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Abstract

Recent experiments have shown that metallic materials display significant size effect at the
micron and sub-micron scales. This has motivated the development of strain gradient plasti-
city theories, which usually involve extra boundary conditions and possibly higher-order

governing equations. We propose a finite deformation theory of nonlocal plasticity based on
the Taylor dislocation model. The theory falls into Rice’s theoretical framework of internal
variables [J Mech Phys Solids 19 (1971) 433], and it does not require any extra boundary
conditions. We apply the theory to study the micro-indentation hardness experiments, and it

agrees very well with the experimental data over a wide range of indentation depth.
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1. Introduction

Recent experiments have repeatedly shown that metallic materials display significant
size effect at the micron and submicron scales such as the micro-indentation hardness
experiments (Nix, 1989, 1997; Guzman et al., 1993; Stelmashenko et al., 1993;
Atkinson, 1995; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998;
Suresh et al., 1999; Saha et al., 2001; Tymiak et al., 2001; Swadener et al., 2002; Lou et
al., 2003), micro-twist (Fleck et al., 1994) and micro-bend experiments (Stolken
and Evans, 1998; Haque and Saif, 2003; Shrotriya et al., 2003), particle-reinforced
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metal-matrix composite materials (Lloyd, 1994), and metallic materials containing
microvoids (Taylor et al., 2002). Discrete dislocation simulations have also shown
strong size dependence of material behavior at the micron scale (Cleveringa et al.,
1997, 1998, 1999a,b; Shu et al., 2001). Classical theories of plasticity have no intrinsic
material lengths, and cannot explain the observed size dependence of materials. This
has motivated the development of strain gradient plasticity theories (e.g., Fleck and
Hutchinson, 1993, 1997; Fleck et al., 1994; Gao et al., 1999a,b; Acharya and Bassani,
2000; Acharya and Beaudoin, 2000; Chen and Wang, 2000, 2002; Gurtin, 2000, 2002,
2003; Huang et al., 2000a,b; Beaudoin and Acharya, 2001; Jiang et al., 2001; Qiu et
al., 2001, 2003; Evers et al., 2002; Hwang et al., 2002, 2003; Mariano, 2002; Dai and
Parks, 2003; Wang et al., 2003). Alternatively, Gao and Huang (2001) developed a
nonlocal plasticity theory based on the Taylor dislocation model (Taylor, 1934,
1938). The intrinsic material length established from the dislocation model is
�=�Yð Þ

2b, which is on the order of microns, where � is the shear modulus, �Y is the
yield stress, and b is the Burgers vector. This Taylor-based nonlocal theory of
plasticity (TNT) does not require extra boundary conditions since the equilibrium
equations are identical to those in classical plasticity (Gao and Huang, 2001). TNT
plasticity has been shown to agree well with the aforementioned micro-scale
experiments (Gao and Huang, 2001; Guo et al., 2001). Recently, Bazant and Guo
(2002) investigated the asymptotic limit of TNT plasticity at the small scale. Tver-
gaard and Niordson (2003) developed a nonlocal plasticity theory to study the void
size effect.

In this paper we develop a finite deformation theory for TNT plasticity since the
effect of finite deformation is important not only in the aforementioned micro-scale
experiments but also in material instability (e.g., plastic flow localization) and crack
tip field. The proposed theory falls into the theoretical framework of internal variables
established by Rice (1971), and it is applied to study the micro-indentation hardness
experiments.
2. Finite deformation constitutive law of TNT plasticity

For a rate-independent material at constant temperature, Green strain E is a
function of the second Piola–Kirchhoff stress T, E=E (T, �), where � is an internal
variable (or collection of internal variables) characterizing the state of internal
rearrangement (Rice, 1971). The increment of E is decomposed to the elastic and
plastic parts,
E
:
¼ E

:
e þ E

:
p ¼M : T

:
þ E

:
p; ð1Þ
whereM ¼ @E
@T

� �
�
is the fourth-order tensor of elastic compliances; E

:
p ¼

�
@E
@�

�
T
�
:
is the

plastic strain rate which results solely from the change of internal variable (i.e.,
internal rearrangement). Since the Green strain E can be generally expressed in
terms of the Gibbs free energy �G (per unit volume in the reference configuration)
as E ¼ �

@�G T;�ð Þ

@T , the plastic strain rate can be written as
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where f ¼ �
@�G T;�ð Þ

@� is the thermodynamic force associated with the internal variable.
Eq. (2) is the same as the normality of plastic flow in classical plasticity if the
thermodynamic force f associated with the internal variable is taken as the yield
function. An example of f is the Von Mises effective stress �eq,
f ¼ �eq: ð3Þ
In the present study, we take �eq as the effective stress in the current configuration,
�eq ¼ 3

2�
0 : �0

� �1=2
, where �0ij ¼ �ij �

1
3 �kk	ij is the deviatoric part of the Kirchhoff

stress �ij. Since � is related to the second Piola–Kirchhoff stress T via the deforma-
tion gradient F by �=F . T . FT, the effective stress can be expressed in terms of T by
�eq ¼
3

2
tr C � T� � C � T�ð Þ

� �1=2

: ð4Þ
where tr is the first invariant of the second order tensor, C=I+2E is the right
Cauchy–Green strain tensor, I is the identity tensor, and
T� ¼ T �
1

3
T : Cð ÞC�1 ð5Þ
The tensor @f
@T in (2) can then be obtained, @f

@T ¼
@�eq
@T ¼ 3

2�eq
C � T� � C, which gives the

plastic strain rate in the reference configuration from (2) as
E
:
p ¼

3

2�eq
C � T� � C�

:
: ð6Þ
The physical meaning of the internal variable � now becomes clear. The push
forward of (6) gives the plastic strain rate in the current configuration,
dp ¼ F�T � E

:
p � F�1 ¼ 3�0

2�eq
�
:
. The equivalent plastic strain rate is then obtained,


:p ¼

2

3
dp : dp

� �1=2

¼ �
:
; ð7Þ
which indicates that the internal variable � is the (accumulative) equivalent plastic
strain � ¼ 
p ¼

Ð


:pdt.

The yield function in TNT plasticity is (Gao and Huang, 2001)
�eq ¼ � 
p; �ð Þ; ð8Þ
where �eq is the effective stress in the current configuration, and is given in (4) for
finite deformation; � is the flow stress given by (Huang et al., 2000b; Gao and
Huang, 2001) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
� ¼ �ref f 2
p 
pð Þ þ l�: ð9Þ
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re �=�ref fp (
p) is the stress–plastic strain relation in uniaxial tension, �ref is a
He
reference stress (e.g., yield stress), � is the effective strain gradient to be given later, l
is the intrinsic material length given in terms of the shear modulus � and Burgers
vector b by
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l ¼ 18�2 �

�ref

� �2

b; ð10Þ
and � is an empirical material constant around 0.3 in the Taylor dislocation model
(Taylor, 1934, 1938). It should be pointed out that, even though the intrinsic mate-
rial length l depends on the reference stress �ref, the flow stress (and TNT plasticity)

does not since (9) can be rewritten as � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ref fp 
pð Þ

 �2

þ18�2�2b�

q
.

The effective strain gradient � in (9) is determined from the dislocation models as
�2 ¼ 1

4 �
0
ijk�

0
ijk (Gao et al., 1999b; Gao and Huang, 2001), where �0ijk ¼ �ijk �

1
4 	ik�jpp þ 	jk�ipp
� �

is the deviatoric strain gradient tensor; the strain gradient tensor
�ijk is obtained by integrating its rate, �ijk ¼

Ð
�
:
ijkdt; �

:
ijk is defined in terms of the

corresponding Jaumann rate �
r

in order to ensure the objectivity of �
�
:
ijk ¼ �

r

ijk þ wip�pjk þ wjp�ipk þ wkp�ijp; ð11Þ
and the Jaumann rate is given by
�
r

ijk ¼ djk;i þ dik;j � dij;k: ð12Þ
Here w and d are the anti-symmetric and symmetric parts of the velocity
gradient in the current configuration, respectively, dij ¼

1
2

�
@vi
@xj

þ
@vj
@xi

�
. In the nonlocal

theory of plasiticity, dij,k is evaluated via the nonlocal integral of d (Gao and Huang,
2001)
dij;k xð Þ ¼

ð
Vcell

dij x þ �ð Þ � dij xð Þ

 �

mdV

ð
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mkdV

� ��1

; ð13Þ
where x is a material point in the current configuration, Vcell is the integration cell
surrounding x, and � is the local coordinate origined at x. The increment of the
effective strain gradient can be obtained as
�
:
¼

1

4�
�0ijk�

0
ijk ¼

1

4�
�0ijk�

r

ijk: ð14Þ
The yield function can be rewritten from (4), (8) and (9) as
fyielding 

3

2
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Its increment form gives the consistency condition to determine the equivalent
plastic strain rate 


:p since �
:
is known from (14).

The substitution of (6), (7) and the consistency condition from (15) into (1) gives
the rate of Green strain E

:
in terms of the rate of second Piola–Kirchhoff stress T

:
. Its

inverse gives the constitutive law of finite deformation TNT plasticity,
T
:
¼ L : E

:
� �0 C � T� � C floading

4
9 �

2
ref fp 
pð Þf 0p 
pð Þ� þ C � T� � Cð Þ : L : C � T� � Cð Þ

( )
; ð16Þ
where L=M�1 is the fourth-order tensor of elastic moduli, and �0 is the loading
coefficient given by
�0 ¼ 1 fyielding ¼ 0 and floading > 0

¼ 0 fyielding < 0 or floading < 0; ð17Þ
fyielding is defined in (15), and
floading 
 C � T� � Cð Þ : L þ
2

3
T : Cð ÞT� þ 2 T� � C � T�ð Þ

� �
: E
:
�

1

3
�2
ref l�

:
; ð18Þ
which separates plastic loading from elastic unloading.
It should be pointed out that the equilibrium equations and boundary conditions

in the finite deformation TNT plasticity are the same as their counterparts in the
classical theory of plasticity, and are therefore not presented here.
3. Micro-indentation hardness experiments

Based on the principle of virtual work, we have implemented the finite deforma-
tion theory of TNT plasticity in the ABAQUS finite element program via its USER-
ELEMENT subroutine UEL. Details of finite element implementation are very
similar to those of Guo et al. (2001), who studied the micro-indentation hardness
experiments via the infinitesimal deformation theory of TNT plasticity. We then use
the finite element method for finite deformation theory of TNT plasticity to examine
the effect of finite deformation in micro-indentation experiments.

Fig. 1 shows a schematic diagram of Guo et al.’s (2001) indentation model for
McElhaney et al.’s (1998) micro-indentation hardness experiment of polycrystalline
copper. The same indentation model is adopted in the present study, but the finite
deformation theory of TNT plasticity is used. The indentation hardness H is defined
as the average contact pressure P=A, where P is the indentation load and A is the
contact area.

Fig. 2 shows the micro-indentation hardness predicted by the present study for
polycrystalline copper. The square of the indentation hardness,

�
H
H0

�2
, is plotted

against the inverse of indentation depth, 1
h, as suggested by Nix and Gao (1998),

where H is the micro-indentation hardness and H0 is the indentation hardness for
large depth of indentation (i.e., without strain gradient effects). The shear modulus
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of copper is �=42 GPa, Poisson ratio �=0.3 (McElhaney et al., 1998), Burgers
vector b=0.255 nm, and Taylor coefficient �=0.2. The uniaxial stress–strain
relation after plastic yielding can be written as a power law, �=518
0.3 MPa, where
the work hardening exponent 0.3 is consistent with that reported by McLean (1962)
and Fleck et al. (1994) for polycrystalline copper. Based on this uniaxial stress–
strain relation, the finite element method predicts an indentation hardness H0=834
Fig. 1. A schematic diagram of the indentation model.
Fig. 2. Depth dependence of the hardness for polycrystalline copper. The solid line is the predicted

hardness based on the finite deformation theory of TNT plasticity; H is the micro-indentation hardness, h

is the depth of indentation, and H0=834 MPa is the indentation hardness for a large indentation depth.

The triangles are experimental data of McElhaney et al. (1998). Other material properties are shear

modulus �=42 GPa, Poisson’s ratio �=0.3, Burgers vector b=0.255 nm, uniaxial stress–strain relation

�=518
0.3 MPa, and Taylor coefficient �=0.20.
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MPa at a large indentation depth (without strain gradient effects), which agrees with
the measured value of H0 (McElhaney et al., 1998). The experimental hardness data
of McElhaney et al. (1998) are also shown in Fig. 2 for comparison. It is clearly
observed that the numerically predicted hardness based on the finite deformation
theory of TNT plasticity agrees very well with the experimental data over a wide
range of indentation depth, from one tenth of a micron to several microns. The
Taylor coefficient �=0.20 in Fig. 1 for the finite deformation theory of TNT plasti-
city is smaller than its counterpart �=0.30 used by Guo et al. (2001) in the infinite-
simal deformation theory of TNT plasticity. Therefore, finite deformation has some
effect in micro-indentation experiments, and should be accounted for.
4. Concluding remarks

We have developed a finite deformation theory of nonlocal plasticity from the
Taylor dislocation model. The theory falls into Rice’s (1971) theoretical framework
of internal variables, and it has the same equilibrium equations and therefore does
not require additional boundary conditions. We have also applied the theory to
study the micro-indentation hardness experiments, and established that the effect of
finite deformation is important in the micro-indentation hardness experiments and
should be accounted for.
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