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Abstract. Due to the enormous difference in the scales involved in correlating the macroscopic prop-
erties with the micro- and nano-physical mechanisms of carbon nanotube-reinforced composites, mul-
tiscale mechanics analysis is of considerable interest. A hybrid atomistic/continuum mechanics method
is established in the present paper to study the deformation and fracture behaviors of carbon nanotu-
bes (CNTs) in composites. The unit cell containing a CNT embedded in a matrix is divided in three
regions, which are simulated by the atomic-potential method, the continuum method based on the
modified Cauchy–Born rule, and the classical continuum mechanics, respectively. The effect of CNT
interaction is taken into account via the Mori–Tanaka effective field method of micromechanics. This
method not only can predict the formation of Stone–Wales (5-7-7-5) defects, but also simulate the
subsequent deformation and fracture process of CNTs. It is found that the critical strain of defect
nucleation in a CNT is sensitive to its chiral angle but not to its diameter. The critical strain of
Stone–Wales defect formation of zigzag CNTs is nearly twice that of armchair CNTs. Due to the
constraint effect of matrix, the CNTs embedded in a composite are easier to fracture in compari-
son with those not embedded. With the increase in the Young’s modulus of the matrix, the critical
breaking strain of CNTs decreases.

Key words: Carbon nanotube, fracture, hybrid atomistic/continuum method, nanocomposite, Stone-
Wales transformation.

1. Introduction

Owing to the unique and superior physical and mechanical properties of carbon na-
notubes (CNTs), extensive attention has been attracted on synthesis of nanotubes
and their various applications, and intense research in this area is sure to continue.
The Young’s modulus and tensile strength of CNTs are of the orders of 1 TPa and
20 GPa, or in other words, about 5 and 100 times those of steels, respectively (Treacy
et al., 1996; Yakobson and Smalley, 1997; Yu et al., 2000). CNTs may also have
very large length-to-diameter aspect ratios (say, more than 10,000). These remarkable
properties are attributed to the unique quasi-one-dimensional, tubular nanostructure
of CNTs. There seems to be sufficient evidences indicating that CNTs should be a
very promising candidate as the ideal reinforcing fibers for advanced composites with
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high strength and low density, which are, evidently, of paramount interest in aeronau-
tic and astronautic technology, automobile and many other modern industries.

Some encouraging results have been reported in the development of CNT-rein-
forced composites. For instance, Qian et al. (2000) reported a CNT-reinforced
polystyrene with good dispersion and CNT–matrix adhesion. Using only 0.5% CNT
reinforcement, the elastic modulus was improved about 40% over that of the matrix
and the tensile strength was improved about 25%. Pötschke et al. (2002) investigated
the electrical and rheological behaviors of polycarbonate composites reinforced by
multi-walled carbon nanotubes (MWCNT). They found a rapid change in the elec-
trical resistivity and complex viscosity at about 2% volume fraction of CNTs due
to the electrical and rheological percolation associated with interactions of CNTs.
Andrews et al. (1999) dispersed single-walled carbon nanotubes (SWCNT) in isotro-
pic petroleum pitch matrices and found that the tensile strength, elastic modulus, and
electrical conductivity of the composite with 5 wt% content of purified SWCNTs are
enhanced by about 90%, 150%, and 340%, respectively. Recently, Ruan et al. (2003)
reported that the incorporation of 1 wt% MWCNT reinforcement produces a remark-
able increase in the tensile strength and elastic modulus for non-drawn UHMWPE
composite films of 49.7% and 38% and, more interestingly, enhances significantly
both the ductility and the strain energy absorption before fracture. However, a big
difference still exists between these improvements and the expectations predicted from
theoretical analysis, and there is still a long way to go to make CNT-reinforced com-
posites with superior comprehensive properties and to achieve their extensive appli-
cations in industry. Many other studies demonstrated only modest improvement in
the strength and stiffness after CNTs are incorporated into polymers (Schadler et al.,
1998; Tibbetts and McHugh, 1999; Andrews et al., 1999; Ajayan et al., 2000; Vigolo
et al., 2000).

Therefore, it is of great interest to investigate experimentally and theoretically the
deformation and fracture behaviors of CNT-reinforced composites at nano, micro to
macro scales and to examine the factors that influence their mechanical properties
(Wagner et al., 1998; Lourie et al., 1998; Lourie and Wagner 1999; Bower et al.,
1999; Fisher et al., 2002; Watts and Hsu, 2003; Shi et al., 2004a, b; Buryachenko
and Roy, 2005). Wagner et al. (1998) and Lourie et al. (1998, 1999) reported excel-
lent interfaces between CNTs and polymer matrix. Qian et al. (2000) found that CNT
breaking was a preferred process during cracking of CNT-reinforced films. From
in situ TEM observation, Watts and Hsu (2003) found that the external force can
be effectively transferred to nanotubes and that embedded CNTs delay polymer film
cracking via nanotube stretching and pulling out. Recently, Xia et al. (2003) observed
three reinforcing mechanisms of CNTs: crack deflection at the CNT/matrix interface,
crack bridging by CNTs, and CNT pullout on the fracture surfaces. Based on shell
theory, Ru (2001) studied the buckling of a double-walled CNT embedded in an
elastic matrix under axial compression. Liu and Chen (2003) and Hu et al. (2005)
evaluated the effective mechanical properties of CNT-reinforced composites using a
nanoscale representative volume element (RVE) based on continuum mechanics and
using the finite element method (FEM). Marc et al. (2003) elucidated the nature of
the interaction of CNTs and matrix via molecular dynamics simulations. Odegard
et al. (2003) presented a method for linking atomistic simulations of nano-structured
materials to continuum models of the corresponding bulk materials. They gave a
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constitutive modeling of nanotube-reinforced polymer composites. More recently, Shi
et al. (2004b) investigated the relationship between the effective properties and the
microstructures of CNT composites, and found that agglomeration and waviness of
CNTs have significant influences on the effective elastic moduli. In addition, Shi et al.
(2004a) stated that the elastic property of the interphase between CNTs and the
matrix plays an insignificant role in the stiffening effect of CNTs on the elastic mod-
uli of composites, though the interface adhesion may influence the strength seriously.
However, there is as yet a lack of investigation on the defect nucleation and fracture
mechanisms of CNTs embedded in composites.

The present paper is aimed to study the deformation, defect nucleation, and frac-
ture of CNTs embedded in a polymer composite. A multiscale mechanics method is
developed, which combines both the continuum mechanics and atomic-potential. The
unit cell for a CNT embedded in a matrix is divided into three zones, which are dealt
with in different manners according to their deformation features. The critical strains
for Stone–Wales defect nucleation and breaking of CNTs are calculated, and the fac-
tors that influence the fracture behaviors are examined. The critical strains of defect
nucleation and fracture are sensitive to the chiral angle but almost independent of the
diameter of the CNT. It is also found that due to the constraint effect of matrix, the
CNTs embedded in a composite are much easier to fracture than those not embed-
ded.

2. Multiscale mechanics method for CNTs in composites

Due to the enormous difference in scales involved in correlating the macroscopic
properties with the microscopic physical mechanisms of nanostructured materials,
multiscale analysis is necessary (see, e.g., Shenoy et al., 1999; Curtin and Miller,
2003; Ghoniem et al., 2003). We adopt here a multiscale mechanics method to study
the deformation and fracture behaviors of CNT-reinforced composites. Consider a
straight SWCNT embedded in a matrix and subjected to a uniform stress in the far
field, as shown in Figure 1. Assume that the interface between the CNT and matrix is
perfectly bonded and that there is no residual strain in the composite. In our hybrid
atomistic/continuum method, the unit cell in Figure 1 is divided into three zones, A,
B and C, which are dealt with in different manners according to their deformation
features and the numbers of atoms in them:

(i) A local subregion A is specified in the CNT, where Stone–Wales transforma-
tion and fracture will be assumed to initiate. The process of defect nucleation
and evolution depends strongly on the directions and lengths of individual
CAC bonds in this local region. Therefore, an atomistic method based on
the Tersoff–Brenner potential is employed to determine the positions of all
the atoms in this region by minimizing the total energy of the atomic system
either before or after the defect nucleation (Jiang et al., 2004).

(ii) The region B covers all the atoms outside the local region A of the CNT. The
positions of the atoms in B are insensitive to the defect and almost identi-
cal to those in a uniformly deformed, defectless CNT, provided that the size
of A is large enough. The region B remains approximately the hexagonal lat-
tice structure. Therefore, the positions of atoms in B can be calculated by
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Figure 1. Multiscale analysis model for a CNT-reinforced composite.

using the continuum medium method based on the modified Cauchy–Born
rule (Zhang et al., 2002a, b).

(iii) Generally, the polymer matrix around the CNT has an atomistic system much
larger than the CNT, and generally does not have a regular lattice. Perfect
adhesion is assumed between the CNTs and the matrix, without considering
the effect of interphase. Therefore, the polymer matrix region C in the unit
cell is simulated by a continuum medium in order to account for the interac-
tion of CNTs via a micromechanics method.

This multiscale method combines the advantages of both continuum mechan-
ics and atomic-potential methods. The classical continuum mechanics provides a
straightforward approach for estimating the macroscopically averaged or effective
properties of deformation and fracture of composites, but cannot predict defect
nucleation and fracture at nanoscale. Atomistic studies such as molecular dynamic
simulation have been playing an increasingly significant role in studying the physical
process occurred in nanosystems such as CNTs. However, atomistic studies are too
computationally intensive for CNT-reinforced polymer composites of current inter-
est. It will be shown that the present multiscale method is efficient for simulating the
nanoscale fracture process occurred in a composite. The details of this method will
be described in the following sections.

2.1. Tersoff–brenner potential

In the combined atomistic/continuum method of this paper, we use the Tersoff–Brenner
potential (Brenner, 1990) to simulate the defect nucleation and fracture of CNTs. The
multi-body interatomic potential for CAC bonds are expressed as
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V (rij )=VR(rij )−BijVA(rij ), (1)

where rij is the bond length between two carbon atoms i and j, VR(rij ) and VA(rij )

are the repulsive and attractive pair terms given by

VR(r)= 1
S−1D

(e)fc(r) exp
[
−√

2Sβ(r −R(e))
]
,

VA(r)= S
S−1D

(e)fc(r) exp
[
−

√
2
S
β(r −R(e))

]
,

(2)

which depend only on the distance of the two atoms. The parameters D(e), S, β and
R(e) have been determined from the known physical properties of carbon, graphite and
diamond as D(e) = 6.0 eV, S = 1.22, β = 21 nm−1, and R(e) = 0.1390 nm. fc(r) in Equa-
tion (2) is a smooth cut-off function which limits the range of the potential to the close
neighborhood of each atom, i.e., it damps the interatomic interactions smoothly down
to zero from the first to the second neighboring shells. It is expressed as

fc(r)=

⎧⎪⎨
⎪⎩

1, (r �R(1)),
1
2

{
1+ cos

[
π(r−R(1))

R(2)−R(1)

]}
, (R(1) < r �R(2)),

0, r >R(2)

(3)

with R(1) =0.17 nm and R(2) =0.2 nm being the effective cut-off ranges of the potential.
The term Bij in Equation (1) represents a multi-body coupling effect, i.e., the con-

tribution of other atoms to the iAj bond, and is given by

Bij =
⎡
⎣1+

∑
k(�=i,j)

G(θijk)fc(rik)

⎤
⎦

−δ

, (4)

where θijk is the angle between the bonds i − j and i − k, the function G(θijk) is
defined as

G(θijk)=a0

[
1+ c2

0

d2
0

− c2
0

d2
0 + (

1+ cos θijk

)2

]
(5)

with δ =0.500, a0 =0.00020813, c0 =330, and d0 =3.5 (Brenner, 1990).

2.2. Uniform deformation before defect nucleation

The Cauchy–Born rule (Born and Huang, 1954) is an extensively adopted kinematic
assumption for linking the deformation of an atomic system to that of a continuum.
The Cauchy–Born rule states that for an atomic structure subjected to a homoge-
neous deformation, each atom moves according to a single mapping from the initial
to the deformed configurations. It is important to point out that the Cauchy–Born
rule holds only for centrosymmetric lattice structures. Therefore, the Cauchy–Born
rule must be modified when it is used to simulate the deformation of CNTs with
hexagonal lattice structure, which does not possess a centrosymmetry. By modify-
ing the Cauchy–Born rule, Zhang et al. (2002a, b) developed an atomic potential-
based continuum method for considering the uniform deformation of a CNT before
Stone–Wale defect nucleation.
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Figure 2. Decomposition of a hexagonal lattice to two triangular sub-lattices.

We assume that the considered CNT possesses a perfect hexagonal lattice struc-
ture and has no defect before loading. At lower tensile strains, the CNT will undergo
uniform elastic deformation, and no Stone–Wales defect occurs. A non-centrosym-
metric, hexagonal lattice structure can be decomposed into two triangular sub-lat-
tices, marked respectively by solid and open circles in Figure 2 (Jiang et al., 2003).
Each sub-lattice has a centrosymmetry and therefore follows the Cauchy–Born rule.
Before defect appearance, each sub-lattice undergoes uniform deformation. For any
two atoms i and j in the same sub-lattice, the vector rij from i to j in the deformed
configuration is related to the corresponding vector r(0)

ij in the initial, undformed con-
figuration by

rij =F · r(0)
ij , (6)

where F = ∂x/∂X is the deformation gradient, x and X denote the positions of the
same material point in the initial and the deformed configurations, respectively.

However, the two sub-lattices may undergo a relative translation vector ζ , which
represents an internal degree of freedom for the hexagonal lattice structure and
remains to be determined by enforcing the equilibrium of atoms. No relative rota-
tion is possible between the two sub-lattice. Therefore, for two atoms i and j in the
two different sub-lattices, the vector rij after deformation is expressed as

rij =F · r(0)
ij + ζ . (7)

Thus, the energy of the atomic system obtained from the interatomic potential in
Equation (1) depends on both F and ζ . The strain energy density can be written as

W(F, ζ )= 1
2�

∑
V

(
rij

)
, (8)
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where � is the surface area of CNT. By minimizing the energy W in Equation (8)
under a given F,

∂W(F, ζ )

∂ζ
=0, (9)

one can determine the shift vector ζ = ζ (F, ζ ) in terms of F, and thus the strain
energy density can be rewritten as W = W (F, ζ (F)). Then, the energy of the CNT
before defect nucleation can be determined and denoted as Eperfect (F), which is a
function of the deformation gradient F.

2.3. Combined atomistic/continuum method for defect nucleation

Our attention is focused on the Stone–Wales defect as it appears to be the lowest
energy defect possible in a perfect CNT. When the tensile strain reaches a critical
value, a Stone–Wales or pyracylene transformation will occur as a result of 90◦ rota-
tion of a CAC bond that turns four carbon hexagons, (6-6-6-6), into two pentagons
and two heptagons, (5-7-7-5). Nardelli et al. (1998a, b, 2000) and Yakobson et al.
(1996, 1998) studied by molecular dynamics simulations the fracture of CNTs at high
temperature and found that Stone–Wales defect is a typical mechanism for fracture
of CNTs under tension.

A hybrid atomistic/continuum mechanics method is adopted here to calculate
the critical strains of Stone–Wales defect nucleation and breaking of SWCNTs with
different chiral angles and diameters. As aforementioned, a CNT is divided into two
parts that are dealt with by different methods. First, the influence of the Stone–Wales
transformation is assumed reasonably to be limited mainly in a local region A around
the defect, as shown in Figure 3. The positions of the atoms and the energy of the
bonds in this region are dependent strongly upon the defect. Continuum mechanics
method is invalid in this region, and an atomic-potential method has to be used to
determine when a Stone–Wales transformation will occur and which CAC bond will
rotate. It will be shown in the sequel that the size of A does not influence the calcu-
lation results provided that it is large enough. Second, the atoms far from the defect
feel little impact from the defect nucleation and undergo almost uniform deforma-
tion. Therefore, we assume that the positions of all the atoms in the B region in Fig-
ure 3 are not influenced by the defect and can still be determined by the continuum
mechanics method based on the modified Cauchy–Born rule, as described in Section
2.2 (Zhang et al., 2002a, b). The positions of atoms in the innermost layer of the
region B, marked by the grey circles in Figure 3, are used as the boundary condi-
tion of the atomistic simulation in the region A.

Refer to a planar Cartesian coordinate system (o-xy), as shown in Figure 3. Let N
denote the total number of the atoms in the region A. The coordinates of the atoms in
this region are expressed as (x1, y1), (x2, y2), . . ., (xN, yN) respectively, which need to be
determined by the energy method. It should be noted that to calculate the energy of
the CAC bonds, the coordinates of the atoms in the cylindrical configuration should be
determined first by the transformation relation from the Cartesian coordinate system
to the cylindrical coordinate system, as described by Jiang et al. (2003). The energy
stored in the region A can be written as the summation of all the CAC bonds:
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Figure 3. Hybrid atomistic/continuum mechanics model for simulating defect nucleation and fracture
of CNTs.

E =E(x1, y1, x2, y2, . . . , xN, yN)=
Nb∑

α=1

Vα, (10)

where Nb is the total number of the bonds in A, and Vα is the energy of the αth
bond, determined from the Tersoff–Brenner potential in Equation (1). The energy E
of the system is a function of the 2N unknown coordinate parameters.

The equilibrium condition requires that the derivatives of the energy E with
respect to the coordinates (xα, yα)(α = 1, 2, . . . ,N) vanish under the given loading
condition, that is,

∂E

∂xi

=0,
∂E

∂yi

=0, (α =1, 2, . . . ,N). (11)

Then all the positions of the N atoms in the region A can be determined by solving
the 2N equations in Equation (11).

Clearly, this atomistic method is valid for both the configurations before and after
defect nucleation. Let Eperfect signify the energy stored in the A region with regu-
lar hexagonal lattice structure, and Edefect that with a (5-7-7-5) defect. First, we cal-
culate the uniform deformation of CNTs under uniaxial tension by using the above
multiscale method. The calculation results show that the atom positions and the cor-
responding energy Eperfect before Stone–Wales transformation are identical to those
predicted from the modified Cauchy–Born rule (Zhang et al., 2002a, b). The Stone–
Wales transformation (e.g., 90◦ rotation of a CAC bond about their mutual bond
centre) does not cause a change of the total number of bonds in the region A.
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Both Eperfect and Edefect depend on the deformation gradient F in the CNT, which
will be determined as a function of the applied stress applied on the composite
by using a micromechanics method. At infinitesimal strain, Edefect is always larger
than Eperfect, and therefore the CNT undergoes uniform deformation. As the strain
increases, both Eperfect and Edefect increase, but the latter changes more slowly. After
the strain reaches a critical value εSW,Edefect will become smaller than Eperfect, the
Stone–Wales transformation becomes more favorable energetically, and then defect
nucleation may occur.

After the defect forms, the deformation of the CNT is still stable and no bond
breaking occurs until the tensile strain reaches another critical value, εbreak. The crit-
ical strain εbreak of fracture can also be obtained from the present hybrid atom-
istic/continuum mechanics method. In the Tersoff–Brenner potential, they use the
three-regime cut-off function fc(r) in Equation (3) to describe the interactive force
between two carbon atoms. In our calculation, however, no cut-off function has been
introduced for bond breaking. In other words, the bond between two neighboring
atoms is always thought to exist during the total deformation process even when
their spacing is very large and their interactive force is very weak. A bond is consid-
ered to have broken when its length is larger than 0.2 nm. Therefore, the strain under
which the deformation of the Stone–Wales (5-7-7-5) defect system becomes unstable
or localized is defined as the breaking strain, εbreak. Strain localization initiated by a
defect is generally a typical stage of deformation before the final rupture of a CNT.

The effect of the specified size of the subregion A is first examined in our cal-
culation. The larger the region A, the more accurate the calculation results of the
energy stored in the system. Therefore, the region A should contain a sufficient num-
ber of atoms in order to ensure that the hybrid atomistic/continuum method leads to
sufficiently accurate results. We compare four different sizes of A, which contain one,
two, three and four layers of atoms surrounding the Stone–Wales (5-7-7-5) defect,
respectively. The corresponding total atom numbers in A are 42, 80, 130 and 192,
respectively. It is found that both the obtained critical strains of defect nucleation and
breaking approach to constants with the increase in the size of A. The relative differ-
ence between the critical strains obtained from the systems containing 130 and 192
atoms is less than 5%. According to our numerical calculations, a subregion A con-
taining 130 atoms (three layers) seems suitable to achieve a balance of the accuracy
of results and the simplicity of calculation. For a long CNT in a composite, multiple
defects may nucleate at different sites. The interaction between defects has not been
considered in this study.

2.4. Effect of cnt interaction

The interaction of CNTs in a composite may influence their deformation and frac-
ture behaviors. Many methods (e.g., self-consistent method, differential method, and
Mori–Tanaka method) have been established in micromechanics for considering the
interaction effect. To calculate the deformation gradient F in a CNT as a function of
the applied stress σ 0, we adopt the Mori–Tanaka method (Mori and Tanaka, 1973)
because of its simplicity and accuracy even at a high volume fraction of the reinforc-
ing phase. For convenience, the CNTs are considered as straight fibers embedded in
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the composite. Curved CNTs can also be analyzed by using the unit-cell model sug-
gested by Shi et al. (2004b).

To estimate the interaction effect of distributed inclusions in composites, the
Mori–Tanaka method assumes that each inclusion is placed in an infinite pristine
matrix and that the far-field stress σ 0 is replaced by the average stress σ m in the
matrix (Mori and Tanaka, 1973). σ m can be written as (Weng, 1984)

σ m =σ 0 + σ̃ =Lm :
(
�0 + �̃

)=Lm : �m, (12)

where σ̃ denotes the average perturbed stress in the matrix due to the presence of
CNTs, �m and Lm are the average strain and the elastic stiffness tensor of the matrix,
respectively, and �0 = (Lm)−1 :σ 0. The average stress in the CNTs can be expressed as

σ CNT =σ 0 + σ̃ +σ ′ =LCNT :
(
�0 + �̃+ �′

)

=Lm :
(
�0 + �̃+ �′ − �∗

)=LCNT : �CNT, (13)

where �CNT and LCNT denote the average strain and the elastic stiffness tensor of the
CNTs, respectively, σ ′ =σ CNT −σ m is the difference in the average stresses of the two
phases, and �∗ serves as the Eshelby eigenstrain (Mura, 1987).

The average theorems of stresses and strains require that

σ 0 = (1− c)σ m + cσ CNT, ε0 = (1− c)εm + cεCNT, (14)

where c is the volume fraction of the CNTs. Substituting Equations (12) and (13)
into Equation (14) leads to

σ̃ =−cσ ′, �̃=−c�′. (15)

Substituting the Eshelby’s relation �′ = S : �∗ (Mura, 1987) and Equation (15) into
Equation (13), where S is the Eshelby tensor, one has

�̃=−c
(
�′ − �∗

)=−c (S− I) : �∗. (16)

Then from Equations (13), (15) and (16), the average strain of the CNTs reads

�CNT = �0 + �̃+ �′ = �0 + [cI + (1− c)S] : �∗, (17)

with

�∗ =− {(
LCNT −Lm)

: [cI + (1− c)S]+Lm}−1
:
(
LCNT −Lm)

: �0. (18)

The CNTs are assumed to be transversely isotropic elastic. Their elastic stiffness ten-
sor is written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

nr lr lr 0 0 0
lr kr +mr kr −mr 0 0 0
lr kr −mr kr +mr 0 0 0
0 0 0 mr 0 0
0 0 0 0 pr 0
0 0 0 0 0 pr

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (19)



Multiscale analysis of fracture of carbon nanotubes embedded in composites 379

where nr, lr, kr,mr and pr are Hill’s elastic parameters (Hill, 1964). Specifically, kr

is the plane-strain bulk modulus normal to the axial direction, nr is the uniax-
ial tension modulus in the axial direction, lr is the associated cross modulus, mr

and pr are the shear moduli in planes normal and parallel to the CNT direction,
respectively.

The elastic tensor of the matrix, which is assumed isotropic, can be written as

Lm
ijkl =λmδij δkl +µm

(
δikδjl + δilδjk

)
, (20)

where λm and µm are the Lame constants.
From Equation (18), one gets
⎡
⎢⎣

D1 1 1

1 D2 D3

1 D3 D2

⎤
⎥⎦

⎧⎪⎨
⎪⎩

ε0
1

ε0
2

ε0
3

⎫⎪⎬
⎪⎭

+

⎡
⎢⎣

B1 B2 B3

B4 B5 B6

B7 B8 B9

⎤
⎥⎦

⎧⎪⎨
⎪⎩

ε∗
1

ε∗
2

ε∗
3

⎫⎪⎬
⎪⎭

=0, (21)

where

D1 = nr −λm −2µm

lr −λm
,

D2 = kr +mr −λm −2µm

lr −λm
,

D3 = kr −mr −λm

lr −λm
,

D4 = λm +2µm

lr −λm
,

D5 = λm

lr −λm
, (22)

B1 = cD1 +D4 + (1− c)νm

1−νm

,

B2 =B3 = c+D5 + 1− c

2 (1−νm)
,

B4 =B7 = c+D5 + νm (1− c) (D2 +D3)

2 (1−νm)
,

B5 =B9 = cD2 +D4 + (1− c) [4νmD3 −D3 +D2 (5−4νm)]
8 (1−νm)

,

B6 =B8 = cD3 +D5 + (1− c) [4νmD2 −D2 +D3 (5−4νm)]
8 (1−νm)

,

with νm being the Poisson’s ratio of the matrix.
In the case of uniaxial tension along the axial direction (x1) of the CNT (Fig-

ure 1), one has ε0
2 = ε0

3 = −νmε0
1. Then, it is easy to solve from Equation (21)

that the eigenstrains �∗ in the CNT can be written in terms of the applied strain
�0 as

ε∗
1 =�1ε

0
1, ε∗

2 =�2ε
0
1, ε∗

3 =�3ε
0
1, (23)
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where �1,�2, and �3 are functions of Bi and Di . From Equation (17), one gets the
strain of the CNT as a function of the applied strain as

εCNT
1 = (1+ c�1) ε0

1,

εCNT
2 =

{
−νm + νm (1− c)

2 (1−νm)
�1 +

[
c+ (5−4νm)(1− c)

8(1−νm)

]
�2 +(4νm −1)(1− c)

8(1−νm)
�3

}
ε0

1,

εCNT
3 =

{
−νm + νm (1− c)

2 (1−νm)
�1 + (4νm −1)(1− c)

8(1−νm)
�2 +

[
c+ (5−4νm)(1− c)

8(1−νm)

]
�3

}
ε0

1.

(24)

Finally, the ratio between the circumferential and longitudinal tensile strains of the
CNT is obtained as

εCNT
2(3)

εCNT
1

= (c−1)Emνm + lr (νm +1) [−1+ c(2νm −1)]

Em (1− c)+2kr
[
1+νm − c

(
2ν2

m +νm −1
)] . (25)

The above result from the Mori–Tanaka, i.e., Equation (25), is introduced in the
hybrid atomistic/continuum method as the boundary condition of CNTs to account
for the constraint effect of the matrix as well as the interaction effect on the defor-
mation and fracture behaviors of the CNTs. It should be mentioned that the tensile
stress–strain relation of a CNT is nonlinear, especially for a high tensile strain before
defect nucleation or fracture. The nonlinear constitutive relation of CNTs under ten-
sion can be calculated by using the hybrid atomistic/continuum method described in
Section 2.2 (for more detail, see Shi et al., 2004c). Therefore, the Hill’s elastic param-
eters of CNTs used in Equation (25) are not constants but functions of the applied
tensile strain. We do not introduce any fitting parameters for the elastic properties
of CNTs but determine the elastic parameters directly from the present model based
on the Tersoff–Brenner potential. Thus, the defect nucleation and fracture process of
CNTs in composite can be simulated by the present multiscale mechanics method.
In what follows, we will consider, for illustration, the special case of uniaxial tension.
Other loadings such as twisting, shearing or complex loading can also be analyzed
similarly.

3. Results and analysis

3.1. Dependence of stone–wales transformation on the chiral angle and
diameter

Nardelli et al. (1998a, b, 2000) and Yakobson et al. (1996, 1997, 1998) studied
by molecular dynamics simulations the fracture of CNTs at high temperature and
obtained the critical strain of Stone–Wales transformation subjected to uniaxial ten-
sion. Here, we calculate the critical strains of defect nucleation and fracture of CNTs
embedded in a matrix by using our multiscale mechanics model. The dependence of
the critical strains on the chiral angles and diameters of CNTs are first examined.
The following twelve representative CNTs with different chiral angles and diameters
are chosen as examples, which can be classified into four groups:
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Figure 4. The dependence relation of the critical strains of defect nucleation upon the chiral angles
and diameters of CNTs.

(i) (17, 0), (24, 0) and (31, 0), which are zigzag (i.e., the chiral angle θ =0◦);
(ii) (15, 3), (20, 4) and (24, 5), with the chiral angles being about θ =9◦;
(iii) (12, 7), (15, 9) and (20, 12), with the chiral angles being about θ =21◦;
(iv) (10, 10), (15, 15) and (18, 18), which are armchair (i.e., θ =30◦).

The calculation results of the critical strains of defect nucleation of CNTs are
given in Figure 4, where the Young’s modulus and Poisson’s ratio of the matrix are
taken as Em = 40 GPa and νm = 0.2, respectively. It is clear that the critical strain of
a CNT is sensitive to its chiral angle but almost independent of its diameter. With
the increase in the chiral angle, the critical strain decreases. The critical strain of
defect nucleation of a zigzag CNT is about 13.6% and nearly twice that of an arm-
chair CNT (about 7.8%). This is in agreement with the molecular dynamics simula-
tion results of Nardelli et al. (1998). They considered CNTs at high temperature and
not embedded in a composite, and found the critical strains are about 5% and 10%
for armchair and zigzag CNTs, respectively.

3.2. Defect nucleation of cnts in composites

Now we compare the critical strains of Stone–Wales defect nucleation of CNTs that
are embedded in a composite and that are not embedded. An armchair CNT (10,
10) and a zigzag CNT (17, 0) are chosen as examples, whose diameters are almost
the same. The elastic constants of the matrix are taken as the same as above. For
the (10, 10) and (17, 0) CNTs, the changing curves of the averaged energy differ-
ence �E = Edefect − Eperfect over the region A are respectively given in Figure 5(a)
and (b) with respect to the tensile strain. The solid and the dashed lines correspond
to the CNTs that are embedded and not embedded in the composite, respectively.
When �E reduces to zero, the Stone–Wales defect becomes favorable energetically.
The critical strain of defect nucleation of the (10, 10) CNT is 7.5%, and becomes
7.8% after it is embedded in the composite. Similarly, the critical strain of the (17,
0) CNT increases from 13.2% to 13.6% after it is put into the composite. Due to the
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Figure 5. The averaged energy difference per atom over the region A with respect to the increasing
tensile strain: (a) (10, 10) CNT, and (b) (17, 0) CNT.

constraint effect of matrix, therefore, Stone–Wales defects become more difficult to
form in CNTs embedded in composites, though the change in the critical strain εSW

is relatively small (less than 0.5%).

3.3. Fracture of cnts in composites

The present method not only can predict the critical strain of Stone–Wales transfor-
mation, but also study the consequent defect evolution and fracture process of the
CNT. After the nucleation of Stone–Wales defects, the deformation of the CNT is
still stable until the breaking of a CAC bond. We simulated the deformation and
fracture process after defect nucleation, and found that the deformation will become
unstable and localized when the applied strain reaches a critical strain of break-
ing, εbreak. With the localization of deformation, some CAC bonds will become so
long that their forces will become very weak according to the Tersoff–Brenner poten-
tial. It is generally thought (Brenner, 1990) that a CAC bond will break when the
distance of the two atoms reaches 0.2 nm. Our simulations indicate that both the
armchair and zigzag CNTs will break in the direction nearly normal to the tensile
direction, as shown in the insets of Figure 6. The changing curves of energy with
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Figure 6. The changing curves of energy: (a) (10, 10) CNT, and (b) (17, 0) CNT.

defect evolution and fracture are plotted in Figure 6. The solid line corresponds to
the CNTs embedded in the composite, and the dashed line corresponds to those not
embedded. Corresponding to the deformation localization and breaking of a CNT,
there is a rapid jump in the energy of the system, indicating the transformation from
stable to unstable deformation.

It is also found that when a CNT is placed in a composite, its critical strain of
breaking will decrease though its critical strain of defect nucleation increases. For
example, the critical strain of fracture of the (10, 10) CNT is about 16.4%, and
reduces to 15.8% after it is embedded in the composite. Similarly, the critical strain
of breaking of the (17, 0) CNT decreases from 18.8% to 17.1% after it is put into
the composite. This might also be attributed to the constraint effect of the matrix.
A CNT embedded in a composite is less effective to release the energy, and becomes
easier to fracture than that not embedded. In the present paper, we do not consider
the fracture of the polymer matrix though in reality most polymers cannot sustain
such a high tensile strain.

It is also seen that the deformation and fracture process of a CNT, either embed-
ded in a composite or not, generally includes three stages, namely, the stable and
uniform deformation of hexagonal lattice structure before Stone–Wales defect occur-
rence, the stable but nonuniform deformation after defect nucleation, and the unsta-
ble or localized deformation before the final fracture.
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Figure 7. Breaking strains of (10, 10) and (17, 0) CNTs with respect to the Young’s modulus of
matrix.

3.4. Effect of matrix stiffness on cnt fracture

Finally, we examine how the stiffness of matrix influences the critical strains of frac-
ture of CNTs. For (10, 10) and (17, 0) CNTs, the critical strains of fracture are shown
in Figure 7 as a function of the Young’s modulus of matrix. It is found that the
breaking strain of CNTs decreases with the increases in the stiffness of matrix.

4. Conclusions

We have present a multiscale mechanics method to study the deformation and fracture
of CNTs embedded in a composite. The unit cell for the CNT-reinforced composite
is divided in three regions, which are simulated in a combined manner by the atomic-
potential method, the atomistic-based continuum method, and the continuum mechan-
ics, respectively. The critical strains of defect nucleation and breaking are calculated for
some representative CNTs embedded in a composite. The influences of such factors as
the chiral angle and diameter of CNTs as well as the elastic constant of matrix on the
Stone–Wales defect formation and fracture behavior are investigated. The critical strain
of defect nucleation of a CNT is sensitive to its chiral angle but not to its diameter.
The constraint effect of matrix makes the CNTs easier to fracture.

Some other factor, e.g., the waviness of CNTs, the CNT–matrix interface adhesion,
and the distributed residual stresses in composites, may influence the fracture behav-
iors of CNTs. The presented multiscale mechanics method can also be considered for
accounting for these factors.
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