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Abstract

Recent experimental studies and atomistic simulations have shown that carbon nanotubes
(CNTs) display strong interplay between the mechanical deformation and electrical properties.
We have developed a simple and accurate method to determine atom positions in a uniformly
deformed CNT via a continuum analysis based on the interatomic potential. A shift vector is
introduced to ensure the equilibrium of atoms. Such an approach, involving only three variables
for the entire CNT, agrees very well with the molecular mechanics calculations. We then study
the e6ect of mechanical deformation on the band gap change of single wall CNTs under ten-
sion, torsion, and combined tension/torsion via the k-space tight-binding method. Prior studies
without this shift vector lead to signi9cant overestimation of the band gap change. It is estab-
lished that the conducting CNTs may easily become semi-conducting ones subject to mechanical
deformation, but the semi-conducting CNTs never become conducting ones upon deformation.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Carbon nanotube; Electromechanical processes; Continuum analysis; Tight-binding;
Semiconductor material

1. Introduction

Carbon nanotubes (CNTs) have received signi9cant attention since their 9rst discov-
ery a decade ago (Iijima, 1991). CNTs display superior mechanical properties, such
as ultra high elastic moduli, strength, and low mass density, and have potential ap-
plications in composite materials and other mechanical systems. CNTs have unique
electrical properties, and can serve as candidates for nano-electronic devices such as
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nanoscale 9eld-e6ect transistors (Collins et al., 2001; Rosenblatt et al., 2002). CNTs
also display unique interplay between the electrical properties and mechanical defor-
mation (Bezryadin et al., 1998; Paulson et al., 1999; Gaal et al., 2000; Tombler et al.,
2000; Liu et al., 2001b). For example, Tombler et al. (2000) investigated the change
of electrical conductance for a single wall CNT (i.e., a single layer of carbon atoms)
due to bending. The samples of individual single wall CNTs were prepared to bridge
metal electrodes on SiO2=Si substrates. Part of the CNT length was suspended over
trenches fabricated on the SiO2 surface, and the suspended CNT was bent mechanically
by the tip of an atomic force microscope. The change in the electrical conductance was
measured simultaneously upon mechanical deformation. Tombler et al. (2000) found
that the deformation of a CNT is completely reversible even under large deforma-
tion (for strain more than a few percent). Moreover, the electrical conductance may
change by two orders of magnitude upon mechanical deformation. This strong coupling
between the electrical properties and mechanical deformation has many potential ap-
plications, such as nanoscale sensors and nano-electro-mechanical systems (NEMS). In
another experiment, however, Paulson et al. (1999) measured the electrical resistance
of a multiwall CNT during mechanical deformation, and they did not observe change
of electrical resistance associated with deformation. These experiments have motivated
extensive atomistic studies on the coupling between electrical property and mechani-
cal deformation, such as the tight-binding calculations for CNTs under tension (Heyd
et al., 1997; Yang et al., 1999; Nardelli et al., 2000), torsion (Rochefort et al., 1999;
Yang et al., 1999), bending (Nardelli, 1999; Nardelli and Bernholc, 1999; Rochefort
et al., 1999; Liu et al., 2000, 2001a; Nardelli et al., 2000; Tombler et al., 2000), as
well as 9rst-principle calculations on CNTs under bending (Maiti, 2000; Mazzoni and
Chacham 2000a) and %attening (Mazzoni and Chacham, 2000b; Peng and
Cho, 2002).
The tight-binding calculations of Liu et al. (2000) and Tombler et al. (2000) sug-

gested that an armchair single wall CNT subject to localized bending (e.g., due to
pushing by the tip of an atomic force microscope) may experience signi9cant atomic
structure change from sp2 to sp3. This change of atomic structure may cause signif-
icant reduction in the electrical conductance of the single wall CNT, as observed in
Tombler et al.’s (2000) experiment. Rochefort et al. (1999) and Mazzoni and Chacham
(2000a) used the tight-binding method and 9rst-principle calculations respectively to
investigate a single wall CNT under global (rather than localized) bending, and also
found signi9cant electrical property change during bending. They observed the local
kinking of single wall CNTs under very large bending curvatures, and such localized
deformation also leads to the change of atomic structure from sp2 to sp3. However,
Nardelli (1999), Nardelli and Bernholc (1999), and Nardelli et al. (2000) did not report
any localized kinking of single wall CNTs in their tight-binding calculations for rela-
tively small bending curvatures. They did not observe the change of atomic structure
from sp2 to sp3.
There are tight-binding calculations of CNTs under tension. A schematic diagram

of a CNT is shown in Fig. 1a. Yang et al. (1999) investigated the band gap change
for a single wall CNT subject to uniaxial strain along the axial direction Z of the
CNT (i.e., �ZZ �= 0 and other �ij = 0). In order to illustrate Yang et al.’s (1999)
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Fig. 1. Schematic illustrations of a carbon nanotube (CNT) under tension. (a) A schematic diagram of CNT
with the diameter dt , a representative atom A and its three nearest-neighbor atoms B, C and D. (b) Positions
of atoms A, B, C and D prior to deformation. (c) Positions of atoms A, B, C and D based on an assumed
simple deformation pattern for a CNT subject to uniaxial strain (�ZZ �= 0 and other �ij = 0); such a simple
deformation pattern does not satisfy the equilibrium condition. (d) The actual, relaxed positions of atoms A,
B, C and D on a CNT subject to uniaxial strain; the equilibrium of atoms is ensured.

approach of determining the atom positions, Fig. 1b presents a two-dimensional dia-
gram of the undeformed, hexagonal atomic structure, which is identical to a graphite
plane. Fig. 1c shows the deformed atomic structure following the assumed simple, uni-
form deformation pattern �ZZ �= 0 and other �ij = 0 for all atoms. The axial coordinate
Z of each atom becomes (1 + �ZZ)Z , while the coordinates in the directions normal
to Z remain unchanged (since other �ij = 0). This is illustrated by the dashed lines in
Figs. 1b and c. Heyd et al. (1997) made a similar assumption to determine the atomic
positions in the CNT subject to uniaxial tension (�ZZ �= 0, other �ij = 0), and they
used the linear elastic constant of graphite to estimate the strains. Once the atomic
positions are determined, Heyd et al. (1997) and Yang et al. (1999) calculated the
band gap of the single wall CNT by the tight-binding method. They both found that
the armchair CNTs remain conductive during tension, but the electrical conductance
of zigzag CNTs is much more complex. Here armchair and zigzag CNTs refer to dif-
ferent orientations of carbon bonds, which is discussed in detail in Section 2. Yang
et al. (1999) also determined the atomic positions in CNTs under tension by the molec-
ular mechanics energy minimization based on Brenner’s (1990) interatomic potential,
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and con9rmed their conclusion on the coupling between mechanical deformation and
electrical property change.
The same methods were adopted by Yang et al. (1999) to study CNTs under torsion.

Contrary to tension, armchair CNTs under torsion exhibit signi9cant change in the elec-
trically conducting behavior. Rochefort et al. (1999) also reached the same conclusion
using a molecular mechanics energy minimization scheme for atomic positions and the
extended Huckel method for electrical properties.
One critical step in the above atomistic studies of the electrical property change

due to mechanical deformation is the determination of atom positions on the deformed
CNT. The molecular mechanics energy minimization (Rochefort et al., 1999; Yang
et al., 1999) based on Brenner’s (1990) interatomic potential inevitably involves many
carbon atoms and requires computational e6ort. The simple, uniform deformation pat-
tern assumed for all atoms (Heyd et al., 1997; Yang et al., 1999) is much simpler,
but it may not be accurate since the equilibrium of atoms cannot be ensured, which
is illustrated in the following. For a CNT subject to uniaxial strain (�ZZ �= 0 and
other �ij = 0), the length AC in Fig. 1c after deformation remains the same as AC in
Fig. 1b prior to deformation, since AC is normal to the loading direction Z . For the
same reason, the projection of AB normal to the Z direction also remains unchanged,
but AB becomes longer in the stretch direction Z (Fig. 1c). The stretching in AB (as
well as in AD) leads to a net force on the atom A. Therefore, the assumed simple
deformation pattern cannot ensure equilibrium of atom A, and is not correct. In fact,
the position of atom A needs to be “relaxed” after deformation in order to 9nd its
equilibrium position (Fig. 1d). The inaccuracy in the atom position will lead to errors
in the electrical property calculation.
The purpose of the present study is to develop a rather simple but accurate method

for the determination of atom positions and to apply this method to the study of
tight-binding based electronic properties of a range of nanotubes under general uni-
form deformations. Taking advantage of the periodic atomic structure of CNTs, we
9nd that only three variables are needed to characterize the positions of all atoms in a
uniformly deformed CNT, and these three variables can be determined from the equi-
librium equations. Therefore, the computational e6ort to determine atom positions is
signi9cantly reduced. Fig. 1d shows a schematic diagram of our approach to relax atom
A searching for its equilibrium position. Section 2 provides the details of our method,
which modi9es Heyd et al.’s (1997), and Yang et al.’s (1999) method to ensure the
equilibrium of atoms in the calculation of the atom positions after deformation. We
then adopt the k-space tight-binding method to calculate the electrical property change
for a single wall CNT subject to tension, torsion and combined tension/torsion in Sec-
tion 3. The band gap versus deformation is shown in Section 4, and results are also
compared with available atomistic studies. The e6ect of 9nite temperature is discussed
in Section 5.

2. Atom positions on a carbon nanotube

Brenner’s (1990) empirical interatomic potential for carbon has been widely used in
the study of CNTs, and is summarized below.
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2.1. The interatomic potential for carbon

Brenner (1990) established a multi-body interatomic potential for carbon as

V (rij) = VR(rij)− BijVA(rij); (1)

where rij is the length between two atoms i and j, VR and VA are the repulsive and
attractive pair terms given by

VR(r) =
D(e)

S − 1 e
−√

2S�(r−R(et))fc(r); VA(r) =
D(e)

S − 1 e
−
√
(2=S)�(r−R(e))fc(r); (2)

where D(e) = 6:000 eV, S =1:22, �=21 nm−1, and R(e) = 0:1390 nm. The function fc
in (2) is a smooth cut-o6 function given by

fc(r) =




1 r ¡R(1);

1
2

{
1 + cos

[
�(r − R(1))
R(2) − R(1)

]}
R(1)¡r¡R(2);

0 r ¿R(2);

(3)

where the e6ective range of the cut-o6 function is de9ned by R(1) = 0:17 nm and
R(2) = 0:20 nm. The term Bij in (1) represents a multi-body coupling e6ect (i.e., the
contribution from atoms other than i and j), and is given by

Bij =


1 + ∑

k(�=i; j)
G(�ijk)fc(rik)



−1=2

; (4)

where k(�= i; j) denotes the other carbon atoms, fc is given in (3), �ijk is the angle
between i − j and i − k bonds, and the function G is given by

G(�) = a0

[
1 +

c20
d20

− c20
d20 + (1 + cos �)2

]
; (5)

a0 = 0:00020813, c0 = 330 and d0 = 3:5.

2.2. Atom positions on a carbon nanotube prior to deformation

Unlike a graphite sheet, the carbon bonds on a nanotube have di6erent lengths
because of the 9nite diameter dt of the CNT. In order to characterize its periodic
lattice structure, the CNT is mapped to a two-dimensional sheet of carbon atoms in
Fig. 2a. This can be visualized by “cutting” the CNT along its axial direction and
“unrolling” the CNT to a plane without stretching. A representative atom A in Fig. 2a
and its three nearest-neighbor atoms B, C, and D are shown in Fig. 2b. Let a1 and
a2 denote the base vectors B̃C and D̃C in Fig. 2b, respectively, and a1 and a2 the
corresponding lengths. The lengths of BD, AB, and AC are denoted by a3, a4 and a5,
respectively. These 9ve lengths completely determine all in-plane lengths and angles.
For example, the angles ’1 =“CBD and ’2 =“CBA (Fig. 2b) are given in terms of
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Fig. 2. A carbon nanotube (CNT) prior to deformation. (a) A planar, “unrolled” CNT; Ch and T are the
chiral vector and translational vector of the CNT, respectively. (b) A representative atom A and its three
nearest-neighbor atoms.

the above lengths ai (i = 1; 2; : : : ; 5) by

’1 = cos−1
a21 + a

2
3 − a22

2a1a3
; ’2 = cos−1

a21 + a
2
4 − a25

2a1a4
: (6)

In order to characterize the bond lengths and angles of a CNT in the three-dimensional
con9guration, it is necessary to prescribe the diameter dt as well as the angle � be-
tween the base vector a1 = B̃C and the chiral vector Ch (Fig. 2b) in addition to the
lengths ai (i=1; 2; : : : ; 5), where the chiral vector Ch represents the circumferential di-
rection of the CNT. Let (R;"; Z) denote the cylindrical coordinates of the CNT prior
to deformation. The radial coordinates of all atoms are RA = RB = RC = RD = dt=2.
Without losing generality, we may take the polar angle and axial coordinate of atom
B as zero, "B = ZB = 0. The axial coordinates of atoms A, C, and D are given by
(Fig. 2b)

ZA = a4 sin(’2 + �); ZC = a1 sin �; ZD = a3 sin(’1 + �); (7)

while their polar angles are given by (Fig. 2b)

"A =
2a4 cos(’2 + �)

dt
; "C =

2a1 cos �
dt

; "D =
2a3 cos(’1 + �)

dt
: (8)
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The bond length between two atoms X and Y (X; Y = A; B; C; D) with coordinates
(dt=2; "X ; ZX ) and (dt=2; "Y ; ZY ) are then obtained in terms of ai (i = 1; 2; : : : ; 5), dt ,
and � by

r(0)XY =

√
d2t
2
[1− cos("Y −"X )] + (ZY − ZX )2: (9)

The above bond length is di6erent from the in-plane lengths ai (i=1; 2; : : : ; 5) since it is
evaluated for the three-dimensional con9guration of the CNT. It can be shown that, for
dt → ∞, the bond length r(0)XY approaches one of the in-plane length ai (i=1; 2; : : : ; 5),
and becomes independent of �. The energy stored in this bond XY is then obtained
from Brenner’s (1990) interatomic potential in (1) with the bond length calculated
from (9).
The nanotube diameter dt (Fig. 1a) and orientation � (Fig. 2b) are related to the

chirality (n; m) of the CNT. Following the standard notation for CNTs (e.g., Saito
et al., 1998), the chiral vector Ch corresponds to the equator of the CNT (Fig. 2a) and
can be expressed in terms of the base vectors a1 and a2 by

Ch = na1 + ma2; (10)

where n and m are integers. Without losing generality, a1 and a2 are chosen such that
n¿ |m|¿ 0. The pair (n; m) is called the chirality of the CNT; (n; 0) and (n; n) are
called zigzag and armchair CNTs, respectively, while n¿ |m|¿ 0 is called a chiral
CNT. For example, the chirality in Fig. 2a is (4,2). The circumference, diameter, and
angle � of the CNT are given in terms of lengths ai (i=1; 2; : : : ; 5) and chirality (n; m)
by

|Ch|=
√
Ch · Ch =

√
n2a21 + m2a

2
2 + nm(a

2
1 + a

2
2 − a23); (11)

dt =
|Ch|
�
; (12)

�= cos−1
Ch · a1
|Ch|a1 = cos

−1 na
2
1 +

m
2 (a

2
1 + a

2
2 − a23)

|Ch|a1 : (13)

Therefore, for a given chirality (n; m) of the CNT, the bond lengths in (9) as well
as the energy V (rAX ) stored in bond AX (X = B; C; D) are functions of a1; a2; : : : ; a5.
These lengths ai (i=1; 2; : : : ; 5) are di6erent from the lattice constant of graphite, and
are determined by minimizing the energy in the system. This is also equivalent to
minimizing the energy per atom, i.e.,

9
9ai
[V (rAB) + V (rAC) + V (rAD)] = 0; i = 1; 2; : : : ; 5: (14)

Here only nearest-neighbor interaction is considered because Brenner’s (1990) inter-
atomic potential has a cuto6 function that excludes interaction beyond the nearest-
neighbor atoms. Once these lengths ai (i = 1; 2; : : : ; 5) are determined, the atom posi-
tions on a CNT prior to deformation are known.
Table 1 shows the bond lengths and angles prior to deformation for two zigzag

[(10; 0); (9; 0)], one armchair [(5; 5)], and two chiral CNTs [(9; 6); (6; 4)]. The bond
lengths and angles for a graphite sheet are also shown. It is important to note that,
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Table 1
Bond lengths and angles of single wall carbon nanotubes prior to deformation

Chirality Conductor Bond lengths (nm) Bond angles (degree)

(n,m) r(0)AB r(0)AC r(0)AD “BAC “BAD “CAD

Graphite n + m → ∞ Yes 0.14507 0.14507 0.14507 120 120 120
Zigzag (9,0) Yes 0.14553 0.14553 0.14520 117.77 119.62 119.62
nanotubes (10,0) No 0.14544 0.14544 0.14518 118.20 119.69 119.69
Armchair nanotubes (5,5) Yes 0.14533 0.14568 0.14533 118.27 120.26 118.27
Chiral (9,6) Yes 0.14520 0.14553 0.14516 119.13 120.08 119.36
nanotubes (6,4) No 0.14538 0.14567 0.14528 118.04 120.21 118.59

even though bond lengths and angles are very close to those of a graphite sheet,
these small di6erences may lead to changes in the band gap, as shown in Section 4.
Some prior analyses using the lattice constant of graphite to approximate the lengths
ai (i = 1; 2; : : : ; 5) (e.g., Yang et al., 1999; Heyd et al., 1997) have not accounted for
this important e6ect of unequal bond length due to the curvature of the CNT.
Since a CNT has periodicity along the axial direction Z , it is convenient to introduce

a translational vector T (Saito et al., 1998), which is normal to Ch (i.e., parallel to Z)
and its length is the period in Z direction. The number of hexagons within the area of
|Ch × T | is given by N = |Ch × T |=|a1 × a2|.

2.3. Atom positions on a carbon nanotube after deformation

2.3.1. A modi4ed Cauchy–Born rule for carbon nanotubes
A single wall CNT subject to tension and/or torsion remains circular in cross-section.

Following the same approach outlined in Section 2.2, we map the deformed CNT to a
two-dimensional sheet of carbon atoms (similar to Fig. 2a for the undeformed CNT),
i.e., to “unroll” the deformed CNT to a plane without stretching. However, the lengths
between atoms, denoted by ai (i = 1; 2; : : : ; 5) in Fig. 2b for the undeformed CNT,
now depend on the imposed deformation, which is characterized by the Lagrangian
strain components E"", EZZ and E"Z(=EZ") in the cylindrical coordinates. In fact, it
can be shown that this mapping of the deformed CNT to a plane is equivalent to the
mapping of undeformed CNT (in Figs. 2a and b) followed by the in-plane deformation
according to E11 = E"", E22 = EZZ , E12 = E21 = E"Z(=EZ"), where the subscript “1”
represents the circumferential direction Ch, and “2” is normal to Ch within the plane.
The deformation on the continuum level is characterized by the deformation gradient

F = 9x=9X , where x and X denote the positions of a material point in the deformed
and undeformed con9gurations, respectively, and F is related to the Lagrangian strain
E by

E =
1
2
(FT · F − I); (15)

with FT being the transpose of F and I being the second order identity tensor.
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Fig. 3. The decomposition of a hexagonal lattice, “unrolled” from a deformed carbon nanotube, to two
triangular sub-lattices. There is a shift vector 
 between two sub-lattices to ensure the equilibrium of atoms.
The solid and dotted lines denote the lattice structures with and without the shift vector 
 respectively.

The Cauchy–Born rule (Born and Huang, 1954; Milstein, 1980) states that, for a
centrosymmetric lattice structure subject to homogeneous deformation, the atoms move
according to

rij = F · r(0)ij ; (16)

where r(0)ij and rij are vectors from atom i to atom j before and after the deformation,
respectively. It is pointed out that (16) has accounted for the e6ect of 9nite deformation.
The Cauchy–Born rule ensures the equilibrium of each atom in a centrosymmetric
lattice structure because forces in each centrosymmetric pair of bonds are equal and
opposite for arbitrarily imposed homogeneous deformation.
The Cauchy–Born rule (16), however, cannot be simply applied to CNTs since

their lattice structure is not centrosymmetric, therefore cannot ensure the equilibrium
of atoms. Weiner (1983), Johnson et al. (1999) and Tadmor et al. (1999) proposed
modi9cations of the Cauchy–Born rule for bulk materials with non-centrosymmetric
lattice structures, while Arroyo and Belytschko (2002) and Zhang et al. (2002a, b)
modi9ed the Cauchy–Born rule for CNTs. Zhang et al.’s (2002a, b) method is adopted
in the present study.
As shown in Fig. 3, the hexagonal lattice “unrolled” from a deformed CNT can be

decomposed to two triangular sub-lattices, marked by open circles and solid circles,
respectively. Each sub-lattice possesses centrosymmetry such that each pair of atoms
within the same sub-lattice moves according to the Cauchy–Born rule (16), but two
atoms from di6erent sub-lattices do not follow the Cauchy–Born rule. The dotted lines
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in Fig. 3 represent the lattice structure if all atoms (from both sub-lattices) were to
follow the Cauchy–Born rule, as illustrated by a representative atom A′ from one
(solid circle) sub-lattice, and its three nearest-neighbor atoms B, C, and D in the other
(open circle) sub-lattice. As discussed earlier, such a lattice structure cannot ensure
the equilibrium of atom A′. In order to overcome this drawback, we introduce a shift
vector 
 between two sub-lattices (Fig. 3). The atom A′ [as well as other atoms in the
same (solid circle) sub-lattice] moves to A in order to readjust the lengths AB, AC, and
AD such that atom A reaches equilibrium. The lattice structure accounting for the shift
vector 
 is marked by the solid lines in Fig. 3. Accordingly, the vector rAB between
two atoms A and B from di6erent sub-lattices after the deformation is given by

rAB = F · r(0)AB + 
; (17)

i.e., a sum of the shift vector 
 and that associated with the Cauchy–Born rule (16).
Eq. (17) has also accounted for the e6ect of 9nite deformation, contrary to Heyd
et al.’s (1997) and Yang et al.’s (1999) in9nitesimal deformation analyses. Its length
becomes

rAB =
√
rAB · rAB =

√

 · 
+ 2
 · F · r(0)AB + r(0)AB · (I + 2E) · r(0)AB ; (18)

where E is the Lagrangian strain tensor. For comparison, the length of a vector between
atoms (e.g., B and C) in the same sub-lattice is given by

rBC =
√
r(0)BC · (I + 2E) · r(0)BC: (19)

It is important to point out that, in order to obtain the bond length between atoms
on a CNT, we must map the “unrolled” plane in Fig. 3 back to the three-dimensional
con9guration of the CNT. In fact, this is exactly the same as (6)–(13) in Section 2.2,
except that the lengths a1, a2, a3, a4, and a5 are replaced by rBC , rDC , rBD, rAB, and
rAC , respectively. These lengths now depend on both the Lagrangian strain E and the
shift vector 
.

2.3.2. Determination of the shift vector 

It is recalled that the shift vector 
 is introduced to ensure the equilibrium of atoms

for a noncentrosymmetric lattice structure. The equilibrium of atoms is, in fact, equiv-
alent to the minimization of energy stored in atomic bonds. Let VAB denote the en-
ergy stored in the bond between atoms A and B, and VAB is obtained from Brenner’s
(1990) interatomic potential (1) with the bond lengths and angles calculated for the
three-dimensional con9guration of the CNT. Therefore, VAB is a function of the La-
grangian strain E and the shift vector 
, i.e., VAB = VAB(E ; 
). Similarly, we use VAC
and VAD to denote the energy stored in bonds AC and AD. The energy for the rep-
resentative atom A is given by 1

2 [VAB + VAC + VAD], where only the nearest-neighbor
atomic interaction is accounted for. The shift vector 
 is determined by minimizing the
energy per atom with respect to 
,

9
9
 [VAB(E ; 
) + VAC(E ; 
) + VAD(E ; 
)] = 0: (20)
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This gives 
 as an implicit function of the Lagrangian strain E, i.e., 
=
(E). Therefore,
the energy stored in each bond (e.g., AB) can be expressed as VAB[E ; 
(E)].

2.3.3. The second Piola–Kirchho6 stress tensor
We may de9ne the strain energy density W on the continuum level as the energy

per unit area of the CNT surface, i.e.,

W =W [E ; 
(E)] =
VAB[E ; 
(E)] + VAC[E ; 
(E)] + VAD[E ; 
(E)]

2*�
; (21)

where *� is the surface area per atom for an undeformed CNT, and is given by
*� =

√
s(s− a1)(s− a2)(s− a3), s= (a1 + a2 + a3)=2, and a1, a2 and a3 are shown in

Fig. 2b for the undeformed CNT.
The second Piola–Kirchho6 stress is the work conjugate of the Lagrangian strain E,

and is therefore given by

T =
9W
9E ; (22)

where the condition 9W=9
= 0 which is equivalent to (20) has been used.

2.3.4. Atom positions on a single wall carbon nanotube under tension/torsion
2.3.4.1. Tension A single wall CNT is subject to Lagrangian strain EZZ in the axial
direction and a vanishing shear strain E"Z(=EZ"). The second Piola–Kirchho6 stress
T"" in the circumferential direction vanishes in simple tension

T"" = 0; (23)

which gives an implicit equation to determine the Lagrangian strain E"" in the cir-
cumferential direction in terms of EZZ . In fact, for each given EZZ , three variables,
namely shift vector 
 (,Z and ,") and E"", are determined together from (20), (22),
and (23) by the following three equations

9W [EZZ ; E""; 
]
9,Z

=
9W [EZZ ; E""; 
]

9,"
=
9W [EZZ ; E""; 
]

9E""
= 0: (24)

The atom positions on the CNT under tension are then obtained from (17), where
the non-vanishing components of F are FZZ =

√
1 + 2EZZ and F""=

√
1 + 2E"". The

commonly used engineering strain in tension, �, is given by �=FZZ−1=
√
1 + 2EZZ−1.

It should be pointed out that the underlying principle of the above approach to
determine the atom positions in a uniformly deformed CNT is the same as that of
molecular mechanics calculations based on Brenner’s (1990) interatomic potential.
Fig. 4 shows the bond lengths rAB and rAD in a (10,0) CNT versus the engineer-
ing strain � predicted by the present shift vector method and by molecular mechanics.
Here AD is the bond parallel to the tube axis, and AB represents two other bonds.
The molecular mechanics calculation involves a (10,0) CNT with 1400 atoms, and the
atom positions are determined by energy minimization. It is observed that the present
shift vector method gives the same results with the molecular mechanics calculations.
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Fig. 4. The bond lengths versus the engineering strain � for a (10, 0) carbon nanotube in tension. Results
for both molecular mechanics calculations and the present shift vector method are shown.

2.3.4.2. Torsion Let . denote the twist (angle of rotation per unit length) for a CNT
under torsion, and R and r the CNT radius prior to and after torsion, respectively.
The cylindrical coordinates (R;"; Z) of a material point on the CNT prior to torsion
become (r; �; z) after torsion, where �="+.Z , and z=Z . The base vectors er , e�, and
ez in the cylindrical coordinates for the deformed CNT are related to their counterparts
eR, e", and eZ prior to torsion by er=cos .ZeR+sin .Ze", e�=−sin .ZeR+cos .Ze",
and ez = eZ . The deformation gradient for a material point moving from ReR + ZeZ
(prior to deformation) to rer + zez (after deformation) is given by

F =
r
R
e�e" + .re�eZ + ezeZ

=
r
R
(−sin .ZeR + cos .Ze")e" + .r(−sin .ZeR + cos .Ze")eZ + eZeZ ; (25)

where the radius r of the deformed CNT remains to be determined for each given ..
The Lagrangian strain E is found from (15) as

E =
1
2

(
r2

R2
− 1

)
e"e" +

.
2
r2

R
(e"eZ + eZe") +

1
2
.2r2eZeZ : (26)

Here the non-vanishing normal strains E"" and EZZ result from the 9nite deformation.
It is noted that the Lagrangian strains are given in terms of . and the radius r of the
CNT under torsion. As shown in Appendix A, equilibrium requires that the second
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Piola–Kirchho6 stress T"", TZZ , and T"Z(=TZ") be constants (i.e., independent of "
and Z) in torsion, and satisfy

T"" + 2.RT"Z + .2R2TZZ = 0: (27)

The above equation, in conjunction with (22), gives an implicit equation to determine
r. Similar to (24) for tension, three variables, namely, the shift vector 
 (,Z and ,")
and radius r of the deformed CNT, are determined together from (20), (22) and (27)
for each given . by the following three equations

9W (E ; 
)
9,Z

=
9W (E ; 
)
9,"

=
9W (E ; 
)
9E""

+ 2.R
9W (E ; 
)
9E"Z

+ .2R2
9W (E ; 
)
9EZZ

= 0:

(28)

The atom positions on the CNT under torsion are then obtained from (17).

2.3.4.3. Combined tension and torsion We investigate a single wall CNT subject to
combined tension and torsion characterized by the axial (engineering) strain � and twist
.. The deformation gradient can be obtained similar to (25) as

F =
r
R
(−sin .ZeR + cos .Ze")e" + .r(−sin .ZeR + cos .Ze")eZ + (1 + �)eZeZ :

(29)

It is straightforward to verify that, for .= 0, the above expression degenerates to that
for tension, with r=R being F"". The Lagrangian strain for the combined tension/torsion
is given in terms of �, . and r by

E =
1
2

(
r2

R2
− 1

)
e"e" +

.
2
r2

R
(e"eZ + eZe") +

1
2
(.2r2 + 2�+ �2)eZeZ : (30)

It can be shown that (27) still holds for the combined tension and torsion, and it is
the implicit equation to determine the radius r of the deformed CNT for given . and
�. Once the shift vector 
 is obtained from (20), the atom positions on a CNT subject
to combined tension and torsion are determined.

3. The tight-binding calculation of band gap for a single wall carbon nanotube

The semi-empirical tight-binding method uses the bonding electron orbitals associ-
ated with each of the atoms in a semiconductor material to represent the energetics
of the structure. The eigenstates of the Hamiltonian of the material are written in
an atomic-like basis set, {0i1}, and the exact many-body Hamiltonian operator is re-
placed with a parameterized Hamiltonian matrix. For an atomic structure such as a
CNT, the tight-binding method provides the energy states corresponding to di6erent
bonding and anti-bonding electron orbital states. These energy states can be used to
determine the electrical properties of the structure; combined with a repulsive empiri-
cal pair-wise potential, the electron states can also be used to compute the mechanical
properties of the structure. Here only the electronic properties are of interest, since the
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atomic positions and energetics of the system are computed from the method described
in the previous sections.
The tight-binding method of modeling materials lies between the very accurate,

very expensive ab initio methods and the fast but limited empirical methods (e.g.,
see Goringe et al., 1997), such as the Brenner potential used in the previous sec-
tions. When compared with ab initio methods, tight-binding is typically two to three
orders of magnitude faster, but su6ers from a reduction in transferability due to the
approximations made; when compared with empirical methods, tight-binding is two to
three orders of magnitude slower, but the quantum mechanical nature of bonding is
retained, ensuring that the angular nature of bonding is correctly described in far from
equilibrium structures.
For materials whose structure has translational symmetry, it is convenient to use

the k-space tight-binding method, which makes use of the symmetry to signi9cantly
reduce the computational e6ort. The k-space tight-binding method has been used to
study the electrical property of undeformed CNTs (e.g., Saito et al., 1998). How-
ever, the focus of this section is the tight-binding calculation for the deformed CNTs.
Fig. 5 shows the lattice structure of the deformed CNT, which can be divided into unit
cells (marked by the dashed lines in Fig. 5a) containing two inequivalent atoms. The de-
formation of a CNT is completely characterized by three vectors d1, d2, and d3 from the
representative atom A to its three nearest-neighbor atoms B, C, and D (Fig. 5b), where
d1, d2, and d3 are given in terms of the deformation gradient F and the shift vector 

via (17). Since the unit cell has two carbon atoms and each atom has four outer valence
electron orbitals, the tight-binding Hamiltonian is an 8× 8 matrix, and is given by

H(k) =




�s 0 0 0 Hss Hsx Hsy Hsz

0 �p 0 0 −Hsx Hxx Hyx Hzx

0 0 �p 0 −Hsy Hxy Hyy Hzy

0 0 0 �p −Hsz Hxz Hyz Hzz

Hss∗ −Hsx∗ −Hsy∗ −Hsz∗ �s 0 0 0

Hsx∗ Hxx∗ Hxy∗ Hxz∗ 0 �p 0 0

Hsy∗ Hyx∗ Hyy∗ Hyz∗ 0 0 �p 0

Hsz∗ Hzx∗ Hzy∗ Hzz∗ 0 0 0 �p




;

(31)

where only the nearest-neighbor interaction is considered; k is the wave vector; �s and
�p are the orbital energy of s and p levels, respectively; H1� terms represent interac-
tions between orbitals of neighboring atoms, H1�∗ is the complex conjugate of H1�,
and H1� are given in terms of the wave vector k by

Hss = Vss5(d1)eik·d1 + Vss5(d2)eik·d2 + Vss5(d3)eik·d3 ;

H sx = l1Vsp5(d1)eik·d1 + l2Vsp5(d2)eik·d2 + l3Vsp5(d3)eik·d3 ;

H sy = m1Vsp5(d1)eik·d1 + m2Vsp5(d2)eik·d2 + m3Vsp5(d3)eik·d3 ;
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1d
2d

3d

(a) (b)

Fig. 5. The representative atom A and its three nearest neighbor atoms B, C and D for the k-space
tight-binding calculation. (a) Unit cells and (b) atom positions.

Hsz = n1Vsp5(d1)eik·d1 + n2Vsp5(d2)eik·d2 + n3Vsp5(d3)eik·d3 ;

H xx = fxx(1)eik·d1 + fxx(2)eik·d2 + fxx(3)eik·d3 ;

H xy = fxy(1)eik·d1 + fxy(2)eik·d2 + fxy(3)eik·d3 ;

H xz = fxz(1)eik·d1 + fxz(2)eik·d2 + fxz(3)eik·d3 ; (32)

where di = |di| (i = 1; 2; 3) are the lengths of the deformed bonds, li, mi and ni are
the direction cosines of di in a Cartesian coordinate system (x; y; z), and the prefactors
fxx(i), fxy(i) and fxz(i) are given by

fxx(i) = l2i Vpp5(di) + (1− l2i )Vpp�(di);

fxy(i) = limiVpp5(di)− limiVpp�(di);

fxz(i) = liniVpp5(di)− liniVpp�(di): (33)

Other prefactors (e.g., fyx) can be obtained similar to (33). The other matrix elements
Hyx, Hyy, Hyz, Hzx, Hzy, and Hzz in (31) are then determined following (32).
The hopping parameters Vss5 and Vsp5 in (32) and Vpp5 and Vpp� in (33) scale with

interatomic separation as follows


Vss5(r)

Vsp5(r)

Vpp5(r)

Vpp�(r)



=




V (0)ss5

V (0)sp5

V (0)pp5

V (0)pp�



s(r): (34)

Goodwin et al. (1989) suggested the function s(r) as

s(r) = (r0=r)n exp{n�−(r=rc)nc + (r0=rc)nc�}: (35)
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Xu et al. (1992) determined all parameters in (31), (34) and (35) for carbon as

�s =−2:99 eV; �p = 3:71 eV;

Vss50 =−5:0 eV; Vsp50 = 4:7 eV; Vpp50 = 5:5 eV; Vpp�0 =−1:55 eV;

n= 2:0; nc = 6:5; rc = 2:18 RA; r0 = 1:536329 RA: (36)

The wave vector k in the Hamiltonian matrix (31) is quantized because of the
periodic boundary condition in the circumferential direction for a CNT, and is given by

k = kt
K
|K2| + 7K1

(
7 = 0; : : : ; N − 1; and − �

|T |¡kt ¡
�
|T |

)
; (37)

where N is the number of hexagons in the area of |Ch×T |, K1=2�Ch=|Ch|2 and K2=
2�T=|T |2 are the reciprocal lattice vectors, Ch and T are the chiral and translational
vectors of the deformed CNT.
For each wave vector k in (37), we solve the energy eigenstates by diagonalizing

the Hamiltonian matrix in (31). Once the energy eigenstates are determined for all
wave vectors, the energy dispersion relations for 5 and � bands are obtained, which
give the band gap of the deformed CNT. Fig. 6 shows an example of the energy
dispersion relations for a zigzag (10,0) CNT prior to deformation. The energy states
are shown versus the axial component kt of the wave vector k for all quantized 7 in
(37). The band gap is the di6erence between the highest 9lled band and the lowest
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Fig. 6. The energy dispersion relations for a zigzag (10,0) carbon nanotube prior to deformation, which
shows a 9nite band gap.
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un9lled band, and is clearly marked in Fig. 6. The exact 9lling of states, usually related
to temperature through the Fermi-Dirac distribution, is not of interest here since the
energetics and mechanical behavior of the system is already known from the continuum
based empirical potential approach described in the previous sections. Instead, the band
gap is viewed simply as a measure of whether the CNT is electrically conducting; zero
band gap corresponds to electrically conducting materials, while a non-vanishing, 9nite
band gap generally corresponds to semi-conducting materials.

4. The band gap of a carbon nanotube subject to tension/torsion

It has been established (e.g., Saito et al., 1998) that an undeformed CNT is electri-
cally conducting (i.e., band gap=0) if the chirality satis9es n−m=3l (l=0; 1; 2; : : :);
otherwise a CNT is semi-conducting (i.e., band gap¿ 0). According to this commonly
used criterion, we select a group of conducting CNTs [armchair (5,5), zigzag (9,0), and
chiral (9,6)] and a group of semi-conducting CNTs [zigzag (10,0) and chiral (6,4)].
We investigate the e6ect of deformation on the band gap for these CNTs under tension,
torsion, or combined tension/torsion.

4.1. Tension

Fig. 7 shows the band gap versus the engineering strain � for a zigzag (9,0) CNT
under tension. It includes two curves that correspond to the atom position calculations
with and without the shift vector 
 introduced in Section 2. It is clearly observed that
the shift vector 
 has an important e6ect on the band gap. For a large strain �= 10%,
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Fig. 7. The band gap versus the tensile strain � for a (9,0) carbon nanotube under tension. The results are
shown for calculations with and without the shift vector.
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Fig. 8. The band gap versus the tensile strain � accounting for the shift vector for various carbon nanotubes
under tension.

the calculation without the shift vector signi9cantly overestimates the band gap by a
factor of 6. Yang et al.’s (1999) tight-binding calculations for the same (9,0) CNT
also showed that the band gap based on the simple deformation pattern (i.e., without
the shift vector) is overestimated as compared to that based on molecular mechanics
calculation of atom positions.
Fig. 8 shows the band gap versus the engineering strain � for (5,5), (9,0), (9,6),

(10,0), and (6,4) CNTs. The band gap for the armchair (5,5) CNT under tension re-
mains zero. This conclusion also holds for other armchair (n; n) CNTs, i.e., they remain
conducting under tension. For the conducting zigzag (9,0) and chiral (9,6) CNTs, the
band gap generally increases with tension, which suggests that the conducting CNTs
may become semi-conducting upon deformation. For the semi-conducting zigzag (10,0)
and chiral (6,4) CNTs, the band gap displays some variation upon deformation, but it
remains large.
It is observed that the zigzag (9,0) CNT shows a small band gap even prior to

deformation, which seems to contradict with the prediction of vanishing band gap for
n− m= 3l. This is because the e6ect of CNT radius on the bond lengths and angles
has not been accounted for in the above criterion. Yang et al. (1999) also showed a
small band gap of the undeformed (9,0) CNT. Therefore, the widely accepted criterion
n− m= 3l for conducting CNTs is only approximate.

4.2. Torsion

Without the shift vector, the band gap is also overestimated, as shown in Fig. 9 for
an armchair (5,5) CNT under torsion. This is also consistent with Yang et al.’s (1999)
tight-binding calculations for the same armchair (5,5) CNT under torsion.



B. Liu et al. / J. Mech. Phys. Solids 52 (2004) 1–26 19

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.1

0.2

0.3

0.4

0.5

with the shift vector

(5,5) Carbon Nanotube under Torsion

without the shift vector

B
an

d 
ga

p 
(e

V
)

κR

Fig. 9. The band gap versus the normalized twist .R for a (5,5) carbon nanotube (CNT) under torsion,
where . is the twist (rotation per unit length) and R is the radius of the CNT. The results are shown for
calculations with and without the shift vector.

Fig. 10 shows the band gap versus the normalized twist, .R, for (5,5), (9,0), (9,6),
(10,0), and (6,4) CNTs under torsion, where R is the CNT radius prior to deformation.
The twist . can be positive or negative, depending on the direction of torsion. The
curves are symmetric about .R=0 for zigzag and armchair CNTs, but are unsymmetric
for chiral CNTs. Contrary to tension, the band gap of armchair (5,5) CNT is not zero
anymore once torsion is imposed; it increases with the twist |.|, but starts to decrease
when |.| is very large. The conducting chiral (9,6) CNT displays similar behavior, but
its band gap is unsymmetric about .R=0. However, the band gap for the zigzag (9,0)
CNT decreases at small twist, but then increases rapidly with deformation. For two
semi-conducting (10,0) and (6,4) CNTs, the band gap remains large upon deformation,
which is consistent with the observation for these CNTs under tension (Fig. 8).

4.3. Combined tension/torsion

We have also obtained the band gap for CNTs under combined tension/torsion. Figs.
11a, c, and e show the distribution of band gap versus the tensile (engineering) strain �
and normalized twist .R for (5,5), (9,0), and (9,6) CNTs, respectively. Only .R¿ 0 is
shown for (5,5) and (9,0) CNTs due to symmetry. It is observed that the band gap is
non-zero almost over the entire domain; only around very isolated curves does the band
gap vanish. This is clearly observed from the contour plot of band gap in Figs. 11b,
d and f for the same CNTs. The isolated curves for vanishing band gap are marked
by the white dashed lines. Therefore, even though these three CNTs are considered
as conducting by the simple criterion n − m = 3l (l = 0; 1; 2; : : :), their band gap will
most likely become 9nite and the conducting CNTs will become semi-conducting once
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Fig. 10. The band gap versus the normalized twist .R accounting for the shift vector for various carbon
nanotubes (CNT), where . is the twist (rotation per unit length) and R is the radius of the CNT. The results
are shown for calculations with and without the shift vector.

the deformation is imposed. In fact, a similar conclusion has been reached in Tombler
et al.’s (2000) experiments, which showed that the electrical conductance of a CNT
may be reduced by two orders of magnitude due to deformation.
The distribution of band gap is shown in Fig. 12 for the zigzag (10,0) and chiral

(6,4) semi-conducting CNTs. The band gap in general is signi9cantly larger than that in
Fig. 11, and never reaches zero. Therefore, semi-conducting CNTs under tension/torsion
cannot become conductors. It is also observed that the variation of band gap is relatively
small; the largest band gap is no more than twice the smallest one. Accordingly, the
conductance change of semi-conducting CNTs upon relatively uniform deformation
is not expected to be two orders of magnitude, contrary to Tombler et al.’s (2000)
experiments for conducting CNTs. In fact, the experiment of Paulson et al. (1999) did
not show a signi9cant change in the conductance.

5. Discussion

It is convenient to show the e6ects of deformation on band gap in the form of
the maps shown in Figs. 7–12, but the e6ects of band 9lling and temperature on
the electrical properties of the CNTs should also be considered. Since the energetics
and mechanical properties of the CNTs are already computed here using a continuum
implementation of the Brenner potential, it is not necessary to compute the electronic
and total energies of the CNTs using the tight-binding results. Thus, it is not necessary
to consider the 9lling of the available electron states such as those shown in Fig. 6
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Fig. 11. The band gap versus the tensile strain � and normalized twist .R for three conducting carbon
nanotubes (CNT) under combined tension/torsion; (a) (5,5); (c) (9,0); (e) (9,6). The contour plots of band
gap for the same three conducting CNTs are shown in (b), (d) and (f). The CNTs for loadings inside the
black regions are conducting at room temperature.

for the (10,0) CNT. Since the details of band 9lling and a tight-binding based total
energy are not of interest here, it is reasonable to use the tight-binding approach even
for CNTs approaching metallic behavior.
However, in the context of the tight-binding method, it is through the 9lling of the

computed electronic states that temperature e6ects are introduced. Also, temperature
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Fig. 12. The band gap versus the tensile strain � and normalized twist .R for two semi-conducting carbon
nanotubes under combined tension/torsion: (a) (10,0) and (b) (6,4).

e6ects set an important energy scale (approximately 0:025 eV at room temperature):
thermal energy is one mechanism by which charge carriers may be excited across the
energy band gap to lead to a 9nite conductance in a material with a nonzero energy
band gap. This e6ect is quanti9ed as follows.
Consider the energy vs. wave vector dispersion relation shown in Fig. 6 for the

zigzag (10,0) CNT. The energy levels in the plot can be summed over the possible
k-points and smoothed by a small arbitrary Gaussian broadening function to illustrate
the density of states as a continuous function of energy, 8(E), as shown in Fig. 13. The
density of states clearly shows the band gap of approximately 0:6 eV. The electronic
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Fig. 13. The density of states versus the energy for a (10,0) carbon nanotube.

portion of the total cohesive energy would then be computed by

Eel =
∫ Ef

0
E8(E) dE; (38)

where Ef is the Fermi energy in the material. The 9lling of the available energy levels
would be determined by the temperature dependent Fermi-Dirac distribution function
fFD(E; Ef; T ), which is given by

fFD =
1

1 + exp
(
E−Ef
kT

) ; (39)

where k is the Boltzmann constant. This distribution function represents the 9lling
of some of the lowest conduction band states, otherwise unoccupied at zero tempera-
ture, by some of the highest valence band electrons thermally excited by temperature
T . With 9nite temperature treated in this manner, the conductance of the CNT can
be approximated using the Landauer model, given some estimate of the nature of
the electrical contacts to either end of the CNT under consideration (Landauer, 1970;
Chico et al., 1996). However, for the purposes of the present study, the band gap
determined strictly from the zero-temperature tight-binding energy band structure is
considered to be a reasonable relative measure of the electronic behavior of the de-
formed CNTs. Thus, 9nite temperature is viewed here as a basis for a physical energy
scale through which to interpret the deformation-band gap maps. The thermal energy
kT at room temperature is 0:025 eV, and is denoted in the contour plots in Fig. 11b,
d, and f as the region in black.
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6. Concluding remarks

We have developed a simple and accurate method to study the e6ect of mechanical
deformation on the electrical properties of single wall carbon nanotubes (CNT). The
atom positions prior to and after deformation are determined by the continuum analysis
based on the interatomic potential. Once the atom positions are known, the band gap
of the CNT is then calculated via the k-space tight-binding method for CNTs sub-
ject to tension, torsion, and combined tension/torsion. We have reached the following
conclusions in the present study.

(1) Some prior analyses have assumed that carbon atoms on a CNT subject to ten-
sion/torsion follow a simple, uniform deformation pattern. This assumption overly
constrains the motion of carbon atoms, and cannot ensure their equilibrium, which
leads to signi9cant overestimation of the band gap change of the CNT due to
mechanical deformation. We have introduced a shift vector to relax the motion of
carbon atoms and to ensure their equilibrium. The atom positions determined by
this method agree very well with that obtained from molecular mechanics calcula-
tions. The predicted band gap change is then consistent with that determined from
the molecular dynamic simulations.

(2) For conducting CNTs (chirality n−m=0; 3; 6; 9; : : :), mechanical deformation may
lead to a 9nite band gap, i.e., the conducting CNT may become a semi-conducting
one. A similar conclusion has been reached in Tombler et al.’s (2000) experiment.
In fact, our analysis shows that the conducting CNTs remain conducting only under
very special loading conditions. For semi-conducting CNTs (n− m= 1; 2; 4; 5; : : :)
subject to tension/torsion, however, the band gap always remains 9nite such that
a semi-conducting CNT never becomes a conducting one. We have also discussed
the e6ect of temperature on the conductivity of the CNTs.
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Appendix A

The equilibrium equation for a single wall CNT is obtained by integrating the stan-
dard three-dimensional equation (F · T) · ∇= 0 over the nanotube thickness, where F
is the deformation gradient in (29), T is the second order Piola–Kirchho6 stress, and

∇= eR 9
9R +

e�
R
9
9� + eZ

9
9Z
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is the gradient operator in the reference con9guration. In conjunction with the traction-
free boundary condition F ·T · eR =0 on the inner and outer surfaces of the CNT, the
equilibrium equation becomes

1
R
9
9" (F · T)R" − 1

R
(F · T)"" + 9

9Z (F · T)RZ = 0; (A.1a)

1
R
(F · T)R" + 1

R
9
9" (F · T)"" + 9

9Z (F · T)"Z = 0; (A.1b)

1
R
9
9" (F · T)Z" + 9

9Z (F · T)ZZ = 0: (A.1c)

The non-vanishing components of the second Piola–Kirchho6 stress are T"", TZZ ,
and T"Z(=TZ"), and they are independent of " for a CNT in tension/torsion. The
equilibrium equation (A.1) projected along the base vectors er , e� and ez in the current
con9guration becomes

F�"T"" + F�ZT"Z + .R(F�"T"Z + F�ZTZZ) = 0; (A.2a)

d
dZ
(F�"T"Z + F�ZTZZ) = 0; (A.2b)

d
dZ
(FzZTZZ) = 0: (A.2c)

The substitution of the deformation gradient in (29) into (A.2) yields

TZZ = constant; T"Z = constant; (A.3a)

T"" + 2.RT"Z + .2R2TZZ = 0: (A.3b)
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