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a b s t r a c t

Though there are significant efforts to develop numerical platforms to simulate the dynamic behaviors
of responsive gels, several challenges were not successfully resolved, including truly robust method to
handle time-dependent and coupled mass diffusion and deformation fields particularly at very short-
time and complicated instability. In this Letter, a facile, robust and versatile finite element method was
developed to resolve these challenges by adopting ramping boundary conditions, viscous damping, and
damped Newton–Raphson method. This method can be readily implemented in a commercial platform
COMSOL Multiphysics. The finite element method was showcased to study several dynamic examples
that possess very short-time surface wrinkles, wrinkle evolutions, and incorporation with other physics
field. Given the fact that the implementation is through a commercial platform, this method can have
significant contributions to the studies of gels.

© 2018 Published by Elsevier Ltd.

1. Introduction

Large and reversible deformation, responsiveness to various
stimuli [1–7], and dual attributes of a solid and a liquid endow
gels a wide variety of application [8–10]. Many theories have
been formulated to describe the mass diffusion and deforma-
tion phenomenon in gels [11–22]. For example, nonlinear field
theories have been developed to treat the fluid–solid mixture
as a single homogenized continuum and rigorously consider the
relationship between mass diffusion and large deformation. In
addition to theoretical development, numerical implementation
is another critical aspect to advance the frontier of gel related
research. Many finite element-based methods have been devel-
oped, including in-house programs [23–25], several user-defined
subroutines in the platform of ABAQUS (e.g., such as user-defined
hyperelasticmaterial [26–28]), user-defined element [29,30], user-
defined heat transfer by an analogy between mass diffusion and
heat transfer [31], and implementation through weak form PDE
interface of COMSOL [32,33]. Despite these efforts, numerical im-
plementation of nonlinear field theories for gels is still far from
satisfactory. Firstly, in-house code is only limited to some spe-
cific problems and cannot be readily disseminated to the com-
munity [23–25]. Secondly, some user-defined subroutines can
only capture the chemical equilibrium state [26–28]. Thirdly, even
some implementations can study the time-dependent problems
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(i.e., dynamic or transient problems), very short-time transient
behavior is still challenging due to the extremely inhomogeneous
deformation [29–33]. Moreover, ubiquitous instability problems
of gels during swelling/deswelling introduce another barricade
for some implementations. Finally, to the best of our knowledge,
no numerical implantation can robustly handle responsive gels
that several physics fields coevolve, such as temperature sensitive
gels. Consequently, a numerical implementation for gels with the
following characteristics is desired: (1) robustness, i.e., the im-
plementation can handle both time-dependent and equilibrium
states and capture the evolution of various instability problems,
(2) versatility, i.e., the method can study different responsiveness
(e.g., heat) in gels, and (3) extensibility, i.e., the implementation
can be readily extended to incorporate new fields with marginal
efforts.

This letter reports a comprehensive finite element implemen-
tation of a nonlinear field theory for gels that possesses afore-
mentioned three characteristics. Specifically, we implemented this
method in COMSOLMultiphysics and adopted combined strategies
to successfully handle the Dirichlet boundary conditions (i.e., pre-
scribed chemical potential boundary conditions) for very short-
time response, to efficiently configure the numerical solver for
highly coupled problems (i.e., coupled mass diffusion and large
deformation), and to effectively apply viscous damping for rich in-
stability phenomena. Moreover, we can leverage the multiphysics
capability of COMOSL to integrate with other physical fields. Fi-
nally, since this implementation is built on COMSOL Multiphysics
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via built-in functions or numerical servers, it can be readily dissem-
inated to the community. In the paper, the numerical implemen-
tation will be introduced after a brief summary of the nonlinear
field theory for gels. Then a wide spectrum of case studies will
be presented to highlight the effectiveness and robustness of this
implementation. Finally, this implementation will be extended to
include co-evolution of three physical fields, namely, temperature,
mass diffusion, and deformation, for thermoresponsive gels. It is
believed that this finite element implementation can be readily
applied to study time-dependent behaviors of responsive gels.

2. A brief review of a nonlinear field theory for gels

A nonlinear field theory for gels that couples large deforma-
tion and mass diffusion was developed by Hong et al. [18] using
nominal variables, and was re-written by Duan et al. [31] using
true variables in the current state in order to utilize the analogy
between mass diffusion and heat transfer. Here the same formula-
tion in Duan et al. [31] is adopted and the key equations are listed
here. Deformation gradient F = ∂x(X, t)/∂X is used to map be-
tween the reference state (with coordinateX) and the current state
(with coordinate x(X, t)) and the standard mechanics equations
are adopted. The gel is modeled as a hyperelastic material with
normalized nominal free energy density Ŵ (F) given by

Ŵ (F, µ) =
1
2
Nv [FiK FiK − 3 − 2 log (det F)]

−

[
(det F − 1) log

(
det F

det F − 1

)
+

χ

det F − 1

]
− µ(det F − 1),

(1)

where Nv and χ are two dimensionless materials properties rep-
resenting the dimensionless shearmodulus of the dry polymer and
the enthalpy of mixing, respectively. µ is the chemical potential of
the gel, with µ = −∞ for a dry polymer and µ = 0 for a fully
swollen or saturated gel. For diffusion, the conservation of mass
can be expressed in terms of deformation gradient F given by

1
det F

∂ [det F − 1]
∂t

+

∂

[
−

[det F−1]D
det F

∂µ

∂xi

]
∂xi

= 0, (2)

where t is time and D is the intrinsic diffusivity. The characteristic
time scale τch is given by L2

D , where L is the feature size of the gel.
Two types of boundary conditions can be prescribed for the mass
diffusion, i.e., prescribed chemical potential boundary conditions
µ = µ (i.e., Dirichlet boundary conditions), and prescribed flux
boundary condition ∂µ

∂xi
= ji (i.e., Neumann boundary conditions).

Eqs. (1) and (2) co-evolve the deformation field (i.e., F) and the
chemical potential field (i.e., µ). The mechanical equilibrium was
implemented in COMSOL Solid Mechanics module, and the hy-
perelastic material model of gel (Eq. (1)) was implemented using
hyperelastic material node under Solid Mechanics module. The
diffusion equation (Eq. (2)) was implemented via COMSOL PDE
module. Linear elements have been used for both displacement
and chemical potential field discretization [29] and they can be im-
plemented directly by selecting shape function type and element
order in COMSOL.

3. Finite element implementation of a robust and efficient
method

Solving the coupled nonlinear field theories for gels is very
challenging. To the best of our knowledge, a versatile and robust
numerical platform that can handle both the short-time response
of a gel, such as the transient response of a dry gel sobbed in
a solvent, and the rich surface instability of the gel during the

swelling/de-swelling processes, does not exist yet. At the short-
time limit, the chemical potential of a dry gel experiences a sudden
change, i.e., fromµ = −∞ for the interior of the dry gel toµ = 0 at
the dry gel/solvent interfaces. Due to the large deformation of the
gel, this sudden change of chemical potential at the vicinity of the
gel/solvent interface will lead to extremely distorted deformation
at the short-time limit, which attributes to the first challenge,
namely, short-time response of a gel. If a representative diffusivity
is considered, D = 10−8 m2/s, the characteristic time scale for a
1 mm3 gel cube is 100 s. The reported shortest time scale for gel
dynamic simulation is 215 s using a similar theory implemented
by ABAQUS UEL, which did not capture the short-time surface
wrinkling response and required significant coding. Another ap-
parent challenge is the numerical convergence led by instabil-
ity [26,27,34–37]. It should be pointed out that this instability does
not only embody global buckling, but also can be local surface
instability due to the materials properties [37]. For example, in the
short-time period, swelling is usually accompanied bywrinkle for-
mation, evolution and vanishing [35]. Therefore, slightly numerical
perturbation can cause singularity of systemmatrix and lead to ex-
tremenumerical difficulty. To resolve aforementioned issues, three
numerical strategies, namely ramping boundary conditions at the
short-time limit, solver configuration for fully coupled problems,
and viscous damping for numerical convergence at the presence of
instability, will be adopted.

Ramping boundary conditions:
For a diffusion problem, at the prescribed chemical potential

boundaries Sµ, a discontinuity exists at the gel and solvent inter-
face. The extreme case for this discontinuity is for the dry gelwhere
µ = µdry = −∞ in the entire volume, except µ = µsolvent = 0
at Sµ. Usually, this discontinuity will smear out with time and
the chemical potential field will become smooth and infinitely
differentiable [38]. However, for a strongly coupled mass diffu-
sion and nonlinear large deformation problem, this discontinuity
oftentimes leads to numerical divergence at the short-time limit.
To tackle this problem, a smooth ramping boundary condition is
introduced via a smoothed Heaviside function H(t, tramp) (Fig. 1a),

H(t, tramp) =

{ 0, t ≤ 0
ramping function,

1, t ≥ tramp

0 < t < tramp (3)

where a C2 function (such as a high-order polynomial function) is
introduced when 0 < t < tramp, and thus the prescribed chemical
potential is given by

µ = µdrygel + (µsolvent − µdrygel)H(t, tramp). (4)

The choice of the ramping function and tramp determines the
smoothness of the prescribed chemical potential boundary con-
ditions. The ramping boundary condition can be implemented via
a built-in second derivative smooth Heaviside function flc2hs in
COMSOL.

A benchmark test was performed to ensure an accurate rep-
resentation of the discontinuous boundary condition using this
ramping boundary condition. Over 10,000 linear hexahedral ele-
ments 8u8µ were used. Fig. 1b illustrates a gel bar with a unit
length and lateral constrained in X1 and X2 directions. The gel only
swells in the X3 direction, characterized by the stretch λ3(X3, t).
The numerical benchmark solution of this 1D problem was given
by Duan et al. [31]. From Fig. 1c–e, different ramping times tramp,
ranging from τch

100 ,
τch
10 , and τch, were studied, where τch =

L2
D is the

characteristic time. It can be seen that when tramp =
τch
100 , the finite

element simulation agrees very well with the benchmark solution
from very short time (t = τch), showing large inhomogeneous
deformation, to longer time (Fig. 1c). Even with a larger ramping
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Fig. 1. Numericalmethods to resolve the challenges tomodel transient behavior of gels. (a) Ramping boundary condition to resolve discontinuity at the interface between dry
polymer and solvent. (b) Schematic of a gel swelling in X3 direction. (c)–(h) Benchmark tests of a gel swelling in X3 direction as comparedwith numerical benchmark solutions
for

(
tramp =

τch
100 , c = 0.001 N s

m m3

)
,
(
tramp =

τch
10 , c = 0.001 N s

m m3

)
, and

(
tramp = τch, c = 0.001 N s

m m3

)
,
(
tramp = 10−5τch, c = 0.001 N s

m m3

)
,
(
tramp = 0.01τch, c = 1 N s

m m3

)
, and(

tramp = 0.01τch, c = 1000 N s
m m3

)
, respectively. (i) Newton–Raphson’s method. (j) Damped Newton–Raphson’s method.
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time tramp =
τch
10 , the FEM solution still agrees perfectly with

the benchmark solution (Fig. 1d). Only when the ramping time is
comparable to the characteristic time, i.e., tramp = τch, the short-
time limit from the FEM solution deviates from the benchmark
solution, but the long-time solutions still match very well with the
benchmark solutions (Fig. 1e). The benchmark tests show that as
long as a proper ramping time is chosen (e.g. tramp ∼

τch
10 ), the

ramping boundary condition can accurately represent the discon-
tinuous boundary conditions. In the present method, as long as the
ramping time tramp is chosen to be short enough, very short time
behavior can be captured. As shown in Fig. 1f, very short ramping
time was used (tramp = 1/105τch which equals to 1/103 s) and
the present model can accurately capture the short time response
Dt/L2 = 0.001 (or t = 0.1 s). One thing should be kept in mind
that high computational cost is expected in order to resolve very
short time behavior (i.e., higher time resolution).

Viscous damping
The swelling and deswelling of many gels are accompanied by

wrinkle formation, evolution and vanishing [35]. Traditional arc-
lengthmethod is only suitable for problemswith globally traceable
load–displacement path [39] and not very efficient for gels with
localized instabilities. Here a viscous dampingmethod to tackle the
instability issue in gel simulation was introduced.

For a global system matrix

K =

[
Kuu Kuµ

Kµu Kµµ

]
, (5)

Kuu represents quasi-static solid mechanics physics, Kuµ and Kµu

are coupled time-dependent diffusion and deformation, and Kµµ

is the time-dependent diffusion. At the onset of instability, the
global stiffness matrix K is singular because Kuu becomes singular.
To solve this problem, a viscous damping factor c (c >0) was
introduced on Kuu, which can be briefly explained as

Kuu (u) · u + c
du
dt

= P (t) (6)

and the modified equation is solved via an implicit method,

At+∆t∆u = Yt+∆t (7)

with

At+∆t =
c

∆t
I + Kuu

t+∆t , (8)

Yt+∆t = Pt+∆t − c
dut

dt
− Kuu

t ut , (9)

where I is the identity matrix. By adjusting the positive number
c

∆t , the modified stiffness matrix At+∆t can keep positive definite
even at the onset of instability whenKuu

t+∆t is singular. The physical
meaning of the viscous damping term is an artificial friction to
dissipate the energy. Thus, the choice of c is to ensure that the dis-
sipated energy is just a small fraction of the total energy (e.g., 1% of
the total energy). We studied the effect the magnitude of damping
factor on the result. As it can be seen from Fig. 1c, g and h, damping
factor varies from 10−3 N s/m4 to103 N s/m4 and does not have a
strong influence on the computational results. This method can be
implemented in COMSOL via spring foundation nodes on the solid
domain. It is noted that the viscous damping method is similar to
previous reported penalty factor method [30,31,39].

Solver configuration
Mass diffusion and large deformation concurrently evolve in

gels. There are generally two approaches to solve coupled prob-
lems. One is a fully coupled approach that assembles both physics
into one generalized stiffnessmatrix and applies Newton–Raphson
method to solve until a convergence is reached. This approach

generally requires a memory-intensive direct solver to solve the
linear system in each Newton–Raphson iteration. The other ap-
proach is a segregated approach that solves each physics sequen-
tially until convergence. This approach can usually be much more
computationally efficient than the fully coupled approach. Unfor-
tunately, the segregated method is not effective to model gels if
not impossible, because of the strong coupling nature in gels. For
gels, the deformation is extremely sensitive to chemical potential.
Therefore, a slight change on chemical potential fields between
two consecutive increments on solving themass diffusion problem
by fixing deformation fields may in turn lead to huge variations
on the deformation fields on the next sequential solver for the
displacement, which poses a significant challenge in convergence.
Therefore, fully coupled solver has to be used tomodel the dynam-
ics behavior of gels and a computationally efficient solver needs to
be configured.

It is very computationally expensive to apply Newton–Raphson
method for every iteration step, specifically for the fully coupled
approach (Fig. 1i) where the inverse of the global residual matrix
R (φ) = K (φ) · φ − P is required to update the generalized nodal
displacement φ through

φt+∆t = φt + ∆φ = φt − R′
(
φt

)−1
· R

(
φt

)
. (10)

To significantly reduce the computational cost, a damped
Newton–Raphson iteration can be adopted [40] (Fig. 1j). Rather
than directly compute φt+∆t using Eq. (10), a damping factor λ(λ ∈

[0, 1]) is introduced so that

φt+∆t = φt + λ∆φ = φt − λR′
(
φt

)−1
· R

(
φt

)
. (11)

The damping factor λ is adjusted based on the error Et , given by
R′

(
φt

)−1
·Et+∆t = −R

(
φt+∆t

)
. If the relative error |Et+∆t | is larger

than the relative error |Et | in the previous iteration, the damp-
ing factor λ will be reduced and φt+∆t will be re-evaluated. The
algorithm repeats the damping-factor reduction until the relative
error is less than that in the previous iteration.When an acceptable
φt+∆t is achieved, the algorithm proceeds with the next damped
Newton–Raphson iteration. This algorithm can significantly ex-
pedite the convergence speed for the fully coupled method. This
algorithm has been implemented in COMSOL.

Case studies — dynamic and coupled mass diffusion and defor-
mation

In this section, some dynamic behaviors of gels were studied
to showcase the robustness of the finite element implementation.
The cases with experimental results were chosen. Qualitative and
quantitative comparisons were made.

Free swelling of a spherical gel
The free swelling of a spherical gel shows transition of surface

wrinkles [35]. A spherical dry gel with initial radius of 1 mm was
modeled, using over 20,000 tetrahedral elements. The materials
properties used in this model are normalized dry gel modulus
Nv = 0.001, diffusivity D = 10−8 m2/s, and enthalpy of mixing
χ = 0.3. The characteristic time τch is 100 s and the ramping
time tramp = 0.5 s. When immersing this spherical gel in water,
the swelling of this gel shows evolution of the surface wrinkles
as provided in Fig. 2, from very short time (e.g., t = 0.4 s or
t = 0.4%τch) to long time limit (e.g., t = 30,000 s). During
the evolution, the characteristic wave length of wrinkles becomes
larger and the number of wrinkles reduces, as wrinkles coalesce.
Large inhomogeneous deformation was observed, particularly at
the short time limit. At about 1000 s the gel reaches a perfect
spherical again and continues to swell for thousands of seconds
until reaches a final equilibrium state. The final radius of the
spherical gel is 2.87 mm. Supplementary video S1 shows the pat-
tern evolution. Similar patterns and kinetics of instability were
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Fig. 2. Snapshots of a spherical gel free swelling at different time. Contour plots show the radius of the spherical gel at different time steps. The zoom-in contour plots
highlight the short-time evolution of surface wrinkling when the dry polymer is sobbed in the solvent.

observed experimentally by Tanaka et al. [41] This study shows
that the present finite elementmodel can qualitatively capture the
dynamic behavior of gels. We have checked the convergence and
found that with increasing the number of elements, the lower-
order modes have reached convergence, though the higher-order
modes at very short time depend on the number of elements. The
present method is also able to capture the evolution of creases
as long as the surface self-contact does not appear. As shown in
Fig. 2, the spherical gel shows both wrinkles and creases from 0.5 s
to 5 s.

Constrained swelling of a gel strip
Another model to study the pattern formation of swelling gels

is a soft gel bonded to a stiff substrate. The kinetics of this model
is important for solving many biological problems, e.g., the de-
velopment of embryos [42]. As shown in (Fig. 3a), characteristic
dimensional parameters, h, t, and L represent height, thickness,
and length of the strip in dry state, respectively. Depending on
different dimensions of the strip gel, thousands of hexahedral
elements were used in each case. The materials properties used in
thismodel are normalized dry gelmodulusNv = 0.001, diffusivity
D = 10−7 m2/s, and enthalpy of mixing χ = 0.57. We found
the evolution of the instability mode from local edge buckling into
global buckling and the coalescence of sinusoidal buckling waves.

For a case with t = 0.8 mm, h = 2mm and L = 40mm, higher-
order mode (i.e., local instability) appears at about 10 s (Fig. 3b
for the top view and Fig. 3c for the 3D view), and then evolves
to lower-order mode (i.e., global instability at about hundreds of
seconds as shown in Fig. 3d). Two waves at 700 s marked with
the arrows (Fig. 3d) coalesce into one big wave at 1200 s (Fig. 3e).
After another coalescence between 1200 s and 30,000 s marked by
two arrows, the striped gel reaches equilibrium state (Fig. 3f for
the top view and Fig. 3g for the 3D view). The dynamic of wave
evolution is provided in the supplementary video S2 (top view).
Both the evolution of the instability mode and the coalescence of
waves were observed experimentally by DuPont et al. [43].

We also studied the relationship between wavelength λ and
height h at equilibrium state. In order to compare with the theo-
retical model for a strip with infinite length [44], the length L in
the numerical simulation wasmakemuch larger than the height h.
Specifically, L = 100mmwas used for all simulations, and h varied
from 1 mm to 6 mm. In three groups of samples with different
normalized thickness t/h, the ratio of λ to h approximately falls
in the range of the theoretical model when λ/h = 3.256 (Fig. 3h).
The discrepancy can be resulted from the fact that the theoretical
model is based on linear elasticity while this work is based on
nonlinear theory [44].

Gel tube swelling
Another constrained swelling case is a gel tube on a stiff

substrate. The gel tube in dry state can be described by three
characteristic dimensional parameters, t, h, and d, representing
thickness, height, and diameter (Fig. 4a), respectively. The same
material parameters as that in the strip gel were used. Depend-
ing on different dimensions of the gel tube, thousands of linear
hexahedral elements 8u8µ were used in each case. Subjected to
a fixed boundary condition on the bottom, the gel develops inho-
mogeneous stress when contacts with the solvent. In the case with
t/h = 0.5 and h/d = 0.14, the phenomenon of wave coalescence
can be observed. The tubular gel buckles into seven waves at 42
s, with two of the waves pointed by arrows (Fig. 4b). Then at 50
s the two marked waves coalesce into one wave (Fig. 4c), which
is much larger than other waves. At 600 s all the six waves are
in equal size and the gel reaches its equilibrium state (Fig. 4d).
Supplementary video S3 shows the dynamic evolution. We also
studied the effect of gel tube geometry on wrinkle patterns. Three
groups of simulations with different normalized thickness t/h and
each group having seven cases with different normalized height
h/d were performed. The configurations of all the cases at their
equilibrium states are shown in Fig. 4e. As shown in Fig. 4f, the
relationship between the number ofwaves at the equilibrium state
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Fig. 3. Gel strip constrained swelling. (a) Schematic of gel strip with bottom surface fixed. (b)–(g) Snapshots of gel strip constrained swelling and the contour plots are for
the z coordinate. (b) Top view of the gel at time 10 s, showing higher-order local instability. (c) Side view of Fig. 3b. (d) Top view of the gel at time 700 s, showing global
instability mode. Two waves are marked by arrows. (e) Top view of the gel at time 1200 s, where buckling waves coalesce from Fig. 3d. (f) Top view of the gel at time 30,000
s (close to the equilibrium state), where buckling wave coalesce is shown. (g) Side view of Fig. 3f. (h) Normalized instability wavelength λ/L as a function of the normalized
height h/L of the swollen gel strips at different thickness to height ratios (t/h) compared with theoretical results.

and the normalized height h/dmatches well with the theory of Lee
et al. [45].

Bifurcation of a lattice of cylindrical holes
A gel stab with a square lattice of through cylindrical holes

swells in a solvent. As shown in Fig. 5, following the work of
Hong et al. [28], we model a unit cell containing quarters of four
neighboring holes using plane-strain elements [28]. Over 10,000
linear quadrilateral elements 4u4µ were used. Here, we can cap-
ture the entire time-dependent snap-through bifurcation process,
which was believed to be very difficult in ABAQUS for this type of
problem [28]. The evolution of the chemical potential is plotted
on the deformed layer at different time. As solvent molecules
migrate into the gel, the field of chemical potential µ gradually
diffuses from boundaries into centers of the gel. At the same time,
cylindrical holes collapse into slits, and the square lattice bifurcates
into slits of alternating directions with symmetry broken. The
materials properties used in this model are Nν = 0.001,D =

10−8 m2 s−1 and χ = 0.85. Supplementary video S4 shows the
dynamic evolution.

Case study – coupled heat transfer, mass diffusion and large
deformation for thermoresponsive gels

The method developed in this paper can be readily extended to
incorporate other physics. Here we showcase the versatility of this

method by modeling the transient process of a thermoresponsive
gel. The fully swollen thermoresponsive gel PNIPAM is in a hemi-
spherical shell shape [46]. To trigger the localized deswelling by
increasing temperature, Joule heating was utilized via three fan-
shaped heaters (I, II and III) embedded in the shell (Fig. 6a), which
can be turned on/off by controlling the current passing through
them. The equilibrium state, both thermal and mechanical fields,
were studied separately [46]. In this section, the transient process
that captures the time-dependent evolution of temperature, diffu-
sion, and deformation fields, was studied. The model parameters
are the followings. The inner and outer radius of the hemispherical
shell are 7 mm and 8 mm, respectively. The bottom of the shell
is fixed to constrain rigid body movement, and all outer surface
are subjected to convective heat transfer with coefficient taken
to be h = 200 W m−2 K−1 [47]. The current is 44 mA and the
resistance of each heater is 126 �. The materials properties used
in this model are normalized dry gel modulus Nv = 0.001 and
diffusivity D = 10−8 m2 s−1. The coupling between mass diffusion
and temperature is characterized by a temperature dependent en-
thalpy of mixing χ (T ), i.e., the lower critical solution temperature
phenomena of PNIPAM gels [46]. The thermal field evolves based
on the conservation of heat in heat transfer,

ρCp
∂T
∂t

+ ∇ (−k∇T ) = 0, (12)
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Fig. 4. Gel tube constrained swelling. (a) Schematic of gel tube with bottom surface fixed. (b)–(d) Snapshots of gel tube constrained swelling and the contour plots are for
the z coordinate. (b) Top view of the gel at time 42 s, where two arrows mark two buckling peaks. (c) Top view of the gel at time 50 s, where two buckling peaks in Fig. 4b
coalesce into one peak. (d) Top view of the gel at time 600 s (close to the equilibrium state). (e) A combination of equilibrium shapes with different height to diameter (h/d)
and thickness to height (t/h) ratios. The contour plots are for the z coordinate. (f) Number of wrinkles along the circumferential direction as a function of h/d with different
t/h compared with theoretical results.

where ρ, Cp, and k are the density, specific heat capacity and
thermal conductivity of the gel, respectively. Given that gel is a
mixture of water and polymer, rule of mixture was used to assign
these material properties. Moreover, the amount of water in a gel

depends on deformation and so does thesematerial properties. For
example, the specific heat capacity of gel is given by

Cp (F) =
1

det F
(
Cp

)
dry gel + (1 −

1
det F

)
(
Cp

)
water, (13)
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Fig. 5. Swelling of a gel stab with a pattern of cylindrical holes. The contour plots
are for the chemical potential at the deformed states at different time, with (a) for
the initial state, (b) for 10 s, (c) for 30 s, and (d) for 10,000 s.

Fig. 6. Dynamic response of a hemispherical thermoresponsive hydrogel. (a)
Schematic of the hemispherical hydrogel shell made of PNIPAM embedded with
three heaters. The contour plots are for the temperature field at the deformed states
at different time, with (a) for 400 s where only heater I is ON, (b) for 800 s where
both heaters I and II are ON, and (c) for 1200 s where all heaters are ON.

where
(
Cp

)
water = 4187 J kg−1 K−1 and

(
Cp

)
dry gel = 1500 J kg−1

K−1. Because the density and conductivity of water and dry gel are
close [48], it is not necessary to differentiate water and dry gel for
these two properties in our case.

In the simulation, over 10,000 linear tetrahedral elements
4u4µ4T were used. We turn on heater I first, and then turn on
heaters II and III in sequence with a time gap of 400 s. The contour
plots in Fig. 5b–d show the temperature field. It can be seen from
Fig. 5b at 400 s that the deswelling of Section 1 yields identical
shape as that in the experiment [46]. After 800 s as shown in Fig. 5c,
the deswelling of Sections 1 and 2 again lead to two localized
deformation patterns, which is the same as that reported in the
experiments. Finally at 1200 s, all heaters have been turned on for
at least 400 s, and the deswellon pattern reproduces the experi-
mental observations. The dynamic evolution is clearly shown in the
supplementary video S5. This case demonstrates the versatility of
this method.

4. Conclusion

In this paper, a robust and versatile finite element imple-
mentation has been developed to study the dynamic response of
responsive gels that have coupled mass diffusion and deforma-
tion fields, and other physics fields. Ramping boundary conditions
were adopted to resolve the numerical challenge for very short-
time limit where the chemical potential has a discontinuity. Vis-
cous damping was introduced to robustly simulate instability and
damped Newton–Raphson method was used to more efficiently
solve a fully coupled problem. Since this method can be readily
implemented in COMSOLMultiphysics by entering Eqs. (1) and (2)
in Solid Mechanics and PDE modules, respectively, other physics
fields can be incorporated with minimum efforts. This method
and implementation provide unprecedented capability to model
the dynamic response of responsive gels. Given the fact that the
implementation is through a commercial platform, this method
can have significant contributions to the studies of gels.
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