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Abstract

In a remarkable series of experiments, Elssner, Korn and Ruehle (Scripta Metall. Mater. 31
(1994) 1037) observed cleavage fracture in ductile materials, a phenomenon that cannot be
explained by classical plasticity theories. In this paper we present a study of fracture by the
theory of mechanism-based strain gradient (MSG) plasticity (Gao et al., J. Mech. Phys. Solids
47 (1999b) 1239); Huang et al., J. Mech. Phys. Solids 48 (2000a) 99). It is established that, at
a distance much larger than the dislocation spacing such that continuum plasticity is applicable,
the stress level in MSG plasticity is signi9cantly higher than that in classical plasticity near the
crack tip. The numerical results also show that the crack tip stress singularity in MSG plasticity
is higher than that in the HRR 9eld, and it exceeds or equals to the square-root singularity. This
study provides a means to explain the observed cleavage fracture in ductile material. c© 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Macroscopic and atomistic fracture

In a remarkable series of experiments, Elssner et al.’s (1994) measured both the
macroscopic fracture toughness and atomic work of separation of an interface between
a single crystal of niobium and a sapphire single crystal. The macroscopic work of frac-
ture was measured using a four-point bend specimen designed for the determination of
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interfacial toughness, while the atomic value was inferred from the equilibrium shapes
of microscopic pores on the interface. The macroscopic work of fracture was found
to be 2–3 orders of magnitude higher than the atomic work of separation. This large
diDerence between the macroscopic work of fracture and its counterpart at the atomic
level was attributed to plastic dissipation in niobium, i.e., there must be signi9cant plas-
tic deformation associated with dislocation activities in niobium. Therefore, the crack
tip should be blunted by dislocations in niobium. According to models based on the
classical theories of plasticity, the maximum stress level that can be achieved near a
crack tip is no more than 4–5 times the tensile yield stress of metals (Hutchinson,
1997). However, Elssner et al.’s (1994) observed that the interface between two ma-
terials remained atomistically sharp, i.e., the crack tip was not blunted even though
niobium had a large number of dislocations. Moreover, the stress level needed to pro-
duce atomic decohesion of a lattice or a strong interface is typically 3% of the Young’s
modulus, or 10 times the tensile yield stress, which is more than twice the maximum
stress level (4–5 times yield stress) predicted by classical plasticity theories.
Classical plasticity theories clearly fall short of triggering the atomic decohesion

observed in the Elssner et al.’s (1994) experiments. As Hutchinson (1997) pointed
out, attempts to link macroscopic cracking to atomistic fracture are frustrated by the
inability of classical plasticity theories to model stress–strain behavior adequately at
the small scales involved in crack tip deformation.
There are signi9cant eDorts to develop continuum plasticity models which predict

much higher stress level near the crack tip than classical plasticity theories do in order
to explain the atomistically sharp crack tip in ductile niobium observed in the Elss-
ner et al.’s (1994) experiments. Suo et al. (1993) proposed a model (referred as the
SSV model in the following) that embeds an elastic strip surrounding the crack tip.
The height of the strip is very small, on the order of dislocation spacing, such that
dislocation activities within the strip cannot be homogenized and represented by con-
tinuum plasticity theories. Therefore, the strip is modeled as a linear elastic medium
such that the elastic strip around the crack tip is surrounded by a plastic zone. The ex-
istence of such an elastic strip indeed increases the stress level near the crack tip. Beltz
et al. (1996) extended the SSV model (Suo et al., 1993) to provide a self-consistent
estimate of the strip height based on dislocation analysis, and con9rmed that the strip
height is indeed on the order of dislocation spacing. Wei and Hutchinson (1999) com-
bined the SSV model with the embedded cohesion surface approach (Needleman, 1987;
Tvergaard and Hutchinson, 1992, 1993; Xu and Needleman, 1994; Camacho and Ortiz,
1996) to investigate the stress level around a crack tip.
An alternative approach that has the potential to bridge the gap between the atomistic

fracture and macroscopic cracking comes from strain gradient plasticity theories. Strain
gradient plasticity theories have been developed primarily for another important class
of phenomena at small scales, namely the size eDect. For example, micro-indentation
experiments have repeatedly shown that the hardness of metallic materials is dou-
bled or even tripled as the depth of indentation decreases to microns or submicrons
(Nix, 1989, 1997; De Guzman et al., 1993; Stelmashenko et al., 1993; Atkinson,
1995; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998). Signi9-
cant increase in strength has also been observed in micro-torsion of thin copper wires
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(Fleck et al., 1994), micro-bend of thin nickel foils (Stolken and Evans, 1998), and
in particle-reinforced composites (Lloyd, 1994; Nan and Clarke, 1996). These experi-
ments have all shown that materials display strong size eDect, “the smaller the harder”.
Classical plasticity theories cannot explain the observed size eDect at the small scales
because their constitutive models possess no internal material lengths.
Based on the notion of geometrically necessary dislocations in dislocation mechanics

(Ashby, 1970), Fleck, Hutchinson and co-workers (Fleck and Hutchinson, 1993, 1997;
Fleck et al., 1994; Shu and Fleck, 1999) have developed a strain gradient plasticity
theory, intended for applications to materials and structures whose dimension control-
ling plastic deformation falls roughly within a range from a tenth of a micron to ten
microns. Strain gradients are introduced into the constitutive model, and the internal
material length scaling the strain gradients has been determined to be on the order of
microns. There also exist several alternative theories of strain gradient plasticity that
are also based on the notion of geometrically necessary dislocations (e.g., Arsenlis and
Parks, 1999; Gao et al., 1999b; Acharya and Bassani, 2000; Gurtin, 2000; Huang et al.,
2000a), while all these theories have some success in modeling the microscale experi-
ments, only two have been applied to fracture analysis, as discussed in the following.

1.2. Fracture in strain gradient plasticity

The theories of strain gradient plasticity have been applied to fracture analyses in
anticipation that they may provide a link between macroscopic cracking and atomistic
fracture. This is because the stress level may increase signi9cantly due to large strain
gradients near the crack tip. The analyses are essentially limited to the couple-stress
theory of strain gradient plasticity (Fleck and Hutchinson, 1993; Fleck et al., 1994) and
the general phenomenological theory of strain gradient plasticity (Fleck and Hutchinson,
1997).
For the couple-stress theory of strain gradient plasticity, Huang et al. (1995, 1997b)

and Xia and Hutchinson (1996) obtained analytically the plane-strain modes I, II and
mixed mode asymptotic crack tip 9elds, while Chen et al. (1998) used the numerical
shooting method to obtain the plane-stress asymptotic crack tip 9elds. The 9nite element
method was also used to study the strain gradient eDects near the crack tip (Xia and
Hutchinson, 1996; Huang et al., 1997a, 1999a). It is established that the stress level
estimated by the couple-stress theory of strain gradient plasticity near a mode-I crack tip
is essentially the same as that in classical plasticity, i.e., no signi9cant increase in the
stress level around the mode-I crack tip is observed. This is because the couple-stress
theory of strain gradient plasticity accounts for the rotation gradient of deformation
only, and has not accounted for the important eDect of stretch gradient near the crack
tip.
In order to include the eDect of stretch gradient, Wei and Hutchinson (1997) and

Chen et al. (1999) used the Fleck and Hutchinson’s (1997) general phenomenological
strain gradient plasticity theory to investigate the crack tip 9eld. The numerical results
have shown that stretch gradients indeed elevate the stress level around a steadily prop-
agating crack tip (Wei and Hutchinson, 1997). However, for a stationary crack tip, both
the numerical shooting method and the 9nite element analysis predict a compressive
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stress traction ahead of a mode-I crack tip (Chen et al., 1999), which is physically
unacceptable. In order to solve this puzzle, Shi et al. (2000b) used the Wiener-Hopf
technique of analytic continuation to obtain the full-9eld solution for the Fleck and
Hutchinson (1997) general theory of strain gradient plasticity with the plastic work
hardening exponent N = 1. The analytic full-9eld solution clearly demonstrated that
the normal stress traction switches from tensile to compressive as the crack tip is ap-
proached. It is therefore concluded that the asymptotic crack tip 9eld in the Fleck and
Hutchinson (1997) general phenomenological theory of strain gradient plasticity has
no domain of physical validity.
The theory of mechanism-based strain gradient (MSG) plasticity was established

from the Taylor dislocation model via a multiscale, hierarchical framework in order to
link mesoscale strain gradient plasticity to microscale dislocation mechanics. Gao et al.
(1999a) and Huang et al. (2000b) have shown that the MSG plasticity theory agrees
very well with micro-indentation (McElhaney et al., 1998), micro-bend (Stolken and
Evans, 1998) and micro-torsion experiments (Fleck et al., 1994). Shi et al. (2000a)
used MSG plasticity theory to investigate the asymptotic crack tip 9eld, and established
that, unlike the HRR 9eld (Hutchinson, 1968; Rice and Rosengren, 1968) in classical
plasticity, the asymptotic crack tip 9eld in MSG plasticity is not separable. Therefore,
the stress level around a crack tip in MSG plasticity can only be obtained by the 9nite
element method or other numerical methods.
The purpose of this paper is to study fracture in MSG plasticity via the 9nite element

method. It focuses on the increase of stress level around the crack tip due to strain
gradient eDects associated with the geometrically necessary dislocations in order to
explain the observed cleavage fracture in ductile materials (Elssner et al., 1994). The
results show the transition from the remotely imposed elastic K 9eld through a plastic
zone to the crack tip 9eld in MSG plasticity.

2. Mechanism-based strain gradient (MSG) plasticity

The theory of mechanism-based strain gradient plasticity (Gao et al., 1999b; Huang
et al., 1999b, 2000a) is summarized in this section.

2.1. Generalized stresses and strains

In a Cartesian reference frame xi, the strain tensor �ij and strain gradient tensor �ijk
are related to the displacement ui by

�ij = 1
2(ui; j + uj; i) (1)

and

�ijk = uk; ij ; (2)

which have the symmetry �ij = �ji and �ijk = �jik . The strain gradient tensor can also
be expressed directly in terms of the strain tensor, i.e.,

�ijk = �ik; j + �jk; i − �ij; k : (3)
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The deviatoric strain and deviatoric strain gradient are de9ned as

�′ij = �ij − 1
3 �kk�ij; �′ijk = �ijk − 1

4 (�ik�jpp + �jk�ipp): (4)

The virtual work per unit volume of the solid due to a variation of displacement �ui
is

�w = �ij��ij + �ijk��ijk ; (5)

where the symmetric Cauchy stress �ij is the work conjugate of the variation of strain
��ij, and the symmetric higher-order stress �ijk is the work conjugate of the variation
of strain gradient ��ijk .

2.2. Principle of virtual work: equilibrium equations and boundary conditions

The principle of virtual work gives (Fleck and Hutchinson, 1997)∫
v
(�ij��ij + �ijk��ijk) dv=

∫
v
fk�uk dv+

∫
a

(
tk�uk + rk

@�uk
@n

)
da

+
∫
c
pk�uk |dx|; (6)

where fk is the body force per unit volume, tk and rk are the stress traction and double
stress traction on the surface, n is the normal of the surface, and pk is the line force
(per unit length) on the edge c intercepted by two smooth surfaces.
The equilibrium equations can be obtained from the principle of virtual work,

�ik; i − �ijk; ij + fk = 0: (7)

The stress tractions tk and double stress tractions rk on the surface of the body are

tk = ni(�ik − �ijk; j)− Dj(ni�ijk) + ninj�ijk(Dqnq); (8)

rk = ninj�ijk ; (9)

where ni is the unit normal to the surface and Dj is the surface-gradient operator given
by

Dj = (�jk − njnk)
@
@xk

: (10)

On the surface of the body, the gradient @=@xj can be resolved into the above surface
gradient Dj and a normal gradient njD, i.e.,

@
@xj

= Dj + njD; (11)

where

D = nk
@
@xk

: (12)
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2.3. Constitutive equations in MSG plasticity

The deformation theory of MSG plasticity (Gao et al., 1999b; Huang et al., 2000a)
is used in the present study since the deformation around a stationary crack tip 9eld
is nearly proportional. The uniaxial stress–strain relation can be written as

� = �reff(�); (13)

where �ref is a reference stress in uniaxial tension and f is a function of strain. For
most ductile materials, the function f can be written as a power law relation

f(�) = �N ; (14)

where N is the plastic work hardening exponent (0 ≤ N ¡ 1).
Plastic yielding occurs when the eDective stress �e reaches the Pow stress �,

�e = �; (15)

where the eDective stress �e = (32�
′
ij�

′
ij)

1=2 is de9ned in terms of the deviatoric stress
�′
ij, and the Pow stress in the mechanism-based strain gradient (MSG) plasticity theory

(Gao et al., 1999b; Huang et al., 2000a) is obtained from Taylor’s dislocation model
as

� = �ref
√
f2(�) + l�: (16)

Here � and � are the eDective strain and eDective strain gradient, respectively,

�=
√

2
3 �

′
ij�

′
ij ; �= 1

2

√
�′ijk�

′
ijk ; (17)

and the characteristic material length l in (16) associated with strain gradient plasticity
is given in terms of shear modulus � and Burgers vector b by (Huang et al., 1999b)

l= 18 2
(

�
�ref

)2

b; (18)

where  is an empirical material constant in Taylor’s dislocation model for plastic work
hardening of ductile materials, and is between 0:2 and 0:5 (e.g. Nix and Gibeling,
1985). For metallic materials, the internal material length is indeed on the order of
microns, consistent with the estimate by Fleck and Hutchinson (1997).
The constitutive equations in the deformation theory of MSG plasticity are

�ij = K�kk�ij +
2�
3�

�′ij ; (19)

�ijk = l2�

[
1
6
K�Hijk +

�
�
(!ijk −"ijk) +

�2
reff(�)f

′(�)
�

"ijk

]
; (20)

where K is the elastic bulk modulus, the Pow stress � is given in (16), �Hijk is the
volumetric part of strain gradient tensor,

�Hijk =
1
4(�ik�jpp + �jk�ipp); (21)
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and !ijk and "ijk are given by

!ijk = 1
72 [2�

′
ijk + �′kij + �′kji +

1
2�ij�kpp +

1
3�

H
ijk ]; (22)

"ijk =
1

54�2

[
�′mn(�

′
ik�

′
jmn + �′jk�

′
imn) +

1
4
�qpp(�′ik �

′
jq + �′jk �

′
iq)

]
: (23)

The length l� in (20) is the mesoscale cell size and is given by

l� = 10
�
�Y

b; (24)

where �Y is the yield stress in uniaxial tension.
It should be pointed out that, even though the material length in (18) depends on the

reference stress �ref , the theory of MSG plasticity is independent of the choice of �ref .
This is evident from the expression of Pow stress in (16), where �2

reff
2(�) represents

the uniaxial stress–strain relation, and the gradient term �2
ref l� becomes 18 2�2b�, and

both are independent of �ref .

3. Numerical analysis of fracture in MSG plasticity

The 9nite element method for MSG plasticity is based on the principle of vir-
tual work in (6). Several 9nite elements have been developed for strain gradient
theories that incorporate the eDect of both stretch and rotation gradients of defor-
mation. Begley and Hutchinson (1998) generalized Xia and Hutchinson’s (1996) C1

element in the study of micro-indentation hardness experiments. Shu et al. (1999) ex-
tended Xia and Hutchinson (1996) and Shu and Fleck’s (1998) hybrid element to
account for the eDect of stretch gradients. Wei and Hutchinson (1997) developed a
higher-order element to investigate steady-state crack propagation in strain gradient
plasticity. Huang et al. (2000b) used these elements to study micro-indentation experi-
ments, and found the hardness predicted by MSG plasticity agrees very well with exper-
imental data of McElhaney et al. (1998). They also showed that the numerical results
from these elements agree well with all the existing analytic solutions in strain gradient
plasticity.
We use these 9nite elements to study the full-9eld solution of mode-I fracture in

MSG plasticity. We have taken a circular domain of radius 103l centered at the crack
tip in our plane-strain 9nite element analysis, where l is the internal material length
in MSG plasticity given in (18). Very 9ne mesh is used near the crack tip, around
which the size of the smallest element is less than 10−3l. EDorts are made to ensure
elements having aspect ratio close to 1. Mesh re9nement and comparison of diDerent
elements have ensured that the numerical results are accurate.
The crack faces remain traction-free. The classical mode-I elastic K 9eld is im-

posed on the outer boundary of the 9nite element domain (of radius 103l). The elastic
stress intensity factor, KI , of the remotely applied 9eld increases monotonically such
that there is no unloading. In order to better characterize plastic yielding, we have
used the following elastic–plastic stress–strain relation in uniaxial tension to replace
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(13) and (14):

�= E�; �¡
�Y
E

;

= �ref �N � ≥ �Y
E

; (25)

where E is the elastic modulus, �Y the yield stress in uniaxial tension, N is the
plastic work hardening exponent (0 ≤ N ¡ 1), and the reference stress �ref is given
by �ref = �Y(E=�Y)N .
In the following, stresses �ij are normalized by the yield stress �Y in uniaxial tension,

while the distance r to the crack tip is normalized by the internal material length l in
MSG plasticity. The normalized, remotely applied stress intensity factor is KI =�Yl1=2.
The stress distribution then depends on the following nondimensional parameters: the
plastic work hardening exponent N ; the ratio of yield stress to elastic modulus, �Y=E;
the Poisson’s ratio '; and nondimensional stress intensity factor KI =�Yl1=2. It should
be pointed out that the internal material length l has been used to normalize r and KI ,
and does not appear explicitly in the nondimensional stress distributions. Accordingly,
the normalized stress distributions do not depend on the Taylor coeScient  in (18).
Unless otherwise speci9ed, the numerical results presented in this paper are for the
following set of nondimensional material properties:

N = 0:2;
�Y
E

= 0:2%; '= 0:3: (26)

Fig. 1 shows that normalized eDective stress, �e=�Y, versus the nondimensional dis-
tance to the crack tip, r=l, ahead of the crack tip (at polar angle (=1:014◦) predicted
by MSG plasticity, where �e = (32�

′
ij�

′
ij)

1=2 is the eDective stress. The remotely applied
stress intensity factor is KI =�Yl1=2 = 20, while the nondimensional material properties
are given in (26). The plastic zone size is a bit more than 10l, as seen from the in-
terception of MSG plasticity curve with the horizontal line of �e=�Y = 1 (representing
plastic yielding). The corresponding stress distribution in classical plasticity (without
strain gradient eDects) is also shown in Fig. 1. It is observed that, outside the plastic
zone (as determined by �e=�Y ≤ 1), both MSG and classical plasticity theories give
the same straight line of slope −1=2, corresponding to the elastic KI 9eld. The pre-
dictions of MSG and classical plasticity theories are also the same within the plastic
zone at a distance larger than 0:3l to the crack tip. For a typical estimate of l=4 �m
for copper (Fleck et al., 1994; Gao et al., 1999a), the above result indicates that the
strain gradient eDects are signi9cant within a zone of approximately 1 �m in copper.
This agrees with the Xia and Hutchinson’s (1996) estimate of the size of dominance
zone for the asymptotic crack tip 9eld in strain gradient plasticity. It is not unrea-
sonable that the local dislocation density reaches 1014=m2 near a crack tip in metallic
materials, which gives an average dislocation spacing of 0:1 �m. Therefore, this zone
of 1 �m size is much larger than the average dislocation spacing so that continuum
plasticity is still applicable. Once the distance to the crack tip is less than 0:3l, the
eDective stress predicted by MSG plasticity increases much quicker than its counterpart
in classical plasticity. At a distance of 0.1l to the crack tip, which is approximately
0:4 �m for copper and is within the intended range of applications of MSG plasticity
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Fig. 1. The eDective stress �e normalized by the uniaxial yield stress �Y versus the normalized distance to
the crack tip, r=l, ahead of the crack tip (polar angle (= 1:014

◦
), where l is the internal material length in

stain gradient plasticity; the plastic work hardening exponent N=0:2, Poisson’s ratio '=0:3, the ratio of yield
stress to elastic modulus �Y=E=0:2%, and the remotely applied elastic stress intensity factor KI =�Yl1=2 =20,
the results are presented for both theories of MSG plasticity and classical plasticity.

(Gao et al., 1999b; Huang et al., 2000a), the eDective stress given by MSG plasticity
is more than twice that in classical plasticity. Moreover, for small distance to the crack
tip (e.g., r=l ≤ 0:3), classical plasticity gives a straight line in Fig. 1, and the slope
of the straight line is −N=(N +1), corresponding to the HRR 9eld (Hutchinson, 1968;
Rice and Rosengren, 1968) in classical plasticity. For r=l ≤ 0:3, MSG plasticity gives
a curve in Fig. 1, and the absolute value of the slope at each point on the curve not
only is much larger than that for the HRR 9eld (|slope|=N=(N +1), but also exceeds
or equals to that for elastic KI 9eld (|slope|= 1

2). This indicates that stresses around
a crack tip in MSG plasticity are more singular than the HRR 9eld, and the order of
stress singularity exceeds or equals to the square-root singularity.
Fig. 2 shows the normalized stresses, �rr=�Y and �((=�Y, versus the nondimensional

distance to the crack tip, r=l, ahead of the crack tip (polar angle (= 1:014◦) for both
MSG plasticity and classical plasticity at the applied stress intensity factor KI =�Yl1=2 =
20. The transition is clearly observed from the remote elastic KI 9eld (the straight line
with slope −1=2 for large r) to the near-tip HRR 9eld (the straight line with slope
−N=(N + 1) for small r) in classical plasticity. The stress levels around the crack tip
predicted by MSG plasticity and classical plasticity are diDerent only within a distance
of 0:3l to the crack tip, and the former is once again larger than the latter. Therefore,
the strain gradient eDects indeed elevate the stress level around the crack tip in MSG
plasticity. It should be pointed out that the stress �(( ahead of the crack tip is not
the same as the stress traction t( de9ned in (8), and the diDerence results from the
higher-order stresses. However, the contribution from the higher-order stresses is very
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Fig. 2. The distribution of normal stresses �(( and �rr ahead of the crack tip (polar angle ( = 1:014
◦
) for

both MSG plasticity and classical plasticity theories. All normalization and material and loading parameters
are the same as those in Fig. 1.

small, less than 1% of �((, because the length parameter l� scaling the higher-order
stresses is typically one to two orders of magnitude less than the internal material
length l in MSG plasticity. Accordingly, the higher-order stress traction t( ahead of
the crack tip is essentially the same as �(( in Fig. 2.
Fig. 3 shows the normalized eDective stress, �e=�Y, versus the normalized distance

to the crack tip, r=l, ahead of the crack tip (polar angle ( = 1:014◦) for four levels
of applied stress intensity factor, KI =�Yl1=2 = 2, 5, 10 and 20. The material properties
are given in (26). The interception of each curve with the horizontal line �e=�Y = 1
separates the plastic yielding from elastic deformation. The deformation outside the
plastic zone is essentially the elastic KI 9eld, as evidenced by the straight line with the
slope of −1=2 for large r. At a small distance r to the crack tip, all curves approach
to another set of straight lines, with the absolute value of the slope larger or equal
to 1=2. This con9rms that the crack tip 9eld in MSG plasticity is more singular than
the HRR 9eld in classical plasticity; the order of stress singularity exceeds or equals
to the square-root singularity in the elastic KI 9eld. It is also observed from Fig. 3
that the plastic zone size increases rapidly with the applied loading. The plastic zone
size for KI =�Yl1=2 =20 is approximately 100 times that for KI =�Yl1=2 =2. However, the
size of the dominance zone of the crack tip 9eld in MSG plasticity increases relatively
slow with the applied loading; the size of the dominance zone for KI =�Yl1=2 = 20 is
less than twice of that for KI =�Yl1=2 = 2.
Fig. 4 shows the eDect of plastic work hardening on the eDective stress distribution

ahead of the crack tip (polar angle ( = 1:014◦). The applied stress intensity factor is
KI =�Yl1=2=10, and the plastic work hardening exponent are N=0:2, 0.33 and 0.5. One
interesting observation is that, at small distance r to the crack tip, all curves approach
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Fig. 3. The distribution of eDective stress �e ahead of the crack tip (polar angle ( = 1:014
◦
) for remotely

applied elastic stress intensity factors KI =�Yl1=2 =2, 5, 10 and 20. All normalization and material parameters
are the same as those in Fig. 1.

Fig. 4. The distribution of eDective stress �e ahead of the crack tip (polar angle (=1:014
◦
) for the remotely

applied elastic stress intensity factor KI =�Yl1=2 =10. All normalization and material parameters are the same
as those in Fig. 1, except the plastic work hardening exponent N = 0:2, 0.33 and 0.5.
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straight lines that have the same slope. This means the crack tip singularity in MSG
plasticity is essentially independent of the plastic work hardening exponent. It is, in
fact, consistent with the asymptotic analysis of the crack tip 9eld in MSG plasticity
(Shi et al., 2000a). Shi et al. (2000a) showed that, near a crack tip in MSG plasticity,
the strain gradient term l� is more singular than the strain term, �2

reff
2(�), in the

expression of Pow stress in (16). Therefore, the strain gradient term dominates such
that the crack tip 9eld is essentially independent of the uniaxial strain–stress relation
�reff(�) and therefore does not depend on the plastic work hardening exponent N . The
numerical results in the present study con9rm this prediction. In terms of dislocation
terminologies, this means that the density of geometrically necessary dislocations is
much higher than that of statistically stored dislocations near a crack tip, and therefore
dominates the Pow stress in (16) from the Taylor model.
The above observations, in conjunction with the SSV model (Suo et al., 1993; Beltz

et al., 1996), provide the following multiscale view of cleavage fracture in ductile
materials: (i) At the scale as small as the dislocation spacing, the SSV model governs
the crack tip behavior, i.e., there exists a core free of dislocations around the crack
tip. (ii) At a larger scale that is at least one order of magnitude larger than dislocation
spacing and is comparable to the internal material length l, geometrically necessary
dislocations begin to dominate, and MSG plasticity governs the crack tip behavior.
(iii) At a distance much larger than the internal material length l, MSG plasticity
degenerates to classical plasticity, and statistically stored dislocations play a dominating
role in the plastic work hardening of materials. This multiscale view of fracture provides
a reasonable picture for cleavage fracture in ductile materials. It should be pointed out,
however, that MSG plasticity does not degenerate to classical elasticity at small length
scales. Accordingly, the crack tip 9eld in MSG plasticity is not applicable at a distance
comparable to dislocation spacing. This is evident from Fig. 2, in which stresses �rr and
�(( are diDerent ahead of the crack tip, while their counterparts in the dislocation-free
core are the same as in the classical K-9eld.

4. Summary

We have used the deformation theory of mechanism-based strain gradient (MSG)
plasticity to investigate the stress level around a crack tip. The numerical results have
shown that the stress level in MSG plasticity is signi9cantly higher than that predicted
by classical plasticity (i.e., the HRR 9eld). At a distance that is much larger than
the dislocation spacing such that continuum plasticity is expected to be applicable, the
eDective stress predicted by MSG plasticity is more than twice of that in classical plas-
ticity. MSG plasticity also predicts that the crack tip stress singularity is not only larger
than that in the HRR 9eld, but also exceeds or equals to the square-root singularity.
Moreover, the crack tip stress singularity is independent of the plastic work hardening
exponent because geometrically necessary dislocations play a more dominating role
than statistically stored dislocations near the crack tip.
The signi9cant increase in the stress level near the crack tip has been attributed to

the strain gradient eDects on the mesoscale, or to geometrically necessary dislocations
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on the microscale. The increase in the near-tip stress level provides an explanation to
the experimental observation of cleavage fracture in ductile materials (Elssner et al.,
1994). The classical plasticity theories fail to predict the stresses needed for cleavage
fracture, while the signi9cant stress increase in MSG plasticity seems to be capable of
bridging the gap between the macroscopic cracking and atomistic fracture.
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