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Abstract

Carbon nanotubes (CNTs) display unique properties and have many potential applications.
Prior theoretical studies on CNTs are based on atomistic models such as empirical poten-
tial molecular dynamics (MD), tight-binding methods, or 8rst-principles calculations. Here we
develop an atomistic-based continuum theory for CNTs. The interatomic potential is directly
incorporated into the continuum analysis through constitutive models. Such an approach in-
volves no additional parameter 8tting beyond those introduced in the interatomic potential. The
atomistic-based continuum theory is then applied to study fracture nucleation in CNTs by mod-
elling it as a bifurcation problem. The results agree well with the MD simulations.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been extensive research on carbon nanotubes (CNTs) since their 8rst dis-
covery (Iijima, 1991; Ebbesen and Ajayan, 1992) and the establishment of e>ective
synthesis techniques (Thess et al., 1996). A single-wall CNT is a cylinder of graphene
with a single layer of carbon atoms, and its diameter is on the order of 1 nm. There
are also multi-wall CNTs that are cylinders of graphene with multiple layers of carbon
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Fig. 1. Young’s modulus of single and multi-wall CNTs measured by various experimental techniques: ther-
mal vibration, bending, and tension. [1]: Treacy et al. (1996); [2]: Wong et al. (1997); [3]: Krishnan
et al. (1998); [4]: Lourie and Wagner (1998); [5]: Muster et al. (1998); [6]: Pan et al. (1999); [7]:
Salvetat et al. (1999); [8]: Tombler et al. (2000); [9]: Yu et al. (2000).

atoms along the tube thickness, and their diameters are much larger (e.g., 50 nm). The
lengths of CNTs range from a few nanometers to 100 �m or even higher (Fan et al.,
1999).
CNTs display superior mechanical properties (Srivastava et al., 2001; Yakobson and

Avouris, 2001; Qian et al., 2002). Experimental studies have shown that CNTs have
high Young’s modulus on the order of 1 TPa, though the experimental data have
very large scatterings as shown in Fig. 1. Extensive atomistic studies also show the
Young’s modulus of CNTs on the same order of magnitude (1 TPa), though there are
also some scatterings of molecular dynamics (MD) simulations based on the empiri-
cal interatomic potential, tight-binding potential, and 8rst-principle methods, as shown
in Fig. 2. Atomistic studies also show that CNTs have yield strain more than 4%
(Yakobson et al., 1996), and fracture strain ranging from 30% to 50% (Yakobson et al.,
1997) based on Brenner’s (1990) interatomic potential and between 10% and 16%
(Belytschko et al., 2002) based on the modi8ed Morse potential in which a bond-angle-
bending term is added.
The purpose of the present study is to establish a continuum theory of CNTs based on

the interatomic potential for carbon (Brenner, 1990), and to apply this atomistic-based
continuum theory to study fracture nucleation in CNTs. There has been signi8cant
progress in recent years to develop continuum theories based on atomistic models for
three dimensional solids (e.g., Tadmor et al. 1996a, b, 1999; Miller et al., 1998a,
b; Shenoy et al., 1998, 1999) and two-dimensional planar lattice (Gao et al., 2001).
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Fig. 2. Young’s modulus of single and multi-wall CNTs obtained from atomic studies based on the empirical
interatomic potential, tight-binding method, and ab initio calculations. [1]: Robertson et al. (1992); [2]:
Overney et al. (1993); [3]: Molina et al. (1996); [4]∗: Yakobson et al. (1996), the Young’s modulus is
obtained from the tensile sti>ness using a standard CNT wall thickness 0:34 nm; [5]: Cornwell and Wille
(1997); [6]: Lu (1997); [7]: Halicioglu (1998); [8]: HernMandez et al. (1998); [9]: HernMandez et al. (1999);
[10]: Goze et al. (1999); [11]: SManchez-Portal et al. (1999); [12]: Lier et al. (2000); [13]: Popov et al.
(2000); [14]: Prylutskyy et al. (2000); [15]: Vaccarini et al. (2000); [16]: Zhou et al. (2001).

However, it is uncertain whether continuum analysis is even applicable for single wall
CNTs that have only one layer of atoms. Arroyo and Belytschko (2002) used a modi8ed
Cauchy–Born rule (Weiner, 1983; Tadmor et al., 1999) to incorporate the interatomic
potential into a continuum framework, and accounted for the e>ect of CNT curvature
via an exponential map. They studied CNTs under various loadings, including torsion
and bending. Zhang et al. (2002b) adopted a similar approach to study the elastic mod-
ulus and tensile sti>ness of CNTs, and found good agreements with MD simulations.
Though these limited continuum studies have already demonstrated some success to
model CNTs it is unknown whether continuum methods can be applied to CNTs under
extreme conditions such as fracture.
The purpose of this paper is to study fracture nucleation in CNTs via an atomistic-

based continuum theory. The interatomic potential for carbon (Brenner, 1990), sum-
marized in Section 2, is incorporated into a continuum constitutive model in Section
3 via the modi8ed Cauchy–Born rule. Fracture nucleation in CNTs is modeled in
Section 4 as the bifurcation in the continuum analysis. It is shown that the critical
strain predicted by the atomistic-based continuum theory agrees well with MD simu-
lations. The e>ect of the cuto> function on fracture nucleation in CNTs is discussed
in Section 5.
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2. An interatomic potential for carbon

Brenner (1990) established an interatomic potential for carbon from Terso> (1988)
formalism as

V (rij) = VR(rij)− BijVA(rij) (1)

for atoms i and j, where rij is the distance between atoms i and j, VR and VA are the
repulsive and attractive pair terms (i.e., depending only on rij) and are given by

VR(r) =
D(e)

S − 1
e−

√
2S�(r−R(e))fc(r) ; (2)

VA(r) =
D(e)S
S − 1

e−
√

(2=S)�(r−R(e))fc(r) ; (3)

the parameters D(e), S, �, and R(e) are determined from the known physical properties
of carbon, graphite and diamond, and are given at the end of this section; the func-
tion fc is merely a smooth cuto> function to limit the range of the potential, and is
given by

fc(r) =




1; r ¡R(1);

1
2

{
1 + cos

[
�(r − R(1))
R(2) − R(1)

]}
; R(1)¡r¡R(2);

0; r ¿R(2);

(4)

which is continuous and has a cuto> of R(2) = 0:2 nm and R(1) = 0:17 nm to include
only the 8rst-neighbor shell for carbon.
The parameter Bij in Eq. (1) represents a multi-body coupling between the bond

from atom i to atom j and the local environment of atom i, and is given by

Bij =


1 + ∑

k(�=i; j)
G(�ijk)fc(rik)



−�

; (5)

where k represents atoms other than i and j, rik is the distance between atoms i and
k, fc is the cuto> function in Eq. (4), �ijk is the angle between bonds i–j and i–k,
and the function G is given by

G(�) = a0

[
1 +

c20
d20

− c20
d20 + (1 + cos �)2

]
: (6)

For atoms i and j having di>erent local environment, Brenner (1990) suggested to
replace the coeQcient Bij in Eq. (5) by

RBij = (Bij + Bji)=2 : (7)

The parameters D(e), S, � and R(e) in Eqs. (2) and (3), � in Eq. (5), and a0, c0
and d0 in Eq. (6) have been determined by Brenner (1990) to 8t the binding en-
ergy and lattice constants of graphite, diamond, simple cubic and face-centered-cubic
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structures for pure carbon, as well as the vacancy formation energy for diamond and
graphite as

D(e) = 6:000 eV; S = 1:22; � = 21 nm−1; R(e) = 0:1390 nm;

�= 0:50000;

a0 = 0:00020813; c0 = 330; d0 = 3:5:

(8)

Here R(e) = 0:1390 nm represents the equilibrium bond length for a pair of carbon
atoms (i.e., no other atoms such that Bij =1) and it is determined from (9=9rij) (VR −
VA)|rij=R(e) = 0. For a single-wall CNT having a hexagonal lattice structure within the
tube surface, the equilibrium bond length l0 is determined from

9V
9rij

= 0 ; (9)

where V is the interatomic potential accounting for the multi-body coupling e>ect
(i.e., Bij �= 1) in Eq. (1). The equilibrium bond length determined from Eq. (9)
is l0 = 0:145 nm, which agrees well with the well-known bond length of graphite
(0:144 nm).

3. An atomistic-based continuum theory for CNTs

Single-wall CNTs can be grouped to the following three categories according
to their chiralities (the orientation of tube axis with respect to the hexagonal lattice
structure):

(1) armchair nanotubes where the tube axis is normal to a lattice direction, i.e., the
angle between an atomic bond and the tube axis �0 = 30◦ (Fig. 3a);

(2) zigzag nanotubes where the tube axis is parallel to a lattice direction, i.e., �0 =0◦

(Fig. 3a);
(3) chiral nanotubes where the tube axis is neither parallel nor normal to the lattice

directions, i.e., 0◦¡�0¡ 30◦ (Fig. 3a).

3.1. Modi:ed Cauchy–Born rule

Unlike MD simulations that keep track of the motion of every atom, the atomistic-
based continuum theory developed in this section represents the collective behavior
of atoms via the constitutive model. The Cauchy–Born rule (Born and Huang, 1954;
Milstein, 1980) equated the strain energy at the continuum level to the energy stored
in atomic bonds. Moreover, atoms are subject to homogeneous deformation such that
they move according to a single mapping from the undeformed to deformed con8gu-
rations. Such a mapping is characterized by the continuum deformation gradient F of
a material point, where the material point represents many atoms that undergo locally
uniform deformation. For simple Bravais lattice that has the centrosymmetric atomic
structure, the Cauchy–Born rule ensures the equilibrium of atoms. However, it does
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Fig. 3. (a) The decomposition of a hexagonal lattice to two triangular sub-lattices. The angle �0 shows the
orientation of tube axial direction of CNT. (b) A shift vector � between two sub-lattices is introduced to
ensure the equilibrium of atoms. The solid and dashed lines denote the lattice structures with and without
the shift vector �, respectively.

not for the hexagonal lattice structure (Fig. 3a) which is a Bravais multi-lattice and
does not possess centrosymmetry, as pointed out by Zhang et al. (2002b) for CNTs,
and Tadmor et al. (1999) and Arroyo and Belytschko (2002) for general Bravais
multi-lattice.
As shown in Fig. 3a, we adopt the approach of Weiner (1983), Tadmor et al. (1999),

and Arroyo and Belytschko (2002) to decompose the hexagonal lattice structure to
two triangular sub-lattices marked by open and solid circles. Each sub-lattice is a
simple Bravais lattice that has the centrosymmetry and therefore follows the Cauchy–
Born rule. However, the two sub-lattices undergo a shift vector � (Weiner, 1983;
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Tadmor et al., 1999), as shown in Fig. 3b, which represents the relaxation of atom
positions in the hexagonal lattice structure in order to minimize the energy and reach the
equilibrium.
Let r(0)ij = r(0)ij n

(0)
ij denote the vector between two atoms i and j on the CNT prior to

deformation, r(0)ij and n(0)ij be the bond length and unit vector, respectively. For atoms
i and j within the same sub-lattice, the vector rij after the deformation becomes

rij = F · r(0)ij ; (10)

and its length is

rij(E) =
√
rij · rij = r(0)ij

√
1 + 2n(0)ij · E · n(0)ij ; (11)

where E= 1
2(F

T ·F − I) is the Lagrangian strain. For atoms i and j from two di>erent
sub-lattices, the vector rij after the deformation also depends on the shift vector �
between the two sub-lattices, and is given by

rij = F · r(0)ij + �= r(0)ij F · (n(0)ij + �) ; (12)

where � = (1=r(0)ij )F−1 · � is an internal degree of freedom which is equivalent to the
shift vector �. The bond length becomes

rij(E ; �) =
√
rij · rij = r(0)ij

√
(n(0)ij + �) · (I + 2E) · (n(0)ij + �) ; (13)

which depends on both E and �.

3.2. Continuum strain energy density

Fig. 4 shows the schematic diagram illustrating the present approach to obtain the
strain energy density from the interatomic potential. The energy stored in the bond
between carbon atoms i and j is given by Brenner’s (1990) multi-body interatomic
potential in Eq. (1),

V (E ; �) = V (rij; rik ; �ijk ; k �= i; j) ; (14)

where k denotes atoms other than i and j, the bond lengths rij and rik are given in
terms of the Lagrangian strain E and internal degree of freedom � via (11) or (13),
and the angle �ijk between deformed bonds i–j and i–k is determined from rij, rik and
rjk .
Based on the Cauchy–Born rule, the strain energy density W on the continuum level

is the energy (stored in atomic bonds) per atom. Each atom i has three neighboring
atoms in a hexagonal lattice structure such that the strain energy density W becomes

W (E ; �) = 1
2

∑
16j63 V (rij; rik ; �ijk ; k �= i; j)

��
(15)

if only the nearest-neighbor interaction is accounted for, where V is Brenner’s (1990)
interatomic potential for carbon given in (1); the factor 1

2 represents the equal split of
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Fig. 4. A schematic diagram to link the continuum analysis to the interatomic potential for CNTs possessing
no centrosymmetric atomic structure.

bond energy between two atoms in each pair;

�� =
3
√
3

4
l20t0 (16)

is the average volume per atom, l0 is the unstretched bond length for the hexagonal
lattice structure in Fig. 3b and its value is reported at the end of Section 2; t0 is the
“tube thickness” which is not well de8ned for single wall CNTs but it does not enter
the continuum analysis, as shown in the next section.

3.3. The limit of graphene

Goze et al. (1999) used tight-binding method to investigate the e>ect of nanotube
radius R on the Young’s modulus of CNTs, and showed that, for R¿ 0:4 nm, the
Young’s modulus is essentially independent of the CNT radius. Jiang et al. (2003)
also showed that the CNT radius has essentially no e>ect on the Young’s modulus
nor on the load-deVation curve of CNTs under tension or torsion. In the limit of large
CNT radius, a CNT becomes a graphene, i.e., a planar sheet of carbon atoms. The
summation over three atomic bonds in Eq. (15) then becomes the summation over
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three bond orientations within the graphene plane, �0 and �0 ± 120◦, i.e.,

W (E ; �) = 1
2��

∑
�0 ;�0±120◦

V (rij; rik ; �ijk ; k �= i; j) ; (17)

where �0 is the angle between the bond and the tube axis. In other words, (17) is the
limit of Eq. (15) without accounting for the e>ect of CNT radius.

3.4. The shift vector �

The shift vector � introduced in Section 3.1 (Fig. 3) relaxes the atom positions to
ensure the equilibrium of atoms. For a given Lagrangian strain E, the shift vector �
or its equivalence, the internal degree of freedom �, is determined by minimizing the
strain energy density W with respect to � (Weiner, 1983; Tadmor et al., 1999; Arroyo
and Belytschko, 2002; Zhang et al., 2002b), i.e.,

9W
9� = 0 : (18)

Eq. (18) is a nonlinear and implicit equation that is solved numerically to determine
� in terms of E, i.e.,

� = �(E) : (19)

The strain energy density in Eqs. (15) or (17) can then be written as W =W [E ; �(E)].
It is straightforward to verify that � = 0 if E = 0 (i.e., no deformation).

3.5. Stress and incremental modulus

The second Piola–Kirchho> stress T is obtained from the total derivative D of strain
energy density W with respect to the Lagrangian strain E,

T =
DW
DE

=
9W
9E +

9W
9� · d�

dE
=
9W
9E ; (20)

where 9W=9�=0 in Eq. (18) has been used. Eq. (20) gives the second Piola–Kirchho>
stress T in terms of the Lagrangian strain E, therefore provides the constitutive relation
of single wall CNTs based on the interatomic potential V .
The stress increment Ṫ is related to the strain increment Ė via the incremental

modulus tensor C ,

Ṫ = C : Ė ; (21)

where C is the total derivative of T with respect to E, and from Eq. (20)

C =
DT
DE

=
D
DE

(
9W
9E

)
=
92W
9E9E − 92W

9E9� ·
(
92W
9�9�

)−1

· 9
2W
9�9E ; (22)
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which possesses the symmetry Cijkl = Cjikl = Cijlk = Cklij, where we have use

d�
dE

=−
(
92W
9�9�

)−1

·
(
92W
9�9E

)

obtained from the derivative of 9W=9� = 0 in Eq. (18).

3.6. Equilibrium equation

The equilibrium equation is

(F · T) ·∇= 0 ; (23)

where ∇ is the gradient in the reference (undeformed) con8guration. In the cylindri-
cal coordinates (R; �; Z) for the CNT, ∇ = eR(9=9R) + (e�=R)(9=9�) + eZ(9=9Z), the
equilibrium equation (23) takes the form

9
9R (F · T)RR + (F · T)RR − (F · T)��

R
+

1
R
9
9� (F · T)R� + 9

9Z (F · T)RZ = 0 ;

(24a)

9
9R (F · T)�R + (F · T)R� + (F · T)�R

R
+

1
R
9
9� (F · T)�� + 9

9Z (F · T)�Z = 0 ;

(24b)

9
9R (F · T)ZR + (F · T)ZR

R
+

1
R
9
9� (F · T)Z� + 9

9Z (F · T)ZZ = 0 : (24c)

The traction-free boundary condition can be written as

(F · T) ·N = 0 ; (25)

where N is the unit normal to the surface in the reference con8guration. It should be
pointed out that Eq. (25) has not accounted for the surface stress e>ect on the boundary
conditions. If such an e>ect is accounted for, we will need to use the continuum
formulation including the surface stress, such as Gurtin and Murdoch (1975). On the
inner and outer surfaces of the CNT, the traction-free condition becomes

F · T · eR = 0 ; (26)

where eR is the unit vector in the radial direction prior to deformation. Since the single
wall CNT is very thin (a single layer of atoms), F ·T · eR should vanish in the entire
CNT, which leads to T ·eR=0 in the CNT. Therefore, the three-dimensional equilibrium
equation (24) becomes

1
R
9
9� (FR"T"�)−

1
R
F�"T"� +

9
9Z (FR"T"Z) = 0 ; (27a)

1
R
FR"T"� +

1
R
9
9� (F�"T"�) +

9
9Z (F�"T"Z) = 0 ; (27b)

1
R
9
9� (FZ"T"�) +

9
9Z (FZ"T"Z) = 0 ; (27c)
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where R is the nanotube radius; and the summation for " is over � and Z . Eq. (27)
gives three partial di>erential equations (with respect to � and Z) for UR, U�, and UZ ,
and unlike Eq. (24), they do not involve 9=9R.

4. Fracture nucleation in single-wall CNTs

Similar to the large scattering in the Young’s modulus shown in Figs. 1 and 2,
the limited studies on fracture of CNTs also displayed large discrepancies in the frac-
ture strain. For example, the atomistic studies of a single wall CNT under tension
based on Brenner’s (1990) empirical interatomic potential suggested the fracture strain
between 25% and 55% (Yakobson et al., 1997), while Yu et al.’s (2000) experimen-
tal studies reported the fracture strain of multiwall CNTs between 2% and 13%. The
recent atomistic studies of Belytschko et al. (2002) based on a di>erent empirical in-
teratomic potential (the modi8ed Morse potential) predicted fracture strain from 10%
to 16%. It is important to note that many factors may contribute to these discrep-
ancies, such as single wall CNTs under simple tension in atomic studies (Yakobson
et al., 1997) versus multi-wall CNTs subject to tension with possible bending in ex-
periments (Yu et al., 2000). The di>erent empirical interatomic potentials, such as
Brenner’s (1990) potential used by Yakobson et al. (1997) versus modi8ed Morse po-
tential used by Belytschko et al. (2002), may also lead to signi8cantly di>erent fracture
strains.
The purpose of this paper is not to evaluate the above work on fracture of CNTs.

Instead, it is to investigate whether the proposed atomistic-based continuum theory
can be used to study fracture nucleation in CNTs, and whether its results agree with
the atomistic studies based on the same interatomic potential without any parameter
8tting.
Yakobson et al. (1997) studied a single-wall CNT under tension using MD simu-

lations with Brenner’s (1990) empirical interatomic potential for carbon. They found
that there exists a breaking strain �b prior to which the CNT undergoes uniform defor-
mation. Once the breaking strain is reached, one or few atomic bonds break and this
atomic disorder rapidly propagates in the circumferential direction to form a necked
band which eventually leads to fracture of the CNT. The breaking strain has a large
variation from 25% to 55%. Zhang et al. (2002a) conducted an approximate analysis of
fracture nucleation in CNTs, and several critical assumptions were made, including (i)
neglecting the multi-body coupling e>ect by taking Bij =1 in the interatomic potential
(1); (ii) approximating the three atomic bonds at each atom by uniformly distributed
bonds over all orientations within the tube surface and therefore not accounting for
the e>ect of the shift vector. These assumptions, in fact, do not strictly hold for single
wall CNTs.
We study the breaking strain of CNTs via the atomistic-based continuum theory in

the previous section established from Brenner’s (1990) empirical interatomic potential.
Instead of modelling the breaking of individual atomic bonds as in Yakobson et al.’s
(1997) MD simulations, the continuum analysis focuses on the overall, “macroscopic”
characteristics associated with the breaking strain. Since the CNT undergoes uniform
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deformation prior to the 8rst bond breaking in Yakobson et al.’s (1997) MD simula-
tions, and nonuniform deformation only steps in after the bond breaking, fracture nucle-
ation in CNTs under tension is modeled as a bifurcation in the present atomistic-based
continuum theory.

4.1. Armchair and zigzag CNTs

4.1.1. Pre-bifurcation: uniform deformation
The deformation in armchair and zigzag CNTs under tension is uniform and ax-

isymmetric prior to bifurcation, and is characterized by the non-vanishing components
F�� and FZZ of the deformation gradient. The non-zero components of the Lagrangian
strain are E�� = 1

2(F
2
�� − 1) and EZZ = 1

2(F
2
ZZ − 1). The internal degree of freedom

�=�(E��; EZZ) is determined from 9W=9�=0 in Eq. (18). The second Piola-Kirchho>
stress T is then obtained in terms of EZZ and E�� from Eq. (20) as

0 = T�� =
9W
9E��

; (28)

TZZ =
9W
9EZZ

; (29)

where Eq. (28) results from the requirement that T�� vanishes in uniaxial tension and
it is an implicit equation to determine E�� in terms of EZZ , i.e., E�� = E��(EZZ). The
non-zero components of the incremental modulus C����, CZZZZ , C��ZZ=CZZ�� and C�Z�Z

are obtained from Eq. (22).

4.1.2. Onset of bifurcation: nonuniform increment of deformation
Let U denote the displacement, which is related to the deformation gradient F by

F = I +U∇. At the onset of bifurcation, the increment of deformation is not uniform
anymore. The non-uniform increment of deformation gradient Ḟ is given in terms of
the displacement increment U̇ by

ḞR� =
1
R
9U̇R

9� − U̇ �

R
; Ḟ�� =

U̇R

R
+

1
R
9U̇ �

9� ; ḞZ� =
1
R
9U̇ Z

9� ;

ḞRZ =
9U̇R

9Z ; Ḟ�Z =
9U̇ �

9Z ; ḞZZ =
9U̇ Z

9Z ; (30)

where only the components within the tube surface are given. The corresponding
non-zero components of the Lagrangian strain increment Ė are

Ė�� = F��Ḟ�� ; (31a)

ĖZZ = FZZḞZZ ; (31b)

Ė�Z = ĖZ� = 1
2(F��Ḟ�Z + FZZḞZ�) ; (31c)

where F�Z = 0 at the onset of bifurcation has been used.
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The non-vanishing components of the stress increment are obtained from Eq. (21)
as

Ṫ �� = C����Ė�� + C��ZZ ĖZZ ; (32a)

Ṫ ZZ = CZZ��Ė�� + CZZZZ ĖZZ ; (32b)

Ṫ �Z = Ṫ Z� = 2C�Z�Z Ė�Z : (32c)

The substitution of Eqs. (30), (31) and (32) into the incremental form of the equilib-
rium equation (27) gives(

TZZ
92
9Z2 − 1

R2 C����F2
��

)
U̇R − 1

R2 C����F2
��
9U̇ �

9�

− 1
R
C��ZZF��FZZ

9U̇ Z

9Z = 0 ; (33a)

1
R2 C����F2

��
9U̇R

9� +
[
1
R2 C����F2

��
92
9� 2 + (TZZ + C�Z�ZF2

��)
92
9Z2

]
U̇ �

+
1
R
(C��ZZ + C�Z�Z)F��FZZ

92U̇ Z

9�9Z = 0 ; (33b)

1
R
C��ZZF��FZZ

9U̇R

9Z +
1
R
(C��ZZ + C�Z�Z)F��FZZ

92U̇ �

9�9Z

+
[
1
R2 C�Z�ZF2

ZZ
92
9� 2 + (TZZ + CZZZZF2

ZZ)
92
9Z2

]
U̇ Z = 0 : (33c)

The CNT is subjected to the axial displacement and vanishing shear stress tractions at
the ends. Therefore, at the onset of bifurcation, the increments of the axial displacement
and shear stress tractions vanish at both ends. The increment of stress tractions at the
ends of the CNT can be obtained from Eq. (25) as Ḟ · T · eZ + F · Ṫ · eZ such that
the vanishing of increments of shear stress tractions gives ḞRZTZZ = 0 and Ḟ�ZTZZ +
F��Ṫ �Z = 0 in the R− and �− directions, respectively. In conjunction with Eq. (30),
the incremental boundary conditions at the two ends of the CNT can be written as

U̇ Z =
9U̇R

9Z =
9U̇ �

9Z = 0 at Z = 0 and Z = L ; (34)

where L is the length of the CNT.
The homogeneous governing equations (33) and boundary conditions (34) constitute

an eigenvalue problem for the displacement increment U̇ . The eigenvalue is the axial
strain EZZ (or equivalently, FZZ). In other words, Eqs. (33) and (34) have only the
trivial solution U̇ = 0 until the axial strain EZZ reaches a critical value (EZZ)critical for
bifurcation.
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4.1.3. Axisymmetric bifurcation
We 8rst study the axisymmetric bifurcation, U̇R = U̇R(Z), U̇ �=0, and U̇ Z = U̇ Z(Z).

The governing equation (33) becomes(
TZZ

d2

dZ2 − 1
R2 C����F2

��

)
U̇R − 1

R
C��ZZF��FZZ

dU̇ Z

dZ
= 0 ; (35a)

1
R
C��ZZF��FZZ

dU̇R

dZ
+ (TZZ + CZZZZF2

ZZ)
d2U̇ Z

dZ2 = 0 : (35b)

Its solution, satisfying the homogeneous boundary condition (34), takes the form

[U̇R ; U̇ Z ] =
[
U̇ (0)

Rm cos
m�Z
L

; U̇ (0)
Zm sin

m�Z
L

]
; (36)

where m=1; 2; 3; : : : is the eigen mode number, [U̇ (0)
Rm; U̇

(0)
Zm] is the corresponding eigen-

vector, and the superscript (0) denotes the axisymmetric bifurcation. The substitution
of Eq. (36) into Eq. (35) yields two homogeneous, linear algebraic equations for U̇ (0)

Rm

and U̇ (0)
Zm. In order to have a non-trivial solution, the determinant of the 2×2 coeQcient

matrix for the linear algebraic equations must vanish. This gives the critical condition
for bifurcation as

f(0) ≡ C����

(
CZZZZ +

TZZ
F2
ZZ

)
− C2

��ZZ +
TZZ
F2
��

(
CZZZZ +

TZZ
F2
ZZ

)(
m�R
L

)2

= 0 :

(37)

The above equation, in conjunction with T�� = 0 in Eq. (28), provides two equations
to determine E�� and EZZ (or equivalently F�� and FZZ) at the onset of bifurcation.
The corresponding axial strain at bifurcation is denoted by (EZZ)critical.
It is pointed out that the bifurcation condition (37) is independent of the CNT

wall thickness t0 introduced in Eq. (16). This is because both Eqs. (37) and (28) are
homogeneous with respect to the stress T and incremental modulus C , and T and C
are both proportional to t−1

0 , as observed from Eqs. (20) and (22).

4.1.4. Non-axisymmetric bifurcation
For non-axisymmetric bifurcation, the displacement increment takes the form

[U̇R ; U̇ �; U̇ Z ] = [U̇ (n)
R (Z) cos n�; U̇ (n)

� (Z) sin n�; U̇ (n)
Z (Z) cos n�] ; (38)

where n=1; 2; 3; : : : is the wave number in the circumferential direction, U̇ (n)
R , U̇ (n)

� , and
U̇ (n)

Z are functions of Z to be determined. For n= 0, Eq. (38) degenerates to Eq. (36)
for axisymmetric bifurcation. The general solution of U̇ (n)

R , U̇ (n)
� and U̇ (n)

Z , satisfying
the homogeneous boundary condition (34), takes the form

[U̇ (n)
R ; U̇ (n)

� ; U̇ (n)
Z ] =

[
U̇ (n)

Rm cos
m�Z
L

; U̇ (n)
�m cos

m�Z
L

; U̇ (n)
Zm sin

m�Z
L

]
; (39)
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Fig. 5. Bifurcation strain for armchair CNTs.

where m= 1; 2; 3; : : : is the eigen mode number in the axial direction, and [U̇ (n)
Rm; U̇

(n)
�m;

U̇ (n)
Zm] is the corresponding eigenvector. The substitution of Eqs. (38) and (39) into the

incremental equilibrium equation (33) yields three homogeneous, linear algebraic equa-
tions for U̇ (n)

Rm, U̇
(n)
�m and U̇ (n)

Zm. In order to have a non-trivial solution, the determinant
of the corresponding 3 × 3 coeQcient matrix must vanish. This gives the bifurcation
condition as

f(n) ≡f(0) +
n2TZZ

TZZ + C�Z�ZF2
��

[
C����

(
CZZZZ +

TZZ
F2
ZZ

)
− (C��ZZ + C�Z�Z)2

+ C�Z�Z

(
C�Z�Z +

TZZ
F2
��

)
+ (n2 + 1)C����C�Z�Z

(
L

m�R

)2
]
= 0 ; (40)

where f(0) is the function in Eq. (37) de8ned for axisymmetric bifurcation (n = 0).
The critical bifurcation strains (E��)critical and (EZZ)critical at the onset of bifurcation are
determined from Eqs. (28) and (40).

4.1.5. Bifurcation strain
Fig. 5 shows the bifurcation strain (EZZ)critical versus m�R=L for armchair CNTs,

where m (=1; 2; 3; : : :) is the eigen mode number in the axial direction, and R and L
are the radius and length of the CNT, respectively. Both the axisymmetric bifurcation
strain (n = 0) and non-axisymmetric bifurcation strain (n = 1; 2; 3; : : :) from Eq. (40)
are presented. The axisymmetric bifurcation (n=0) gives the lowest bifurcation strain
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Fig. 6. Bifurcation strain for armchair and zigzag CNTs.

such that the armchair CNTs always bifurcate in the axisymmetric form. For n=0, the
bifurcation strain increases very slowly with m�R=L and is essentially a constant, 0:42.
Fig. 5 also indicates that the bifurcation takes place with the 8rst mode (m=1) in the
axial direction and the axisymmetric mode (n=0) in the circumferential direction. This
is because the curve for n= 0 in Fig. 5 increases monotonically (though slowly) with
m�R=L such that, at each 8xed R=L, the 8rst eigen mode m= 1 in the axial direction
gives the smallest bifurcation strain. Since the CNT length is at least twice its diameter,
L¿ 4R, the bifurcation strain (corresponding to n=0 and m=1) is replotted in Fig. 6
for R=L less than 0.25.
Fig. 6 also shows the bifurcation strain (EZZ)critical for zigzag CNTs, where R and

L are the radius and length of the CNT, respectively. The bifurcation also takes place
with the 8rst eigen mode (m = 1) in the axial direction and the axisymmetric mode
(n=0) in the circumferential direction. The bifurcation strain for zigzag CNTs displays
a stronger dependence on the tube aspect ratio than the armchair CNTs, and it increases
with R=L. For a 1 nm diameter (R= 0:5 nm) and 5 nm long nanotube, the bifurcation
strain predicted by the present atomistic-based continuum theory is around 0.37. This
is within the range of the breaking strains reported by Yakobson et al.’s (1997) MD
simulations for the same tube aspect ratio.
For a 8xed CNT aspect ratio R=L, we have calculated the bifurcation strain with two

di>erent constitutive models of CNTs, Eq. (15) which accounts for the e>ect of 8nite
CNT radius and Eq. (17) which neglects such e>ect in the constitutive relation. The
numerical results show that these two models predict identical bifurcation strains for
CNTs with radius ¿ 0:35 nm. Therefore, the CNT radius (¿ 0:35nm) has essentially
no e>ect on the bifurcation strain.
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4.2. Chiral CNTs

4.2.1. Pre-bifurcation: uniform deformation
The deformation prior to bifurcation is uniform. The non-zero components of the

Lagrangian strain are E�� and EZZ , but the shear stress T�Z does not vanish anymore
because chiral CNTs give anisotropic material behavior. The stress is obtained from
Eq. (20), and the vanishing of stress T�� = 0 gives E�� in terms of EZZ , i.e., E�� =
E��(EZZ). The non-zero components of the incremental modulus obtained from Eq. (22)
are C����, CZZZZ , C��ZZ = CZZ��, C�Z�Z , C���Z = C�Z�� and CZZZ� = C�ZZZ .

4.2.2. Onset of bifurcation: nonuniform increment of deformation
The increment of deformation gradient and Lagrangian strain are still given by

Eqs. (30) and (31), respectively. The stress increment in Eq. (32) becomes

Ṫ �� = C����Ė�� + C��ZZ ĖZZ + 2C���Z Ė�Z ; (41a)

Ṫ ZZ = CZZ��Ė�� + CZZZZ ĖZZ + 2CZZZ�Ė�Z ; (41b)

Ṫ �Z = Ṫ Z� = CZ���Ė�� + C�ZZZ ĖZZ + 2C�Z�Z Ė�Z : (41c)

The equilibrium equation (33) gives(
− 1
R2 C����F2

�� +
2
R
T�Z

92
9�9Z + TZZ

92
9Z2

)
U̇ Z

+
1
R

[
− 1
R
C����F2

��
9
9� − (C���ZF2

�� + 2T�Z)
9
9Z

]
U̇ �

+
1
R
F��FZZ

(
− 1
R
C���Z

9
9� − C��ZZ

9
9Z

)
U̇ Z = 0 ; (42a)

1
R

[
1
R
C����F2

��
9
9� + (C���ZF2

�� + 2T�Z)
9
9Z

]
U̇R

+
[
1
R2 C����F2

��
92
9� 2 +

2
R
(C���ZF2

�� + T�Z)
92
9�9Z + (C�Z�ZF2

�� + TZZ)
92
9Z2

]
U̇ �

+F��FZZ

[
1
R2 C���Z

92
9� 2 +

1
R
(C��ZZ + C�Z�Z)

92
9�9Z + C�ZZZ

92
9Z2

]
U̇ Z = 0 ;

(42b)

1
R
F��FZZ

(
1
R2 C���Z

9
9� +

1
R
C��ZZ

9
9Z

)
U̇R

+F��FZZ

[
1
R2 C���Z

92
9� 2 +

1
R
(C��ZZ + C�Z�Z)

92
9�9Z + C�ZZZ

92
9Z2

]
U̇ �
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Fig. 7. Bifurcation strain for chiral CNTs.

+
[
1
R2 C�Z�ZF2

ZZ
92
9� 2 +

2
R
(C�ZZZF2

ZZ + T�Z)
92
9�9Z

+ (CZZZZF2
ZZ + TZZ)

92
9Z2

]
U̇ Z = 0 : (42c)

The boundary conditions in Eq. (34) becomes

U̇ Z =
9U̇R

9Z +
T�Z
TZZ

1
R

(
9U̇R

9� − U̇ �

)
=
9U̇ �

9Z = 0

at Z = 0 and Z = L : (43)

The homogeneous equations (42) and boundary conditions (43) constitute an eigenvalue
problem. They have a non-trivial solution only when the axial strain EZZ reaches the
eigenvalue, (EZZ)critical, for bifurcation.

4.2.3. Bifurcation strain
The method to solve the above eigenvalue problem is the same as that in the previous

section. The displacement increment is written as U̇ (n)
s (Z) sin n�+ U̇ (n)

c (Z) cos n�, and
(42) then gives ordinary di>erential equations for U̇ (n)

s and U̇ (n)
c . Details of the solution

method are not presented here.
Fig. 7 shows the bifurcation strain (EZZ)critical versus the tube radius-to-length ratio,

R=L, for chiral CNTs with the chiral angle �0 =6◦, where �0 is the angle between the
tube axis and a bond. For R=L¡ 0:118, the axisymmetric bifurcation (n=0) occurs, and
the bifurcation strain increases with R=L (similar to zigzag CNTs in Fig. 6). However,
for R=L¿ 0:118, the 8rst non-axisymmetric mode (n=1) takes place, and the bifurcation
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strain decreases with the increasing R=L. Contrary to armchair and zigzag CNTs, the
8rst non-axisymmetric bifurcation mode can be activated in chiral CNTs, though higher
modes (n¿ 2) never take place. We have studied other chiral nanotubes with the
chiral angle �0 between 0◦ and 30◦, and have also observed that the non-axisymmetric
bifurcation may be activated.

5. The cuto# function

The cuto> function fc in Eq. (4) introduces a dramatic increase in the interatomic
force at the cuto> distance R(1) = 0:17 nm (Belytschko et al., 2002). This strange
feature in the force is a result of the cuto> function on the interatomic potential. In
order to avoid this unphysical feature, Belytschko et al. (2002) used the modi8ed
Morse potential instead, while Shenderova et al. (2000) used a larger cuto> distance
in Brenner’s (1990) interatomic potential. Since the cuto> function in Eq. (4) has a
discontinuous second order derivative, the incremental modulus tensor C in Eq. (22) is
also discontinuous at the cuto> distance 0:17 nm, and this may inVuence the bifurcation
strain predicted by the present analysis. To exclude this arti8cial e>ect of the cuto>
function fc, we do not use the cuto> function in this paper. The results presented
in Figs. 5–7 are obtained with fc replaced by unity (one). Since the bifurcation still
occurs without the cuto> function, it must be intrinsic to CNTs under tension.
The important question now is whether the bifurcation strain will change signi8cantly

if the cuto> function is used. For zigzag CNTs, we have found all three bond lengths
at the bifurcation strain 0.37 [accounting for the shift vector �, or equivalently � as
in Eq. (19)] to be less than the cuto> distance 0:17 nm, which means the predicted
bifurcation strain will remain the same even if the cuto> function is used. However,
for armchair CNTs, two bond lengths are larger than the cuto> distance 0:17 nm at
the predicted bifurcation strain 0.42, which suggests that the cuto> function may inVu-
ence the predicted bifurcation strain. In fact, our calculations accounting for the cuto>
function show that the bifurcation strain becomes 0.50 for armchair CNTs. This value
agrees well with the maximum fracture nucleation strain for armchair CNTs reported
in MD simulations with the cuto> function (Yakobson et al., 1997), but is higher than
0.42 reported in Fig. 5 without the cuto> function. Therefore, even though the bifur-
cation is intrinsic to CNTs under tension, the bifurcation strain predicted may depend
on the cuto> function.
It is noted that the bifurcation strain 0.37 reported in Fig. 6 is still higher than the

fracture strain reported in Belytschko et al.’s (2002) MD simulations based on the
modi8ed Morse potential and in Dumitrica et al.’s (2003) tight binding calculations.
The use of di>erent potentials may be responsible for this di>erence.

6. Concluding remarks

We have proposed an atomistic-based continuum theory for CNTs based on the inter-
atomic potential. It links the continuum constitutive model for CNTs to the interatomic
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potential of carbon (Brenner, 1990). We have applied the atomistic-based continuum
theory to model fracture nucleation in single-wall CNTs under tension as a bifurcation
problem. The results agree reasonably well with MD simulations without any parameter
8tting. The proposed approach to link continuum analysis to the interatomic potential
can be applied to other nano-structured materials if the interatomic potential and the
atomic structure are known.
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