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Modular Design for Acoustic Metamaterials: Low-Frequency 
Noise Attenuation

Lingling Wu, Zirui Zhai, Xinguang Zhao, Xiaoyong Tian, Dichen Li, Qianxuan Wang, and 
Hanqing Jiang*

A modular design method is introduced to design an acoustic metamate-
rial based on nested Helmholtz resonators that target low-frequency sound 
attenuation. The method combines a performance evaluation using finite 
element methods with structural evolution, and uses a genetic algorithm to 
optimize the acoustic metamaterial to attain the desired properties. Both the 
simulated and experimental results demonstrate the noise attenuation prop-
erty of the optimized acoustic metamaterials. The modular design method 
proposed by this study may potentially design acoustic metamaterials for 
practical sound attenuation applications in industries by considering different 
environments and constraints.
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cavity resonators.[10,11] The many applica-
tions of acoustic metamaterials include 
super resolution acoustic imaging,[12,13] 
acoustic cloaking,[1,2,14] and acoustic waves 
steering;[15–17] however, airborne noise 
attenuation is one of the most important 
applications. Noise pollution is the second 
most significant environmental risk to 
our health,[18] both physiological[19] and 
psychological.[20] Noise policies have been 
implemented by various governmental 
agencies (e.g., European Environment 
Agency and United States Environmental 
Protection Agency) and the World Health 
Organization; the policies typically include 

three factors: the source of the noise, the transmission path, 
and the protection at the receiver’s site. Without regarding the 
source of the noise, typical noise suppression methods target 
the transmission path and receiver’s site, and they can be char-
acterized into passive control and active control.[21,22] Active 
methods detect the original sound source and generate a sec-
ondary sound wave that results in destructive interference with 
the primary one. This method is efficient under most condi-
tions, even for low-frequency sound, which is known to have 
a long penetrating power and a greater influence on health.[23] 
However, most active noise reduction systems are complex 
and require considerable electrical power.[23] On the contrary, 
passive methods are more accessible and robust, and they are 
low-cost.

Among the passive methods, the Helmholtz resonator 
(HR),[10,24–35] which utilizes a cavity structure as a basic acoustic 
resonant model, has been extensively studied to achieve low-
frequency bandgaps for noise attenuation. However, this type 
of resonator is only effective at its single resonance peak with 
a narrow frequency band.[36,37] An extended neck or spiral neck 
has been used to replace the traditional straight neck of the 
HR to improve its noise attenuation performance[36] at low fre-
quencies within a limited space. Despite these efforts, a general 
design to construct HRs with a desired acoustic performance 
has not yet been developed. With the development of machine 
learning, various structures with predetermined properties may 
be automatically determined; thus, it provides a powerful tool 
to simplify the metamaterials design process.

In this study, we adopted a genetic algorithm (GA) to search 
for the optimal meta-atom that has a maximized first relative 
bandgap, which is proven to be an effective method to control 
low frequency noise. The developed modular design method 
is easier to operate and less time-consuming than existing 

1. Introduction

Acoustic metamaterials are artificially constructed struc-
tures that manipulate the propagation of acoustic energy, 
such as, acoustic cloaking,[1,2] negative refraction,[3] sub-
wavelength imaging,[4,5] and sound attenuation.[6] Many  
notable results have been achieved, including mass-in-mass 
structures, membrane-type structures,[7–9] and Helmholtz 
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metamaterial designing methods, such as, topology optimiza-
tion, trial and error, and so on. Therefore, it is generally appli-
cable to metamaterial design, which is rarely investigated by 
previous research work. Theoretical and experimental studies 
were conducted to quantify the sound attenuation performance 
of the optimized acoustic metamaterials. The results showed 
that the optimized acoustic metamaterials outperformed the 
sound barriers that were made of the same material. The opti-
mized acoustic metamaterials may also be applied in industry, 
including highway sound barriers and noise reduction in  
airports and factories.

2. General Methodology of the Modular 
Design Method
The modular design method consists of two parts, namely, 
the finite element analysis that evaluates the performance 
of the meta-atom candidates and the GA model that creates 
the design based on the performance of these meta-atoms. The 
aim is to determine the optimal meta-atom with the desired 
acoustic properties. The schematic of the GA process is shown 
in Figure S1, Supporting Information, and the brief operation 
process is as follows. The genetic algorithm will randomly 
generate a number of initial values for the 12 variables, in 
which each set of the 12 variables represents a candidate struc-
ture of the problem. By evaluating the acoustic performance 
of corresponding structure through finite element analysis, 

the algorithm could gradually evolve, which is the “structural 
evolution.” The population size depends on the number of 
design variables, meaning that the more design variables, the 
larger the population size. Then, the GA is employed to deter-
mine the optimal solution by genetically breeding a popula-
tion of individuals over a series of generations until the change 
of the fitness function between two adjacent generations is 
smaller than the tolerance.[38] Through sequential iteration and 
the structural evolution, a meta-atom with an optimal arrange-
ment of structural bases is thus achieved. Here, COMSOL 
Multiphysics was used for the finite element simulation, and 
it can be readily combined with the GA model via LiveLink for 
MATLAB.

3. Optimization of the Nested Helmholtz 
Resonator
A nested Helmholtz resonator with 4 layers of concentrically 
C-shaped resonators[39–41] was considered in this study, as 
shown in Figure  1a. Based on existing studies (e.g., ref. [29]), 
the C-shaped Helmholtz resonator has low-frequency band-
gaps. The component for each layer is white polyvinyl chlo-
ride pipes (modulus = 3.2  GPa, density = 1380 kg m−3), and 
the rings are confined in a 100 × 100 mm square. As shown in 
Figure  1a, there are 12 to-be-optimized parameters: the thick-
ness of each layer T1, T2, T3, and T4; the gap width of each layer 
D1, D2, D3, and D4; and the rotating angle of the gap α1, α2, 

Figure 1. Modular design method to design an acoustic meta-atom. a) Design model of a nested Helmholtz resonator with 12 to-be-optimized param-
eters (only 9 shown here). b) Optimization iteration history by applying GA, where insets ①, ②, and ③ show the best configuration of the 2nd, 40th, and 
182th generation, respectively. c) The transmission loss of an acoustic metamaterial constructed by 20 layers of optimal meta-atoms. d) The bandgap 
structures of meta-atoms ①, ②, and ③ shown in (b).
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α3, and α4 (not shown in Figure  1a). The periodicity a1 of the 
simulated models equates to 100 mm, and the outside radius of 
the largest circular inclusion R1 is set as 45 mm. The values of 
R2, R3, and R4 are 37.5, 25, and 20 mm, respectively, to avoid the 
geometrical overlap of each layer and guarantee fabrication fea-
sibility during the optimization process of each parameter. The 
population size of the GA is 100; thus, there are 100 finite ele-
ment simulations in each generation to evaluate the band struc-
ture. The details of the GA optimization (Figure S1, Supporting 
Information) and the searching constraints of the parameters 
are presented in Supporting Information.

For a given structure, the jth bandgap was calculated using 
the difference between the maximized value of the jth band and 
the minimum value of the (j+1)th band. The jth relative width 
of the bandgap was then defined as the ratio between the width 
of the jth bandgap and its corresponding midgap frequency (i.e., 
the average bandgap of the jth and (j+1)th bands). In the optimi-
zation, the 1st relative width of the bandgap was adopted as the 
fitness function f1:
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where ω1 and ω2 are the frequencies of the first and second 
bands, respectively.

The GA calculation process is shown in Figure  1b, from 
which it can be observed that a maximized fitness function 
value of 0.55 was obtained in the 182th generation. Given 
that there are 100 populations in each generation, a relatively 
large amount of finite element simulations is required to 
achieve the optimized configuration, which demonstrates 
the efficiency of this modular design method. The structure 
of the optimal meta-atom with a relative bandgap of 0.55 is 
shown in the inset of Figure 1b. The optimal parameters are 
included in Supporting Information. Figure  1d presents the 
bandgap structure of configurations ①–③, which are marked 
in Figure  1b; the figure shows that the complete bandgap 
becomes wider and lower during the iteration process. 
The optimal configuration (③) presents a wide complete 
bandgap between 649.1 and 1140.6  Hz. Based on this meta-
atom, an acoustic metamaterial with a maximized relative 
bandgap can be constructed. The transmission loss (TL) of 
a finite array model with 20 layers of meta-atoms is shown 
in Figure  1c. The simulation direction is Γ-X, and a larger 
bandgap, from 547.6 to 1140.6  Hz, is obtained. Figure S2, 
Supporting Information, provides the sound pressure level 
in dB of the 3-layer metamaterial at several representative 
frequencies. It exhibits a distinguishable sound pressure 
drop in the bandgap region.

4. Experimental Verification and Discussion

Due to the cost constraint, only the optimal acoustic metama-
terial sample was fabricated. Figure 2a–c illustrates the experi-
mental setup used to test the sound attenuation performance of 
the sample, where three layers of the optimized nested Helm-
holtz resonators were placed between a sound source and a 

receiver. The distance between the receiver and sample equals 
to that between the sample and sound source, which are indi-
cated by d. Figure 2b shows a photograph of the experimental 
setup in an anechoic chamber, where the three layers of nested 
Helmholtz resonators are 3.3 m in width, 2.2 m in height, 
and 0.3 m in depth. The metamaterial reaches the ceiling of 
the anechoic chamber to be consistent with the simulation. 
The wall and ceiling of the anechoic chamber is covered with 
sound absorbing materials to ensure an accurate measurement.  
Further details of the noise source and instruments are  
presented in Supporting Information.

The TL of the acoustic metamaterial when d  = 0.8 m is 
shown in Figure 2d. The aim of the optimization process was to 
maximize the 1st relative bandgap; thus, it is clear that the opti-
mized metamaterial exhibits a great sound attenuation perfor-
mance, particularly in the low-frequency range (e.g., from 547.6 
to 1140.6 Hz). To quantify the sound attenuation performance 
of the acoustic metamaterial, we defined a quality factor TLavg 
as the average transmission loss between 649.1 and 1140.6 Hz 
(because this is the optimization frequency region), which is 
given by

TL
TLdf
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∫
=

−
 (2)

where TL refers to the transmission loss from Figure 2d, which 
is calculated by:
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where TL is the transmission loss in dB, Pout, and Pin are the 
transmitted and incident power, respectively.

Figures  2e shows the experimental results for different  
distance d, which shows a very slight shift of the peak to 
higher frequency domain when d increases. Videos S1–S3 pre-
sented the recorded sound pressure level at the receiver side 
(d = 1 m) without acoustic metamaterial, with perfect 3-layer 
acoustic metamaterial, and with defective 3-layer acoustic 
metamaterial, respectively. The TL_avg of the acoustic met-
amaterial are 37.9, 38.8, and 38.1  dB for d  = 0.8, 1.0, and 
1.2 m, respectively. Figure  2f compares the experimental  
and simulated results of the transmission loss using the 
optimized acoustic metamaterials at distance d  = 0.8 m. It 
is found that the TL_avg values are fairly close though some 
discrepancies still exist, with 30.6  dB for the simulation and 
37.9 dB for the experiments.

There are several factors that may lead to these discrepan-
cies. The smoother transmissibility curve in the simulations, 
relative to the “noisy” transmission loss from the experiments, 
is due to fabrication defects.

The optimized acoustic metamaterial also exhibits a thick-
ness effect in terms of the number of layers. Theoretically, 
the optimized acoustic metamaterial has a complete bandgap 
between 649.1 and 1140.6  Hz (see ③ in Figure  1d). Even a 
20-layer acoustic metamaterial has a great transmission loss in 
the same frequency range (Figure  1c). Practically, only a very 
limited number of layers can be applied, owing to either cost 
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or size considerations. To evaluate the effect of the number of 
layers on the sound attenuation, the transmission losses for 
1-layer, 2-layer, and 3-layer acoustic metamaterials were meas-
ured at d = 0.8 m, and the results were compared with that of 
the simulations (Figure 3). Figure 3 shows that with an increase 
in the number of layers, both the simulation and experiment 
start to exhibit a larger transmission loss over the desired  
frequency range, and a smaller discrepancy between the simu-
lations and experiments appears.

Another practically important factor is the acoustic metama-
terials’ robustness to defects in terms of the performance of 
sound attenuation. We have intentionally removed 1 element 
from a perfect acoustic metamaterial (Figure  4a). Figure  4b 
shows the simulated result of a 3-layer acoustic metamaterial 
with and without defects, from which it can be observed that 

the influence of the defects is relatively small. The experimen-
tally measured TL_avg values are 36.8 and 37.9  dB with and 
without defects (d = 0.8 m), respectively, which exhibits only a 
marginal difference (Figure 4c). Figure 4d,e show the compar-
ison of experimental results between sample with and without 
defects for d  = 1.0 and 1.2 m, respectively. Figure  4f,g present 
the simulated sound pressure level at 2000  Hz for the meta-
material with and without defects, respectively. From the com-
parison of the results, we could conclude that the influence of 
defects on the performance of acoustic metamaterials is very 
small, which demonstrates that the performance of acoustic 
metamaterials is relatively robust.

We also carried out another three GA calculations to verify 
the convergence of optimization results (see Figure S3,  
Supporting Information). From the results, one can see that 

Figure 2. Experimental setup and measurement results. a) Schematic of the experimental setup. b,c) Experimental setup for a 3-layer acoustic meta-
material. d) Comparison of measurement results with and without acoustic metamaterial. e) Comparison of experimental results for different (d). 
f) Comparison of simulated and experimental results of the 3-layer acoustic metamaterial.
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the optimization result show little dependence on the GA cal-
culation process, which is very important in practical applica-
tion, especially when the number of optimized parameters is 
very large.

5. Conclusion

Here, a modular design-based method for the design of 
acoustic metamaterials with low-frequency sound attenua-
tion performance was introduced. The method combines per-
formance evaluation with structural evolution to construct an 
acoustic metamaterial. Although the present study focuses on 
the sound attenuation in the low frequency range, the modular 
design method can be applied to design acoustic metamate-
rials in different frequency ranges by customizing the fitness 
function. Both the simulated and experimental results are pro-
vided to demonstrate the noise attenuation property of the opti-
mized acoustic metamaterial. Given the practical limitations 
of the fabrication accuracy and experiments situation, such as, 
cost and size, the experiments do not replicate the simulation. 
With the development of manufacturing technology, the limita-
tions mentioned above could be overcome. It is believed that 
the modular design method presented in this study has the 

potential to design acoustic metamaterials for practical sound 
attenuation in industries by considering different environ-
ments and constraints.
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from the author.
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Figure 3. Investigation of the influence of the number of layers on the performance of the acoustic metamaterial. Comparison of experimental and 
simulated results of the acoustic metamaterial with a) 1 layer, b) 2 layers, and c) 3 layers. Experimental set up for the metamaterial with d) 1 layer, 
e) 2 layers, and f) 3 layers.
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Figure 4. Effect of defect on the performance of acoustic metamaterial. a) Schematic of the setup to test the metamaterial sample with 1 defect in the 
middle of the second layer. b) Simulated results for a 3-layer acoustic metamaterial with and without defect. c–e) Experimental results for a 3-layer 
acoustic metamaterial with and without defect when d equals to 0.8, 1.0, and 1.2 m, respectively. f,g) Simulated acoustic pressure level at 2000 Hz for 
a 3-layer acoustic metamaterial with and without defect, respectively.
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