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A Finite-Temperature Continuum
Theory Based on Interatomic
Potentials
There are significant efforts to develop continuum theories based on atomistic models.
These atomistic-based continuum theories are limited to zero temperature �T=0 K�. We
have developed a finite-temperature continuum theory based on interatomic potentials.
The effect of finite temperature is accounted for via the local harmonic approximation,
which relates the entropy to the vibration frequencies of the system, and the latter are
determined from the interatomic potential. The focus of this theory is to establish the
continuum constitutive model in terms of the interatomic potential and temperature. We
have studied the temperature dependence of specific heat and coefficient of thermal
expansion of graphene and diamond, and have found good agreements with the experi-
mental data without any parameter fitting. We have also studied the temperature depen-
dence of Young’s modulus and bifurcation strain of single-wall carbon
nanotubes. �DOI: 10.1115/1.2019865�
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1 Introduction
There are significant efforts to develop continuum theories

based on atomistic models. The quasicontinuum method �1–7�
was developed to link atomistic models with the continuum finite
element method in order to study the material behavior across
multiple length scales. Such an approach has been used to study
defects in solids �1�, interfacial structure and deformation �6�, and
fracture and plasticity �4,5�. Shilkrot et al. �8� and Curtin and
Miller �9� combined the quasicontinuum method with the discrete
dislocation model to study the multiscale plastic behavior of sol-
ids. Gao and Klein �10�, Klein and Gao �11,12�, and Zhang et al.
�13� established an approach to incorporate atomistic models into
the continuum analysis, and Thiagarajan et al. �14,15� used it to
study the fracture of solids. Friesecke and James �16� established
a scheme for the passage from atomic to continuum theories for
two-dimensional structures such as thin films, nanotubes and na-
norods. Arroyo and Belytschko �17�, Zhang et al. �18–21� and
Jiang et al. �22� proposed nanoscale continuum theories for carbon
nanotubes based on interatomic potentials for carbon. These
atomistic-based continuum theories have good agreements with
molecular dynamics or other atomistic simulation results. How-
ever, they are limited to zero temperature because interatomic
potentials, based on how these continuum theories are established,
have not accounted for the effect of finite temperature.

The temperature effect is considered in atomistic studies via
several methods. One is the molecular dynamics simulation,
which is a technique for computing the equilibrium and transport
properties of a many-body system. Newton’s equations of motion
are solved for a system consisting of N particles until the proper-
ties of the system no longer change with time. The temperature is
defined by using the equipartition of kinetic energy over all de-
grees of freedom, i.e., the instantaneous temperature is the total
kinetic energy of the system divided by the number of degrees of
freedom. Another method to consider the temperature effect is the
Monte-Carlo simulation which computes the equilibrium proper-
ties of a system. One attempts random walking with every particle
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in the system in each Monte-Carlo cycle. The energy of the sys-
tem is then computed to determine whether the newly generated
configuration is acceptable based on the thermodynamic prin-
ciples and the sampling algorithms �accepting rate�. Here the ac-
cepting rate is directly related to the probability of finding a par-
ticle point r, which is proportional to the Boltzmann factor exp
��−U�r� /kBT�, where kB is the Boltzmann constant, T is the tem-
perature, and U is the potential energy. The Monte Carlo cycle
must be repeated a great number of times in order to sample
thermodynamically relevant configurations. These atomistic meth-
ods have many advantages such as the accuracy, but they are
computationally intensive and are not suitable for large scale
problems.

The aforementioned atomistic-based continuum theories
�17–22� do not follow every atom, and are potentially suitable for
large scale problems. However, they are limited to zero tempera-
ture �T=0 K�, and such a condition never holds for engineering
problems. There exists very limited work to incorporate the tem-
perature effect in atomistic-based continuum theories. Shenoy
et al. �23� used the local harmonic approximation to calculate the
Helmholtz free energy A at finite temperature. The potential en-
ergy U�r� at zero temperature was replaced by the Helmholtz free
energy A�r ,T� in the Boltzmann factor, i.e., exp�−A�r ,T� /kBT�.
The Monte Carlo simulation was then combined with the quasi-
continuum method to determine the atom positions.

The purpose of this paper is to establish a finite-temperature
continuum theory directly from the interatomic potential not in-
volving molecular dynamics nor Monte Carlo simulation. Similar
to �18–22�, the interatomic potential is incorporated into the con-
tinuum analysis via the constitutive model. The effect of finite
temperature is accounted for via the local harmonic approximation
�24�. Such an approach has an advantage of accounting for the
finite temperature effect but avoiding the use of molecular dynam-
ics or Monte Carlo simulation.

This paper is divided into five sections. We first present the
approach for an undeformed solid �i.e., vanishing strain� at finite
temperature in Sec. 2. The local harmonic approximation, which
is a critical step to account for the temperature effect, is also
reviewed in Sec. 2. The approach for the deformed solid at finite

temperature is established in Sec. 3. The continuum constitutive
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model is established in terms of the interatomic potential and fi-
nite temperature. We then study several temperature-dependent
material properties in Sec. 4 based on Brenner’s �25� interatomic
potential and its second-generation potential �26� for carbon. The
results are compared with the experimental data, including the
coefficient of thermal expansion and specific heat of diamond and
graphene, as well as the Young’s modulus and bifurcation strain.

2 Finite-Temperature Analysis Based on Interatomic
Potentials: Prior to Deformation

We present in this section the finite-temperature analysis for a
solid prior to deformation �i.e., vanishing strain�. Such an analysis
paves the way for the establishment of the finite-temperature con-
tinuum theory in Sec. 3 for a deformed solid based on interatomic
potentials.

2.1 Equilibrium at Zero Temperature and the Interatomic
Potential. For a system of N atoms at zero temperature, the en-
ergy stored in atomic bonds is denoted by Utot�x1 ,x2 ,… ,xN�,
where xk is the position of atom k, Utot is the total potential energy
of the system and is given by

Utot = �
i�j

N

V�rij;rik,k � i, j� . �1�

Here V�rij ;rik ,k� i , j� is the multibody interatomic potential
which is energy stored in the bond between atoms i and j. A
multibody potential depends on not only the bond length rij, but
also the lengths of other bonds rik�k� i , j�.

An example of the multibody interatomic potential is the Bren-
ner �25� potential and the Brenner et al. �26� second-generation
potential for carbon, which take the form

V�rij;rik,k � i, j� = VR�rij� − B̄ijVA�rij� , �2�

where VR and VA are pair terms �i.e., depending only on rij� rep-
resenting the repulsive and attractive interactions between carbon

atoms, respectively, B̄ij represents the multibody coupling which
results from the interaction between atoms i, j, and their local
environment. For Brenner’s �25� potential,

VR�r� =
D�e�

S − 1
e−�2S��r−R�e��fc�r� , �3a�

VA�r� =
D�e�S

S − 1
e−�2/S��r−R�e��fc�r� , �3b�

where D�e�=6.000 eV, S=1.22, �=21 nm−1, R�e�=0.1390 nm, and
the function fc is merely a smooth cut-off function having the
piecewise form fc�r�=1, 1

2 �1+cos���r−0.17 nm� /0.03 nm��, and
0 for r�0.17 nm, 0.17 nm�r�0.2 nm, and r�0.2 nm, respec-

tively. The multibody coupling factor B̄ij in Eq. �2� is given by

B̄ij =
1

2
�Bij + Bji� , �4a�

Bij = 	1 + �
k��i,j�

G��ijk�fc�rik�
−1/2
, �4b�

where �ijk=cos−1�rij
2 +rik

2 −rjk
2 � /2rijrik defines the angle between

carbon bonds i− j and i−k; the function G takes the form

G��� = a0	1 +
c0

2

d0
2 −

c0
2

d0
2 + �1 + cos ��2
 , �5�

and a0=0.000,208,13, c0=330, d0=3.5. The expressions of VR,
¯
VA, and Bij for the second-generation potential can be found in
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�26�.
The state of equilibrium at zero temperature is determined by

minimizing the total potential energy in Eq. �1� with respect to
atom positions, i.e.,

�Utot

�x
= 0, �6�

where x= �x1 ,x2 ,… ,xN�T. For a periodic atomic structure that can
be characterized by one �or very few� variable�s�, Eq. �6� is then
equivalent to the minimization of Utot with respect to this �these�
variable�s�. For example, if all bonds have the same length r �e.g.,
the graphene shown in Fig. 1�, the total potential energy becomes
a function of r, i.e., Utot=Utot�r�. Equation �6� then becomes

dUtot

dr
= 0, �7�

which determines the equilibrium bond length at zero tempera-
ture.

2.2 Equilibrium at Finite Temperature and the Local Har-
monic Approximation. Atoms do not occupy stationary positions
at finite �nonzero� temperature due to thermal vibrations. The cen-
ter of vibration for each atom defines the “equilibrium” position at
finite temperature T, i.e., the position averaged over time. The
average, equilibrium bond length r at finite temperature is then the
distance between the centers of vibration for nearest-neighbor at-
oms. It is determined by minimizing the Helmholtz free energy A,
instead of the potential energy Utot in Eq. �7�, i.e.,

�A�r,T�
�r

= 0, �8�

where A=Utot�r�−TS depends on both atomic bond length r and
temperature T, and S is the entropy. The equilibrium bond length
is then a function of temperature T, i.e.,

r = r�0��T� , �9�
where the superscript 0 denotes the state prior to deformation �i.e.,
vanishing strain� in order to distinguish the bond length in the
deformed configuration in Sec. 3.

Fig. 1 A schematic diagram of the atomic structure of a
graphene with a representative atom A, its three nearest-
neighbor atoms B, C, and D, and six second-nearest-neighbor
atoms B1, B2, C1, C2, D1, and D2
The entropy S in the Helmholtz free energy can be calculated
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from the quasiharmonic approximation, which replaces the poten-
tial energy by a harmonic expansion about equilibrium positions.
Based on the quasiharmonic approximation �24�, the entropy of
the system of size N can be expressed as

S = − kB�
n=1

3N

ln	2 sinh� h�n

4�kBT
�
 , �10�

where kB is the Blotzmann constant 1.38�10−23 J K−1, h is the
Planck’s constant 6.63�10−34 J s, �n�n=1,2 ,… ,3N� are vibra-
tion frequencies of the system and are determined from the total
potential energy Utot by

�n
2I3N�3N −

1

m

�2Utot

�x � x
 = 0. �11�

Here I3N�3N is the identity matrix, m is the atomic mass, and x
= �x1 ,x2 ,… ,xN�T is the position vector for all atoms.

The quasiharmonic approximation is quite accurate and gives
results that are in good agreements with the Monte Carlo simula-
tions �27�. However, the diagonalization of the 3N�3N matrix in
Eq. �11� to calculate the vibration frequencies �n�n
=1,2 ,… ,3N� is computationally expensive. In order to avoid this
difficulty, the local harmonic approximation has been introduced
to neglect all terms that couple vibrations of different atoms. The
effort to diagonalize the 3N�3N matrix in Eq. �11� is then re-
duced to the diagonalization of N 3�3 matrices, i.e.,

�i�
2 I3�3 −

1

m

�2Utot

�xi � xi
 = 0, i = 1,2,…,N , �12�

where �i� ��=1, 2,3� are the vibration frequencies of atom i, i.e.,
the atom i vibrates while all other atoms are fixed at their equi-
librium positions, as further illustrated in Sec. 2.3. The Helmholtz
free energy is then given by �27,28�

A�r,T� = Utot�r� + kBT�
i=1

N

�
�=1

3

ln	2 sinh� h�i�

4�kBT
�
 . �13�

Foiles �27� evaluated the accuracy of local harmonic approxi-
mation by comparing with Monte Carlo simulation results. He
concluded that, even though the local harmonic approximation
somewhat underestimates the temperature dependence, it still pro-
vides a reasonable and faithful description of the trend. The results
based on local harmonic approximation are acceptable at tempera-
ture below roughly one half of the melting point. Najafabadi and
Srolovitz �29� investigated the influence of properties of inter-
atomic potentials on the accuracy of local harmonic approxima-
tion. They concluded that the local harmonic approximation pro-
vides a reasonable compromise between accuracy and
computational demands. However, they also pointed out that the
accuracy of this approximation is sensitive to the anharmonicities
in interatomic potentials.

Besides the local harmonic approximation �13�, LeSar et al.
�30� further introduced the high-temperature classical limit,
sinh�h�i� /4�kBT��h�i� /4�kBT, such that the Helmholtz free
energy in Eq. �13� becomes A�r ,T�=Utot

+3kBT�i=1
N ln�hDi

1/6 /2�kBT�, where Di=1/m3��2Utot /�xi�xi� is the
determinant of the local dynamic matrix. Foiles �27� conducted
extensive Monte Carlo simulations and showed that this classical
limit does not hold at temperature above one half of the melting
temperature. This high-temperature classical limit is not adopted
in the present study.

2.3 An Example: The Local Harmonic Approximation for
Graphene. We use the graphene shown in Fig. 1 to illustrate the
local harmonic approximation. The representative atom A is sur-
rounded by three nearest-neighbor atoms B, C, and D, and six
second-nearest-neighbor atoms B1, B2, C1, C2, D1, and D2 �Fig.

1�. These atoms all interact with the atom A due to multibody
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atomistic interactions in carbon �25,26�.

2.3.1 Vibration Frequencies. We study the dependence of total
potential energy on the position of the representative atom A in
order to determine its vibration frequencies. The representative
atom A affects not only the energy stored in three bonds AB, AC,
and AD at atom A, but also the energy stored in six bonds BB1,
BB2, CC1, CC2, DD1, and DD2 away from atom A �25,26�. There-
fore, the total potential energy Utot can be written as

Utot = VAB + VAC + VAD

+ VBB1
+ VBB2

+ VCC1
+ VCC2

+ VDD1
+ VDD2

+ bond energy independent of atom A . �14�

Here the second line on the right-hand side is the energy which
results from multibody atomistic interactions in carbon. We pro-
vide the explicit expressions for VAB and VBB1

in order to show
their dependence on position A

VAB = VR�rAB� −
1

2
�BAB + BBA�VA�rAB� , �15�

VBB1
= VR�rBB1

� −
1

2
�BBB1

+ BB1B�VA�rBB1
� , �16�

where rAB depends on position A, but rBB1
does not; similarly BAB,

BBA, and BBB1
depend on position A via the corresponding angles

involving position A, and BB1B does not.
The local dynamic matrix for graphene has only nonvanishing

diagonal terms at the equilibrium position. The in-plane and out-
of-plane vibration frequencies �1 and �3 can then be obtained
from �2Utot /�xA1

�xA1
and �2Utot /�xA3

�xA3
, respectively, and are

given in the following from Brenner’s �25� potential

�1
2 =

3

2m
	VR� − BVA� +

1

r
�VR� − BVA�� +

	1

r
VA� +

	2

r2 VA
 , �17�

�3
2 =

3

m
	1

r
�VR� − BVA�� +

8	1

3r2 VA
 , �18�

where B=0.965 is the multibody coupling factor at the equilib-
rium position of graphene, 	1=B33�a0c0

2 /4�d0
2+ �1/4��2�=0.195,

	2=	1��20/3�−B2�3a0c0
2 /8�d0

2+1/4�2�−5/ �d0
2+ �1/4���=0.607.

The vibration frequencies in Eqs. �17� and �18� are functions of
the equilibrium bond length r=r�0��T� at finite temperature T, and
the superscript 0 denotes the state at vanishing strain.

2.3.2 Helmholtz Free Energy. The total potential energy
Utot can be expressed as

Utot = NU
, �19�

where N is the total number of atoms, and

U
�r� =
1

2
�VAB + VAC + VAD� =

3

2
�VR�r� − BVA�r�� �20�

is the potential energy per atom, the factor 1 /2 comes from the
equipartition of bond energy between two atoms in each bond, and
B=0.965.

Based on the local harmonic approximation, the Helmholtz free
energy can be written as

A�r,T� = N�U
�r� + 2kBT ln�2 sinh	h�1�r�
4�kBT


�
+ kBT ln�2 sinh	h�3�r�

4�kBT

�� . �21�

The equilibrium bond length r=r�0��T� is determined by Eq. �8�,

i.e., minimizing the Helmholtz free energy A with respect to r.
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3 Finite-Temperature Constitutive Model Based on In-
teratomic Potentials: Arbitrary Deformation

The finite-temperature analysis for a solid subject to arbitrary
deformation is presented in this section. The analysis is also based
on interatomic potentials, but it focuses on the constitutive model
of the deformed solid. We first review the constitutive model
based on interatomic potentials at zero temperature in Sec. 3.1,
which paves the way for the constitutive model at finite tempera-
ture in Sec. 3.2.

3.1 The Constitutive Model at Zero Temperature.

3.1.1 Cauchy-Born Rule for a Centrosymmetric Atomic
Structure. The continuum deformation measures can be related to
the motion of many atoms via the Cauchy-Born rule �31,32�,
which equates the strain energy at the continuum level to the
energy stored in atomic bonds. The Cauchy-Born rule also states
that atoms subject to a homogeneous deformation move according
to a single mapping from the undeformed to deformed configura-
tions. Such a mapping is characterized by the continuum defor-
mation gradient F of a material point which represents the collec-
tive behavior of many atoms that undergo locally uniform
deformation. For a centrosymmetric lattice structure that has a
pair of bonds in opposite directions �r and −r� around each atom,
the Cauchy-Born rule ensures the equilibrium of atoms because
the forces in the opposite bonds are always equal and opposite.

The bond vector rij
�0� between atoms i and j prior to deformation

is changed to

rij = F · rij
�0� �22�

upon deformation, where F is the continuum deformation gradi-
ent, and the superscript 0 denotes the state prior to deformation.
Its length becomes

rij�E� = �rij · rij = r�0��1 + 2nij
�0� · E · nij

�0�, �23�

where r�0�=�rij
�0� ·rij

�0� is the bond length prior to deformation,
nij

�0�=rij
�0� /r�0� is the unit vector of the bond, and E=1/2�FT ·F

−I� is the Green strain tensor. The energy stored in bond ij is
obtained from the interatomic potential in Eq. �1�,

V�E� = V�rij�E�;rik�E�,k � i, j� , �24�

and it depends on the Green strain E.
Based on the Cauchy-Born rule, the strain energy density W on

the continuum level is the energy stored in atomic bonds per unit
volume of solids, and is given by

W�E� =
U


�


=
1

2

�1�j�n
V�rij�E�;rik�E�,k � i, j�

�


, �25�

where U
= �1/2��1�j�nV�rij ;rik ,k� i , j� is the average potential
energy per atom, the summation is for all �n� atoms that form
bonds with the representative atom i, the factor 1 /2 represents the
equipartition of bond energy between two atoms in each bond;
and �
 is the average volume per atom.

The derivative of strain energy density W with respect to the
Green strain E gives the second Piola-Kirchhoff stress S

S =
�W

�E
. �26�

This gives the constitutive relation based on interatomic potentials
for a centrosymmetric atomic structure at zero temperature.

3.1.2 Modified Cauchy-Born Rule for a Non-
Centrosymmetric Atomic Structure. For a noncentrosymmetric
atomic structure �e.g., graphene�, the Cauchy-Born rule, which is
based on a single mapping from the undeformed to deformed
configurations, does not ensure the equilibrium of atoms anymore.

For example, the graphene structure shown in Fig. 1 is not cen-
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trosymmetric. The forces in bonds AB, AC, and AD do not always
cancel and the net force on A may not vanish if the Cauchy-Born
rule is imposed. Modifications of the Cauchy-Born rule for a non-
centrosymmetric atomic structure have been proposed to ensure
the equilibrium of atoms �3,17,20–22,24�. The basic idea is to
decompose a noncentrosymmetric atomic structure into two �or a
finite number l� sublattice structures. Each sublattice structure is
centrosymmetric and follows the Cauchy-Born rule. The two �or l�
sublattice structures may undergo one �or l−1� shift vector�s� to
relax the constraint of single mapping of deformation in order to
satisfy the equilibrium of atoms. In other words, the shift vector
allows atoms from different sublattice structures to move differ-
ently in order to reach a minimal energy state. Accordingly, the
shift vector is determined by minimizing the potential energy,
which is equivalent to equilibrium.

Without losing generality, we discuss the noncentrosymmetric
atomic structure that has two sublattice structures such as
graphene shown in Fig. 1. The shift vector between two sublattice
structures is denoted by �. For atoms i and j from two different
sublattice structures, the bond vector rij after deformation be-
comes

rij = F · rij
�0� + � = r�0�F · �nij

�0� + �� , �27�

where �= �1/r�0��F−1 ·� is an internal variable which is equivalent
to the shift vector �. The bond length becomes

rij�E,�� = �rij · rij = r�0���nij
�0� + �� · �I + 2E� · �nij

�0� + �� ,

�28�

which depends on both the Green strain E and the internal vari-
able �.

Similar to Eq. �19�, the total potential energy is related to the
potential energy U
 per atom by Utot=NU
, and U
 is given by

U
 =
1

2 �
1�j�n

V�rij�E,��;rik�E,��,k � i, j� , �29�

where the summation is for all �n� atoms that form bonds with the
representative atom. The shift vector, or the equivalent internal
variable �, is determined by

�U


��
= 0. �30�

This gives the internal variable � in terms of E, i.e.,

� = ��E� . �31�
The strain energy density in Eq. �25� now becomes

W�E� =
U


�


=
1

2

�1�j�n
V�rij�E,��E��;rik�E,��E��,k � i, j�

�


,

�32�

where �
 is the average volume per atom. The second Piola-
Kirchhoff stress S is still given by Eq. �26�, S=�W /�E, but it is
important to note that the internal variable �=��E� also depends
on E. This gives the constitutive relation based on interatomic
potentials for a noncentrosymmetric atomic structure at zero tem-
perature.

3.2 Constitutive Model at Finite Temperature.

3.2.1 Centrosymmetric Atomic Structure. The bond length at
finite temperature prior to deformation is given in Eq. �9�, r
=r�0��T�. The bond vector is rij

�0��T�=r�0��T�nij
�0�. Once the defor-

mation is imposed, the bond vector becomes

rij = F · rij
�0��T� . �33�
Its length is given by
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rij�E,T� = r�0��T��1 + 2nij
�0� · E · nij

�0�, �34�

which depends on both Green strain E and temperature T. Accord-
ingly, the energy stored in the bond also depends on E and T,

V�E,T� = V�rij�E,T�;rik�E,T�,k � i, j� . �35�

We used the Helmholtz free energy A to replace the potential
energy Utot in Sec. 3.1 in order to account for the effect of finite
temperature. The Helmholtz free energy in Eq. �13� can be ex-
pressed as

A�E,T� = N�U
 + kBT�
�=1

3

ln	2 sinh� h��

4�kBT
�
� , �36�

where U
= �1/2��1�j�nV�rij�E ,T� ;rik�E ,T� ,k� i , j� is the poten-
tial energy per atom after the deformation, and it depends on the
Green strain E and temperature T; �� ��=1, 2, 3� are the vibra-
tional frequencies of the representative atom in the deformed con-
figuration; they are still determined by Eq. �12�, but they also
depend on both E and T.

The energy density at finite temperature is the Helmholtz free
energy per unit volume �24�, and is given by

W�E,T� =
A

N�


=

U
�E,T� + kBT�
�=1

3

ln�2 sinh� h���E,T�
4�kBT ��

�


.

�37�

Its derivative with respect to the Green strain E gives the second
Piola-Kirchhoff stress

S =
�W

�E
=

1

�


�U


�E
+

1

�


h

4��
�=1

3

coth	h���E,T�
4�kBT


 ���

�E
, �38�

where the first term on the right-hand side is the same as Eq. �26�
�though the bond length now depends on the temperature�. The
above equation gives the constitutive relation based on inter-
atomic potentials for a centrosymmetric atomic structure at finite
temperature.

3.2.2 Noncentrosymmetric Atomic Structure. Without losing
generality, we discuss the noncentrosymmetric atomic structure
that can be decomposed two centrosymmetric sublattice struc-
tures. The shift vector between two sublattice structures is denoted
by �. The bond vector after deformation becomes

rij = F · rij
�0��T� + � = r�0�F · �nij

�0� + �� , �39�

where � is the equivalent internal variable. The bond length be-
comes

rij�E,�,T� = r�0��T���nij
�0� + �� · �I + 2E� · �nij

�0� + �� . �40�

The potential energy U
 per atom in Eq. �29� becomes

U
 =
1

2 �
1�j�n

V�rij�E,�,T�;rik�E,�,T�,k � i, j� . �41�

The internal variable � is also determined by �U
 /��=0 in Eq.
�30�, which gives � in terms of the Green strain E and temperature
T, i.e.,

� = ��E,T� . �42�

Therefore, the potential energy per atom in Eq. �41� is a function
of strain E and temperature T

U
 = U
�E,��E,T�,T� . �43�

The Helmholtz free energy A and energy density W are still
given by Eqs. �36� and �37�, respectively, while Eq. �38� gives the
constitutive relation based on interatomic potentials for a noncen-

trosymmetric atomic structure at finite temperature.
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4 Applications: Temperature-Dependent Material
Properties of Carbon

We use the proposed finite-temperature continuum theory based
on interatomic potentials to study several temperature-dependent
material properties of carbon in this section. These properties in-
clude the specific heat CV, coefficient of thermal expansion ,
Young’s modulus E, and bifurcation strain.

4.1 Specific Heat. We calculate the specific heat CV, and
compare with the experimental data in order to validate the pro-
posed finite-temperature continuum theory based on interatomic
potentials. The specific heat is defined as the heat energy required
per unit volume of solid per degree of temperature change. It is
the sum of contributions from all vibration modes �33,34�

CV = �
i

CVi�T� , �44�

where

CVi�T� =
h�i�T�
2�V

d

dT
�exp	h�i�T�

2�kBT

 − 1�−1

=
h2�i

2�T�
16�2kBTV

1

T
−

1

�i

d�i�T�
dT

sinh2	h�i�T�
4�kBT


 . �45�

Here the vibration frequency �i of the ith mode depends on tem-
perature T via the bond length r=r�0��T�, h is the Planck’s con-
stant, kB is the Boltzmann constant, and V is the total volume of
the solid. Using the local harmonic approximation, we may write
the specific heat in Eq. �44� as

CV =
h2

16�2kBT�

�
�=1

3 � 1

T
−

1

��

d��

dT
���

2

sinh2� h��

4�kBT
� �46�

for a solid with identical lattice structure, where �
 is the volume
per atom, and �� ��=1,2,3� are three vibration frequencies of the
representative atom.

The specific heat is usually presented in the literature by the
heat energy required per mole of atoms per degree of temperature
change �35,36�. Therefore, Eq. �46� becomes

CV =
6.022 � 1023h2

16�2kBT �
�=1

3 � 1

T
−

1

��

d��

dT
���

2

sinh2� h��

4�kBT
� , �47�

where 6.022�1023 is the number of atoms per mole.
For the graphene shown in Fig. 1, two in-plane vibration fre-

quencies �1=�2 are given in Eq. �17�, and the out-of-plane fre-
quency �3 is given in Eq. �18�. Figure 2 shows the specific heat
�per mole of atoms� versus temperature for graphene predicted by
the present theory based on Brenner’s �25� interatomic potential
for carbon. The results based on the Brenner et al. �26� second-
generation potential are also shown, together with the experimen-
tal data of graphite �36�. It is observed that, without any parameter
fitting, the specific heat predicted by the present analysis for
graphene agrees very well with the experimental data for graphite
over the entire range of temperature.

Figure 3 shows the specific heat �per mole of atoms� versus
temperature for diamond based on Brenner’s �25� potential and
the Brenner et al. �26� second-generation potential. The experi-
mental data �35� are also shown for comparison. Once again the
present analysis based on Brenner’s �25� potential agrees very
well with the experimental data, while the results based on the

Brenner et al. �26� second-generation potential are lower than the
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experimental data.
The numerical results show that, for both graphene and dia-

mond, the 1/T term dominates the numerator in Eqs. �46� and
�47�, i.e., 1 /T�1/�� �d�� /dT�, such that the contribution from
the derivative of frequencies d�� /dT is negligible. This observa-
tion is important for excellent agreement between the present
analysis and experimental data, and will be further explained in
the next section.

4.2 Coefficient of Thermal Expansion. We study the coeffi-
cient of thermal expansion �CTE�  via the finite-temperature
continuum theory based on interatomic potentials. The CTE is the
fractional change in the linear dimension of solid per degree of
temperature change, and is related to the bond length r=r�0��T� in
Eq. �9� by

 =
1

r�0��293 K�
dr�0��T�

dT
, �48�

where dr�0��T� /dT can be obtained from �A /�r=0 in Eq. �8� as

Fig. 2 Temperature dependence of specific heat CV for
graphene predicted by the present continuum theory based on
interatomic potentials. The experimental data of graphite †36‡
are also shown.

Fig. 3 Temperature dependence of specific heat CV for dia-
mond predicted by the present continuum theory based on in-
teratomic potentials. The experimental data †35‡ are also

shown.
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dr�0��T�
dT

= − �2A
�r�T
�2A
�r2


r=r�0��T�

. �49�

Here

A = N�U
�r� + kBT�
�=1

3

ln�2 sinh	h���r�
4�kBT


�� �50�

is the Helmholtz free energy based on the local harmonic approxi-
mation, and U
 is the potential energy per atom. The derivative
�2A /�r�T in Eq. �49� is then obtained as

�2A

�r � T
= N

h2

16�2kBT2�
�=1

3 � ��

d��

dr

sinh2	h���r�
4�kBT


�
r=r�0��T�

. �51�

For a harmonic potential, ��=constant, the above equation gives
vanishing �2A /�r�T and therefore vanishing CTE in Eq. �48�.
This means that the thermal expansion results from the anharmo-
nicity of the interatomic potential.

Figure 4 shows the predicted CTE of graphene versus tempera-
ture based on Brenner’s �25� potential and the Brenner et al. �26�
second-generation potential. The in-plane and out-of-plane vibra-
tion frequencies of graphene are given in Eqs. �17� and �18�, re-
spectively. The experimental data for -axis CTE of graphite �36�
are also shown in Fig. 4 for comparison. It is observed that, with-
out any parameter fitting, the CTE predicted by the present analy-
sis for graphene agrees reasonably well with the experimental data
for graphite. However, the difference between the predicted and
experimental data for CTE in Fig. 4 is larger than that for specific
heat shown in Fig. 2. This discrepancy is mainly because the CTE
is directly proportional to the derivative of vibration frequencies
d�� /dr as observed from Eqs. �48�, �49�, and �51�. It is recalled
from Eq. �12� that �� is obtained from the second-order derivative
of the interatomic potential. Therefore, d�� /dr involves the third-
order derivatives of the potential energy, which may not be accu-
rate since the parameters in interatomic potentials are usually de-
termined from the energy at the ground state, its first-order
derivative �lattice constant� and second-order derivative �elastic
moduli�, but not third-order derivative �25,26�.

It is interesting to note that the specific heat given in Eqs. �46�
and �47� also involves the third-order derivative of the potential
energy via d�� /dT, but the agreement between the specific heat
predicted by the present analysis and experimental data �Fig. 2� is

Fig. 4 Temperature dependence of the coefficient of thermal
expansion � for graphene predicted by the present continuum
theory based on interatomic potentials. The experimental data
of graphite †36‡ are also shown.
much better than that for the CTE �Fig. 4�. This is because, as
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discussed at the end of Sec. 4, the contribution from d�� /dT to
the specific heat CV is negligible as compared to 1/T in Eqs. �46�
and �47� such that CV is essentially independent of d�� /dT.

It is observed that the predicted CTE of graphene is negative
for temperature T�456 K for Brenner’s �25� potential �and T
�386 K for the Brenner et al. �26� second-generation potential�.
Jiang et al. �37� have shown that single wall carbon nanotubes
also have negative CTE at low and room temperature. This nega-
tive CTE is due to the negative contribution from the out-of-plane
vibration frequency. Our numerical results have shown that
d�1 /dr�0, d�3 /dr�0, and �1=�2 are at least an order of mag-
nitude larger than �3, i.e., �1��3. As the temperature approaches
zero T→0, Eq. �51� is dominated by the contribution from �3 and
is given by �2A /�r�T�N�h2 /4�2kBT2� �3�d�3 /dr� /
exp�h�3�r� /2�kBT��0 such that �0, as seen from Eqs. �48�
and �49�. The experimental data for graphite also show negative
-axis CTE for a large range of temperature.

Figure 5 shows that CTE versus temperature for diamond based
on Brenner’s �25� potential and the Brenner et al. �26� second-
generation potential. The experimental data �35� are also shown
for comparison. Without any parameter fitting, the present analy-
sis based on Brenner’s �25� potential captures the temperature
dependence of the CTE, though the agreement with the experi-
mental data is not as good as that for the specific heat �see Figs. 3
and 5�. This is once again because the CTE is proportional to the
third-order derivative of the potential energy.

The results in Figs. 2 and 3 for specific heat suggest that the
local harmonic approximation captures the finite temperature ef-
fect very well. However, the use of the third-order derivative of
the interatomic potential may lead to inaccuracies, as evidenced
by the discrepancies in CTE between the theory and experimental
data in Figs. 4 and 5.

4.3 Young’s Modulus. We study the temperature dependence
of Young’s modulus and Poisson’s ratio of graphene via the
present finite-temperature continuum theory based on interatomic
potentials. The incremental modulus tensor C, which relates the

stress rate and strain rate by Ṡ=C : Ė, is given by

C =
�2W�E,��E,T�,T�

�E � E
. �52�

Fig. 5 Temperature dependence of the coefficient of thermal
expansion � for diamond predicted by the present continuum
theory based on interatomic potentials. The experimental data
†35‡ are also shown.
For the limit of vanishing strain E=0, the above equation gives
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the linear elastic modulus tensor.
Let x1 and x2 denote the Cartesian coordinates in the plane of

graphene, and x3 the out-of-plane direction. It can be verified that
the nonvanishing components of C are C1111=C2222, C1122
=C2211, C1212=C1221=C2112=C2121 at vanishing strain E=0. The
Young’s modulus and in-plane Poisson’s ratio are given by

E = C1111 −
C1122

2

C1111
, � =

C1122

C1111
. �53�

Here the Young’s modulus E is actually the linear elastic stiffness
with the dimension of Newton/meter. This is because the
graphene thickness is not well defined such that the volume �


per atom in Eqs. �37� and �38� is replaced by the area per atom.
Figure 6 shows the Young’s modulus of graphene versus the

temperature. The Young’s modulus has been normalized by its
counterpart at zero temperature in order to avoid the ambiguity in
thickness. The Young’s modulus decreases with the increasing
temperature, though the amount of decrease is relatively small.
Therefore, the Young’s modulus is insensitive to temperature,
which is not unexpected for linear elastic properties. The variation
of Poisson’s ratio is relatively small, from �=0.41 for T=0 to �
=0.40 for T=1600 K. This once again confirms that the linear
elastic properties are insensitive to temperature.

Figure 6 also shows the temperature dependence of Young’s
modulus for a �10,10� carbon nanotube obtained by molecular
dynamics simulations �38� based on a different interatomic poten-
tial for carbon �39�. It is observed that the Young’s modulus given
by molecular dynamics decreases faster with the increasing tem-
perature than that given by the present continuum theory. There
can be several factors that are responsible for this difference. First,
different interatomic potentials are used, namely the Tersoff po-
tential �39� in molecular dynamics and Brenner potential �25,26�
in the continuum theory. Second, the molecular dynamics simula-
tions are for a �10,10� carbon nanotube, while the present con-
tinuum theory is for a graphene. Third, the local harmonic ap-
proximation may underestimate the temperature effect.

4.4 Bifurcation Strain of Single-Wall Carbon Nanotubes.
Zhang et al. �21� investigated the bifurcation of a single-wall car-
bon nanotube �CNT� under tension at zero temperature, and found
that the bifurcation strain predicted by the continuum theory based
on interatomic potentials agrees well with the breaking strain of

Fig. 6 Temperature dependence of Young’s modulus for
graphene predicted by the present continuum theory based on
interatomic potentials. Here the Young’s modulus is normalized
by its counterpart at zero temperature. The molecular dynamics
simulation results for a „10,10… carbon nanotube †38‡ based on
a different interatomic potential †39‡ are also shown.
CNT obtained from atomistic simulations �40–42�. We extend the

Transactions of the ASME



Zhang et al. �21� analysis to finite temperature in this section.
For a single-wall CNT subject to uniaxial tension along the tube

axis, the deformation in the CNT is uniform until the axial strain
reaches a critical value to trigger bifurcation. This represents the
onset of nonuniform deformation in the CNT. Let �R ,� ,Z� be the
cylindrical coordinates for the CNT. Zhang et al. �21� established
the critical condition for bifurcation in armchair and zigzag CNTs
�43� as

C�����CZZZZ +
SZZ

1 + 2EZZ
� − C��ZZ

2 +
SZZ

1 + 2E��
�CZZZZ +

SZZ

1 + 2EZZ
�

��m�R

L
�2

= 0, �54�

where R and L are the radius and length of CNT, respectively;
m=1, 2, 3, …, is the eigen mode number; SZZ is the only nonva-
nishing component of the second Piola-Kirchhoff stress; the non-
vanishing components of the Green strains EZZ and E�� are related
by the uniaxial tension condition S��=0, and C is the incremental
modulus tensor in Eq. �52�. The above bifurcation condition also
holds at finite temperature, though the stress SZZ, strain E��, and
moduli C depend on both the axial strain EZZ and temperature T.

For infinitesimal strain EZZ→0, the left-hand side of Eq. �54�
becomes �C����CZZZZ−C��ZZ

2 ��E=0, which is always positive. As
the strain increases, the left-hand side decreases and eventually
reaches zero, which corresponds to the onset of bifurcation and
the corresponding strain is denoted by �EZZ�critical. The above pro-
cedure is repeated for all possible eigen mode m=1, 2, 3, …,
though our results show that the lowest mode �m=1� always gives
the smallest bifurcation strain.

Figure 7 shows the bifurcation strain �EZZ�critical for armchair
and zigzag CNTs under tension. The CNT radius is R=0.5 nm,
and length L=5 nm. The bifurcation strain at zero temperature T
=0 agrees well with the breaking strain of CNT �see Zhang et al.
�21��. As temperature increases, the bifurcation strain decreases,
and it decreases faster for the armchair CNTs than zigzag CNTs.
Even though this decrease of bifurcation strain with increasing
temperature is reasonable, the magnitude of decrease in Fig. 7 is
small. This is mainly because the present analysis based on inter-
atomic potentials is static, and has not accounted for the kinetic
energy associated with the atom vibration at finite temperature.

5 Concluding Remarks and Discussion
We have developed a finite-temperature continuum theory

Fig. 7 Temperature dependence of bifurcation strain
„EZZ…critical predicted by the present continuum theory based on
interatomic potentials for armchair and zigzag carbon nano-
tubes under tension
based on interatomic potentials. The effect of finite temperature is

Journal of Engineering Materials and Technology
accounted for via the local harmonic approximation, which relates
the entropy to the vibration frequencies of the system, and the
latter are determined from the interatomic potential. The focus of
this theory is to establish the continuum constitutive model in
terms of the interatomic potential and temperature. We have stud-
ied the temperature dependence of specific heat and coefficient of
thermal expansion of graphene and diamond, and have found
good agreements with the experimental data without any param-
eter fitting. We have also studied the temperature dependence of
Young’s modulus and bifurcation strain of single-wall carbon
nanotubes.

The finite-temperature continuum theory based on interatomic
potentials can also be combined with the atomistic methods such
as the quasicontinuum method �1–7� or atomic-scale finite ele-
ment method �AFEM� �44,45� to study the temperature-dependent
behavior of materials. For example, the combination of AFEM
and present continuum theory provides a means to study materials
behavior across multiple length scales. AFEM can be applied to
domains where the behavior of discrete atoms is important �e.g.,
around a crack tip�, while the atomistic-based continuum theory
can be applied to domains where materials can be modeled as
continuum �e.g., far away from the crack tip�. Such a combination
is unique in that both AFEM and present continuum theory are
consistently based on the same interatomic potential.
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