
(nz/mz  = 2, nz/mz  = 1, nz/mz  = 1/2) in which modules were joined by 
a strong quick-drying glue (Videos S5–S7 and Section S9, Supporting 
Information). The specimens were suspended in the diagonal direction 
on a fixed frame. One end of the specimen was directly glued on the frame, 
and the other end was fixed on the slider located on the frame. The slider 
was connected with the fixture of the displacement control system by 
Kevlar ROPE tows (ϕ = 0.3 mm). The specimen was then tensioned with 
160 mm displacement and a loading rate of 0.5 mm s−1. The deformation 
process was captured by the same DIC system with a camera resolution 
of 2704 × 3384 pixels and a frame period of 500 ms.
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