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We have developed an accurate atomic-scale finite element method �AFEM� that has exactly the same
formal structure as continuum finite element methods, and therefore can seamlessly be combined with them in
multiscale computations. The AFEM uses both first and second derivatives of system energy in the energy
minimization computation. It is faster than the standard conjugate gradient method which uses only the first
order derivative of system energy, and can thus significantly save computation time especially in studying large
scale problems. Woven nanostructures of carbon nanotubes are proposed and studied via this new method, and
strong defect insensitivity in such nanostructures is revealed. The AFEM is also readily applicable for solving
many physics related optimization problems.
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I. INTRODUCTION

The fastest computer in the world today can handle up to
a billion atoms,1,2 which correspond only to a small cube of
1 �m in size. This size may increase to 10 �m in 15 years,
since computer power doubles every 18 months based on
Moore’s law.3 Even with fast increase in computer power, the
computational limit of atomistic simulations is still far short
to predict the macroscale properties of materials directly
from nano and microstructures. In this letter, we propose a
new computational method that significantly increases the
current computational limit from two aspects. First, we de-
velop an accurate atomic scale finite element method
�AFEM� for stable atomic structures �e.g., carbon nanotube�
and well-defined interatomic potentials.4 The AFEM is faster
than the widely used conjugate gradient method because it
uses both first and second order derivatives of system energy.
Second, different from other atomistic methods �e.g., conju-
gate gradient method, molecular dynamics�, the proposed
AFEM has exactly the same formal structure as continuum
finite element methods �FEM�. The combined AFEM/FEM
provides a seamless multiscale simulation method that sig-
nificantly reduces the degree of freedom and therefore en-
ables computation at a much larger scale �possibly macros-
cale�.

The conventional continuum approach such as FEM is
successful for micro-and macroscale problems, but cannot
describe the behavior of discrete atoms involving multibody
interactions. On the other hand, atomistic simulations have
been used to gain fundamental understanding of material be-
havior at the nanoscale, but they are difficult to scale up due
to a large number of degrees of freedom involved. Multiscale
computational methods5–11 have emerged as a viable means
to study materials and systems across different scales. The
basic idea is to use atomistic simulation methods for domains
governed by nanoscale physics laws and use continuum

FEM for the rest in order to reduce degrees of freedom.
Existing multiscale computational methods involve artifi-
cially introduced interfaces between domains of different
simulation methods �e.g., conjugate gradient method or mo-
lecular dynamics for atomistic domains and FEM for con-
tinuum domains�. These interfaces may lead to computation
errors �e.g., spurious or “ghost” force6� and add significant
computational effort to ensure interface conditions between
atomistic and continuum models. Success of multiscale com-
putation requires the development of a unified simulation
method that is based on the same theoretical framework for
both atomistic �discrete� and continuum analyses. Since con-
tinuum FEM is very mature and successful, we develop an
atomic-scale finite element method �AFEM� that uses atoms
as FEM nodes in the atomistic analysis. It accurately cap-
tures the discreteness and multibody interactions of atoms,
and has exactly the same formal structure as continuum FEM
such that the combined AFEM and continuum FEM avoid
artificial interfaces. Furthermore, AFEM is as accurate as
molecular mechanics, but is faster than the latter because it
uses both first and second order derivatives of energy.

II. ATOMIC-SCALE FINITE ELEMENT METHOD

The equilibrium configuration of atoms corresponds to a
state of minimal energy. For a system of N atoms, the total
energy in the system is Etot�x�, where x= �x1 ,x2 , . . . ,xN�T, xi

is the position of atom i, and Etot is evaluated from the in-
teratomic potential. The state of minimal energy corresponds
to

�Etot

�x
= 0. �1�

The Taylor expansion of Etot around an initial guess
x�0�= �x1

�0� ,x2
�0� , . . . ,xN

�0��T of the equilibrium state gives
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Etot�x� � �Etot�x�0�� +
�Etot

�x
�

x=x�0�
· �x − x�0��

+
1

2
��x − x�0��T ·

�2Etot

�x�x
�

x=x�0�
· �x − x�0�� . �2�

Its substitution into Eq. �1� yields the following governing
equation for the displacement u=x−x�0�:

Ku = P , �3�

where K= ��2Etot /�x�x�x=x�0�, and P=−��Etot /�x�x=x�0� which
represents the steepest descent direction of Etot. The above
equation is identical to the governing equation in continuum
FEM if atoms are replaced by FEM nodes. In fact, K and P
are called the stiffness matrix and nonequilibrium force vec-
tor, respectively, in FEM. For a nonlinear system, Eq. �3� is
solved iteratively until P reaches zero, P=0. The iteration
involves the following steps:

�i� Evaluate K and P at x=x�0�;
�ii� Solve u=x−x�0� from Eq. �3�;
�iii� Update x�0� by x�0�+u.

The above steps are repeated until P=0.
Since each atom interacts only with finite neighbor atoms

�but not necessarily nearest-neighbor atoms�, the first and
second order derivatives, �Etot /�xi and �2Etot /�xi�x j, of Etot
with respect to atom i can be calculated via a small subset of
atoms including atom i and its neighbor atoms. Such a subset
of atoms is called an element in AFEM, and the composition
of element depends on the atomic structure and nature of
atomistic interactions, as to be discussed in the example
shown in Fig. 1. The contribution from this element to K is
called the element stiffness matrix Ki

element such that K is the
assemble of all element stiffness matrices.

We use a carbon nanotube �CNT� shown in Fig. 1 as an
example to illustrate the AFEM element. Figure 1 shows a
three-dimensional AFEM element for CNT containing a cen-
tral atom �No. 1�, three nearest-neighbor �No. 2,5,8� and six
second-nearest-neighbor atoms �Nos 3,4,6,7,9, and 10�. The
atomistic interaction among carbon atoms is characterized by
multibody interatomic potentials �e.g., Refs. 12–14� which
indicate that each atom �No. 1� on a CNT interacts with not

only three nearest-neighbor atoms but also six second-
nearest-neighbor atoms via the bond angle change. For ex-
ample, energy stored in an atomic bond between atoms 1 and
2 depends on not only the bond length but also angles with
neighbor bonds 1–5, 1–8, 2–3, and 2–4, reflecting the multi-
body nature of atomistic interactions. Therefore, the position
change of central atom 1 influences energy stored in nine
atomic bonds within this element shown in Fig. 1. Such an
element captures interactions between the central atom and
all neighbor atoms, and is used to calculate ��Etot /�x1� and
��2Etot /�x1�x j� associated with the central atom. It gives the
following element stiffness matrix Kelement and nonequilib-
rium force vector Pelement:

Kelement = � � �2Etot

�x1�x1
�

3�3
�1

2

�2Etot

�x1�x j
�

3�27

�1

2

�2Etot

�x j�x1
�

27�3
�0�27�27

	 , �4�

Pelement = ��−
�Etot

�x1
�

3�1

�0�27�1
	 . �5�

Therefore, each row in the stiffness matrix K assembled
from element stiffness matrices has at most 30 nonzero com-
ponents �since each element has tens atoms� such that K is
sparse and the number of nonzero components is on the or-
der N, i.e., O�N�, where N is the total number of atoms in the
system. It is important to point out that AFEM does not
involve any approximations of continuum FEM �e.g., inter-
polation�, and gives accurate results.

Even though AFEM and continuum FEM have exactly the
same formal structures, they are different in many aspects
besides the important difference in discreteness. First, energy
is partitioned into elements in continuum FEM, and energy
in each element is evaluated in terms of nodes within the
element. Such an element cannot capture the multi-body ato-
mistic interactions since it does not have access to atoms
beyond the element. For example, Fig. 2�a� shows a conven-
tional eight-node continuum finite element used to represent
atoms within the same area of the element shown in Fig.
2�b�. Energy given by continuum FEM depends only on
these eight nodes, but energy associated with atoms inside
the element depends on atoms outside due to multibody ato-

FIG. 1. �a� Schematic diagram of a single wall carbon nanotube;
�b� an atomic-scale finite element for carbon nanotubes.

FIG. 2. Schematic diagram of continuum finite element vs dis-
crete atoms.
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mistic interactions. In AFEM, on the contrary, energy is not
partitioned into elements. Instead, only the first and second
order derivatives of Etot are evaluated directly from the
AFEM element. The AFEM elements overlap in space in
order to account for multibody atomistic interactions. An-
other difference between AFEM and continuum FEM is that
AFEM is material specific, while continuum FEM is generic
for all materials. An AFEM element depends on the atomic
structure and interatomic potential. For example, an AFEM
element for diamond contains 17 atoms, including four
nearest-neighbor atoms and 12 second-nearest-neighbor at-
oms. Last, the element stiffness matrix in Eq. �4� looks very
different from its counterpart in continuum FEM because the
AFEM element focuses on the central atom �No. 1�.

III. COMPUTATIONAL SPEED OF AFEM

The computation in AFEM �as well as in continuum
FEM� consists of three parts,

�i� computation of the stiffness matrix K and nonequilib-
rium force vector P in each iteration step;

�ii� solving Ku=P in each iteration step; and
�iii� repeat of parts �i� and �ii� for all iteration steps until

P=0, if the system is nonlinear.
For linear systems the Taylor expansion in Eq. �2� be-

comes exact such that Eq. �3� needs to be solved only once.
AFEM is an order-N computational method because �i� the
effort to compute K and P is O�N�; and �ii� the effort to solve
Ku=P in Eq. �3� is O�N� due to the sparseness of K.15 The
conjugate gradient method widely used in atomistic studies
is an order-N2 method even for linear systems, i.e., its com-
putational effort increases much more rapidly than the in-
crease of N for a large system. This difference in scaling with
N is because AFEM uses both first and second order deriva-
tives of Etot such that any nonzero component in the nonequi-
librium force P immediately leads to nonzero displacement u
in the entire system via the second order derivative K and
Eq. �3�, and therefore AFEM reaches energy minimum in
one step �for linear systems�. The conjugate gradient method

utilizes only the first order derivative, and takes steps that are
on the order N to reach the entire system. We use the ex-
ample of a one-dimensional chain of N atoms subject to a
force F shown in Fig. 3 to further illustrate the difference in
computational efforts between the conjugate gradient method
and AFEM. For the conjugate gradient method which uses
first order derivatives only, one atom moves in each iteration
step and it takes N−1 steps for the system to reach equilib-
rium. For AFEM which uses both first and second order de-
rivatives, all atoms move in each iteration step, and only one
iteration step is needed for a linear system.

For nonlinear systems, energy minimum is reached itera-
tively in AFEM. The computational effort in each iteration
step is still O�N�, but the overall computational effort is
O�M �N�, which M is the number of iteration steps which,
in general, increases with the system size N, particularly for
energy surface displaying rapid changes �e.g., complicated
thin valleys and tall mountain passes�. The Taylor expansion
in Eq. �2� then holds only in very small range �immediate
neighborhood of x�0�� such that the iteration steps M may
become large and AFEM may not be an order-N method
anymore. However, for some problems with stable atomic
structures and well-defined interatomic potentials,4 the num-
ber of iteration steps M to reach energy minimum may be
approximately independent of N. Figure 4 shows the number
of steps M and deformed configurations for four �5,5� arm-
chair CNTs with 400, 800, 1600, and 3200 atoms calculated
from AFEM �not combined with continuum FEM�. The
CNTs, which are initially straight with two ends fixed, are
subject to the same lateral force 50 eV/nm in the middle.
The number of steps M varies very little with N, from 43 to
31 and averaged at 35. In fact, the CPU time16 shown in Fig.
4 indeed displays an approximately linear dependence on N.
We have also calculated a 605-nm-long �5,5� CNT with
48 200 atoms. The number of steps M is 35, which is in the
same range as those in Fig. 4.17

For comparison we study the same four �5,5� armchair
CNTs with 400, 800, 1600, and 3200 atoms as in Fig. 4 via
the conjugate gradient method. The program we use is the
UMCGG subroutine in IMSL.18 Figure 5�a� shows the number

FIG. 3. Schematic diagram to illustrate the difference between conjugate gradient method and atomic-scale finite element method for a
linear, one-dimensional atomic chain.
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of iteration steps M, which increases with the system size N,
and is approximately proportional to N. Since the computa-
tional effort within each step is O�N�, the overall computa-
tional effort is O�N2� for conjugate gradient method. In fact,
Fig. 5�b� shows the CPU time for conjugate gradient method,
which is approximately two orders of magnitude larger than
that for AFEM shown in Fig. 4. Furthermore, the CPU time
scales with the square of number of atoms, i.e., O�N2�, such
that the conjugate gradient method is an order-N2 method.

Even when AFEM loses its order-N characteristics, it is
still a very efficient method. This is because any nonzero
component of the nonequilibrium force P immediately leads
to nonzero displacement u in the entire system in each itera-
tion step via the second order derivative K and Eq. �3� for
AFEM. On the contrary, any nonequilibrium force on an
atom only affects its neighbor atoms during each iteration in
the standard conjugate gradient method since only the first
order derivative is used. The number of iteration steps M, in
general, depends on many factors such as the system size N,
the distance between the initial guess and equilibrium point
�minimal energy�, and the roughness of energy surface. If the
latter two remain essentially unchanged, the number of itera-
tion steps M may not increase with the system size N, as
shown in Fig. 4 for carbon nanotubes, such that AFEM is
still an order N method.

In order to further explore the order-N nature of AFEM
for stable atomic structures and well-defined interatomic
potentials,4 we show in Fig. 6 the nanoindentation of a plane
of atoms. For simplicity, atoms have triangular lattice struc-
ture, and are characterized by the Lennard-Jones 6–12 poten-
tial. The top surface is subject to the vertical displacement
according to a rigid indenter �Fig. 6�; the bottom surface is
fixed in the vertical direction but allows free sliding in the
horizontal direction; and two lateral surfaces are free. We
show three sets of atoms, 400 �=20�20�, 1600 �=40�40�,
and 6400 �=80�80�, in Fig. 6. The number of iteration steps
is M =38, 38, and 37, respectively. Therefore, the number of

iteration steps is essentially independent of the system size
N.

IV. STABILITY AND CONVERGENCE OF AFEM

We study the stability and convergence of AFEM for non-
linear interatomic potentials that may display softening be-
havior. The stability and convergence are ensured if energy
in the system decreases in every step, i.e., u·P�0, where u
is the displacement increment, and P is the nonequilibrium
force in Eq. �3� and it represents the steepest descent direc-
tion of Etot. From Eq. �3�, a sufficient condition for u·P�0
is that the stiffness matrix K is positive definite. For prob-
lems involving neither material softening nor nonlinear bi-
furcation, K is usually positive definite and AFEM is stable,
as in the examples shown in Figs. 4 and 6. For nonpositive
definite K, we replace K by K�=K+�I, where I is the iden-
tity matrix and � is a positive number to ensure the positive
definiteness of K� which guarantees u·P�0. It is important
to note that the state of minimal energy is independent of �.

FIG. 4. �Color online� CPU time for atomic-scale finite element
method �AFEM� scales linearly with number of atoms for �5,5�
carbon nanotubes. The numbers of iteration steps are approximately
independent of the number of atoms, which implies that, for carbon
nanotubes subject to deformation, the AFEM is an order-N method.

FIG. 5. Number of iteration steps for conjugate gradient method
increases linearly with the number of atoms for �5,5� carbon nano-
tubes, while the CPU time scales with the square of number of
atoms. This implies that the conjugate gradient method is an order-
N2 method; �a� number of iteration step; �b� CPU time.

LIU et al. PHYSICAL REVIEW B 72, 035435 �2005�

035435-4



This is because the energy minimum is characterized by
P=0, and is independent of K or K�. In fact, at �and near�
the state of minimum energy, such modification of K is un-
necessary because the stiffness matrix K becomes positive
definite. We use an example of a �7,7� armchair CNT under
compression to examine the stability of AFEM. Figure 7
shows three stages of a 6-nm-long CNT at the compression
strain of 0%, 6% �prior to bifurcation�, and 7% �post-
bifurcation�. The stiffness matrix K experiences nonpositive
definiteness between the last two stages, but becomes posi-
tive definite again near the final stage. The bifurcation pat-
tern and the corresponding bifurcation strain �7%� agree well
with Yakobson et al.19 molecular mechanics studies.

V. LINKING AFEM WITH CONTINUUM FEM

The main advantage of AFEM is that it can be readily
linked with the conventional continuum FEM in a unified
theoretical framework, thus provides a seamless computa-
tional method for multiscale simulation. The total energy in
the system is minimized simultaneously with respect to both
atom positions �in AFEM� and FEM nodes �in continuum
FEM� in this unified theoretical framework. We have imple-
mented this new AFEM element in the ABAQUS finite ele-
ment program20 via its USER-ELEMENT subroutine. We use a
605-nm-long �5,5� armchair CNT with 48 200 atoms in Fig.
8 to illustrate the combined AFEM/FEM. The CNT has two
fixed ends, and is subject to a displacement of 81 nm in the
middle, resulting in a 15° rotation at two fixed ends as in the
Tombler et al. experiment.21 Two computational schemes are
adopted. In the first scheme 
Fig. 8�a��, only AFEM elements
are used and there are 48 200 elements. In the second scheme

FIG. 6. Number of iteration
steps M and deformed configura-
tions of a plane of atoms subject
to nanoindentation on the top sur-
face. The half angle of the nanoin-
denter is 70.3°, and the indenta-
tion depth is twice the atomic
spacing: �a� 400 atoms: �b� 1600
atoms; �c� 6400 atoms.

FIG. 7. �Color online� Deformation patterns for a 6-nm-long
�7,7� carbon nanotube under compression predicted by the atomic-
scale finite element method �AFEM�. Bifurcation occurs at 7%
compressive strain. This shows that AFEM is stable.

FIG. 8. �Color online� 605-nm-long �5,5� carbon nanotube with
48 200 atoms subject to 81 nm deflection in the middle. The
atomic-scale finite element method �AFEM� takes 24 min to deter-
mine atom positions, while the combined AFEM/FEM takes only
13 s. This shows that the combined AFEM/FEM is an efficient mul-
tiscale computational method.
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Fig. 8�b��, AFEM elements are used for the middle portion
of the CNT having 800 carbon atoms where deformation is
highly nonuniform, while the rest of the CNT is modeled by
conventional FEM elements; and two FEM string elements

are used, as shown in Fig. 8�b�, with their tensile stiffness
determined from the interatomic potential of carbon.22 The
differences between results obtained from two schemes are
less than 1%. However, the CPU time in the second scheme
is only 13 s, which is less than 1% of that in the first scheme,
24 min. Moreover, the saving in computer memory is also
tremendous since the second scheme requires less than 2%
memory.

We have also used the combined AFEM/FEM to study the
nanoindentation of a plane of 64 000 000 �8000�8000� at-
oms. The atoms have triangular lattice structure, and are
characterized by the Lennard-Jones 6–12 potential. Figure 9
illustrates the computational scheme, which involves about
1600 atoms �i.e., 1600 AFEM elements� underneath the rigid
indenter where the deformation is highly nonuniform, and
about 3000 nodes for continuum finite elements �only a small
portion of continuum elements are shown in Fig. 9�. Here
continuum finite elements are not applied to individual atoms
�as discussed in Sec. II�. Instead, they are applied to a con-
tinuum solid which has a constitutive model derived directly
from the interatomic potential and triangular lattice
structure.23,24 Near the AFEM/FEM boundary, the size of
continuum finite elements is comparable to the atomic spac-
ing to ensure the smooth transition from AFEM to FEM
domains. We have also used a refined mesh which contains
about 6400 atoms �i.e., 6400 AFEM elements� and the same
number of continuum FEM nodes to ensure accuracy of re-
sults. The refined mesh gives the same results �e.g., atom
positions underneath the indenter� as the mesh shown in
Fig. 9.

FIG. 9. Combined AFEM/FEM multiscale computation of 64
million atoms in a plane subject to nanoindentation. There are 1580
atoms and 2971 FEM nodes for the entire domain of computation,
but only those near the nanoindenter are shown.

FIG. 10. �Color online� �a�Woven nanostructure of carbon nanotubes; �b� the woven nanostructure subject to a point force of 50 eV/nm
as indicated; �c� the structure with a broken carbon nanotube away from the point force of 50 eV/nm; �d� the structure with a broken carbon
nanotube underneath the point force of 50 eV/nm. The contours are used to distinguish displacements of atoms as shown with blue
representing the neutral position and the red maximal deflection.
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VI. APPLICATION OF AFEM TO WOVEN
NANOSTRUCTURE OF CARBON NANOTUBES

Some complex atomic structures involving a large number
of atoms with multiple kinds of atomistic interactions can be
efficiently studied by AFEM on simple computational plat-
forms such as personal computers.16 For example, structured
composites possess designed mechanical, thermal, and elec-
trical properties, and are provided in many forms in synthetic
materials and exist in many biological systems in nature. The
woven structure of CNT fibers has already been realized.25

The woven nanostructure of individual CNTs, as shown in
Fig. 10�a�, is another representative candidate for exploiting
the superior mechanical properties of CNT. It has the poten-
tial for unique applications, where ultimate toughness,
strength and lightness are required, such as in body armor
and aerospace product. Such a nanostructure is still difficult
to assemble with the existing experimental technique, and is
also a challenge for atomistic studies. Here we use AFEM to
study this woven nanostructure of CNTs. Figure 10�a� shows
ten �5,5� CNTs with 16 000 atoms that form a woven nano-
structure with an intertube spacing of 3.86 nm. The interac-
tions within the same CNT are characterized by Brenner’s
potential13 with the AFEM element in Fig. 1. Between CNTs,
atoms interact through the van der Waals potential for
carbon,26 and nonlinear string elements incorporating such
potential are used. The centers of end cross sections of all
CNTs are on the same horizontal plane. Each end cross sec-
tion has two atoms in the horizontal plane, and these atoms
are fixed. The atomic structure shown in Fig. 10�a� corre-
sponds to the relaxed, equilibrium state.

Figure 10�b� shows the deformed atomic structure subject
to a vertical point force of 50 eV/nm at the center. The con-
tours in Fig. 10�b� represent different levels of the displace-
ments of atoms, where displacements are measured from the
relaxed, equilibrium configuration in Fig. 10�a�. The deflec-
tion, which is the displacement at the bottom of woven nano-
structure �below the loading point�, is 1.70 nm, while for
comparison, the deflection in a single CNT subject to the
same force �Fig. 4� is 3.08 nm, i.e., more than 80% larger.
For the same structure subject to a lateral force of 50 eV/nm
in the horizontal plane, the resulting displacement is
2.38 nm. Therefore, the woven nanostructure is much stiffer
than a single CNT since all CNTs contribute to the stiffness.

We further examine the sensitivity of woven nanostruc-
ture to defects. Figure 10�c� shows the deformed atomic

structure, with one neighbor CNT broken. The structure is
subject to the same vertical force of 50 eV/nm. The deflec-
tion is 2.01 nm, slightly larger than 1.70 nm for a perfect
structure. In another case, where the top CNT underneath the
force is broken, as shown in Fig. 10�d�, the deflection is only
1.58 nm, which is even smaller than 1.70 nm for a perfect
structure. This is because breaking of top CNT causes up-
ward springback of the bottom CNT. This suggests that the
woven nanostructure is insensitive to structural defects. If the
woven structure involves more CNTs, it should have even
higher stiffness and be less sensitive to defects.

VII. CONCLUDING REMARKS AND DISCUSSION

We have developed an atomic-scale finite element method
�AFEM� which has exactly the same formal structure as con-
tinuum FEM, and therefore can be seamlessly combined with
continuum FEM in multiscale computation. AFEM uses both
first and second order derivatives of system energy, and is
faster than the standard conjugate gradient method. For
stable atomic structures and well-defined interatomic poten-
tials, AFEM possesses order-N characteristics and is suitable
for large scale problems, particularly after being combined
with continuum FEM.

AFEM is applicable to many atomistic studies since it can
incorporate other atomistic models such as tight-binding po-
tential. Through continuous update of AFEM elements ac-
cording to current positions of atoms, AFEM can also model
the evolution of atomic structure. In fact, the string elements
for van der Waals interaction are updated in the study of the
woven nanostructure of CNTs in Fig. 10. We have already
demonstrated that some rather complex problems can be
studied via AFEM on a personal computer. Together with
parallel computation technique, the combined AFEM/FEM is
most effective for treating problems with a large number of
degrees of freedom, and therefore significantly increases the
speed as well as the system size in large scale computation.
Many optimization problems involving a large number of
variables can also be efficiently solved with AFEM if the
corresponding K �matrix of second-order derivatives� is
sparse.
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