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1 Introduction does not affect the deformation theory of MSG plasti¢jityl,12)

. . either since the theory assumes material incompressibility.
Fleck and Hutchinsofil] proposed a phenomenological theory™, = 2y 0o decomposition of the strain gradient tensor is

of strain gradient plasticity in order to characterize the size depen- osed in this stud
dence observed in the micron and submicron scale experimeﬁ'ﬁgp Y

([2-9)). The strain gradient tensaf;;=uy ;; is decomposed into ﬂijkzﬁﬁﬂk, 2)
a volumetric partnfj‘k and a deviatoric part, 77ijk=7l”k
+ 7, where uy is the displacement, and;i'?k=1/4 (Sikjpp
+ Sk mipp) ([10]). Within the same theoretical framewo(KL]),

which gives a vanishing deviatoric pa_ytjk for an arbitrary volu-
metric strain field. The theory of MSG plasticity11,12)) is then

) ‘o._generated accordingly to include the elastic deformation. Finally,
Gao, Huang and co-worke(§l1,12) developed the mechanism we study the crack-tip field with the elastic-plastic theory of MSG

based strain gradientMSG) plasticity theory from the Taylor . ; ;
model in dislocation mechanics, and the theory agrees very mtg!gsgg:}gr:ﬂgoft;?r\%mﬁt;he stress field around the crack tip has

with the micro-indentation, microtorsion, and microbend experi-
ments([13,14)).
Hwang and Inou¢l5] investigated the strain gradient effect for

the following displacement field: 2 Decomposition of the Strain Gradient Tensor
ule(xi—xg—xg)—kZBxlxz—k 2Cx;X3, Becaqse the strain gradient tensor can be expressed. in terms of
the strain, 7 =g j+ &jx,i—&ij x,» @ natural way to define the
Up=2AX1Xo+ B(—x§+ x%—x§)+20xzx3, (1) deviatoric strain gradient is to replace the strain by its deviatoric

parte’ (=e;; —1/3e ;i) in the above relation, i.e.,
Us=2AX; X3+ 2B XpX3+ C(— X2 — X5+ X3), ne !

) . ) M= €k, T ki~ Eij ko )
whereA, B, andC are constants. It gives a pure volumetric strain ) ) o
field, s;;=2(Ax;+Bx,+Cx3) & , i.e., the deviatoric strain field which clearly vanishes for a purely volumetric strain fig¢édg.,

Si'j vanishes. The strain gradient field, however, is not pure V0|l(,lj-'):|' The corresponding volumetric part of the strain gradient ten-

metric because the deviatoric strain gradient field does not vanisf! becomes
ni’jka&o. It is quite puzzling that a pure volumetric strain field . 1 1 1
gives a deviatoric strain gradient field because the former implies ~ 7ijk = 7ijk — ﬂijkzgspp,j5ik+ §8pp,i5jk_ §8pp,k5ij G

no plastic deformatioisince plastic deformation is always devia-

toric) while the latter represents the plastic deformation associatéfie above decomposition is different from the existing strain gra-
with the geometrically necessary dislocatidfsl]). It should be dient theories([1,11,13), and it ensures that the deviatoric and
pointed out that the above puzzle between the volumetric strai@lumetric part of the strain gradient field result from the devia-
field and deviatoric strain gradient field does not apply to the flof@ric and volumetric strain fields, respectively.

theories of strain gradient plasticity1,16—19) because of the ~ The higher-order stress, which is the work conjugate of the
clear distinction between the plastic strain and the total strain.strain gradient tensor, is decomposition differently,, :E*j'k

+ i, such that the virtual work done by the higher-order stress
can be separated into the hydrostatic and deviatoric parts
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Fig. 1 The effective stress o, normalized by the uniaxial yield stress oy
versus the normalized distance to the crack tip, r/l, ahead of the crack tip,
where [ is the intrinsic material length in strain gradient plasticity; the plas-

tic work hardening exponent  N=0.2, Poisson’s ratio »=0.3, the ratio of yield
stress to elastic modulus o/ E=0.2 percent, and the remotely applied elas-
tic stress intensity factor K,/ oy /Y?=20

a1 1 1 K o
7'iik:§5ik Tipp™ 5 Tpp] +§5ik Tipp™ 3 Tppi |- 7 Tij =15 ﬁ(5ik7/jpp+ Sik Mipp) + ;(Aijk_nijk)
Unlike other strain gradient theorigkl,11,17), the decomposi- o2 f(e)f'(e)

tion of the higher-order stress;, is different from that of the
strain gradienty;y, .

p ijk [+ (12)
whereK is the elastic bulk modulusr is the flow stress ir{8);

3 The Elastic-Plastic Theory of Mechanism-Based o

Strain Gradient Plasticity A= (2775 + i+ i) Hijk:%(ei’kmmn+sj/k7i'mn);
Let o= 0 f(e) be the uniaxial stress-strain relation, amgs (13)

be a reference stress in uniaxial tension. The flow srdadVISG ) o . .

plasticity is established from Taylor model in dislocation mechare =10(x/ov)b, andoy is the initial yield stress in uniaxial ten-

ics as([13]) sion.

o= o f(e) +18a°u?by=oef2(e) +17, (8) 4 Crack-Tip Singularity in MSG Plasticity

wheree = \/2/3¢{j &} is the effective strainu the shear modulus, We use the finite element method for the elastic-plastic theory
b the Burgers vectorg (0.1~0.5) an empirical material constantof MSG plasticity to investigate the mode | crack-tip field and
in the Taylor dislocation model, and the effective strain gradignt crack-tip singularity. A semi-infinite crack in an infinite elastic-
is determined by three dislocation modé]41]) for an incom- plastic solid remains traction-free on the crack face. The el&stic

pressible solid asy=1/2\/7/; 7. Here the deviatoric strain gra- field is imposed on the remote boundary. The plastic work-
dient tensomi’jk is the same asy), in (3) for an incompressible hardening exponerii=0.2, the ratio of yield stress to Young's

solid, therefore a natural generalizationpfor an elastic-plastic Modulus oy/E=0.2 percent and Poisson's ratic=0.3. Details
(compressiblesolid is of the numerical analysis are omitted in this paper.

Figure 1 shows the normalized Von Mises effective stress,

1 —— o.loy, versus the nondimensional distance to the crackrtip,

7= 5 N Mijk Tijk- (9 ahead of the crack tip, wherey is the yield stress antis the
) ) o ) ) _intrinsic material length in strain gradient plasticity. The results
The parametet in (8) is the intrinsic material length in strain gre presented for both the elastic-plastic theory of MSG plasticity

gradient plasticity given by and the classical theory of plasticitize., without strain gradient
w2 effecty. The remote applied stress intensity factorkis/ oyl /2
|218a2(0_—) b, (10) =20. The horizontal line ofro/oy=1 separates the elastic and
ref

plastic zones. Outside the plastic zone, both curves emerge to the
which is on the order of a few microns. same straight lines with the slope efl/2, corresponding to the
Following the same multiscale approahl]), we have estab- elasticK field with the square-root singularity. Within the plastic
lished the constitutive law for the elastic-plastic theory of MS@one, the two curves are also essentially the same at a distance
plasticity based on the alternative decomposition of the strain glarger than 0.Ato the crack tip. Within 0.Ato the crack tip, MSG

dient tensor in2)—(4). plasticity theory predicts significantly larger stresses than their
counterparts in classical plasticity. Moreover, classical plasticity

o= Kewd: + 2—03-’- (11) theory gives a straight line with the slope 6N/(N+1), corre-

i kKT 3g Tl sponding to the HRR field 20,21]), while MSG plasticity theory
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