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Abstract. In a remarkable series of experiments, Elssner et al. (1994) and Korn et al. (2002) observed cleavage
cracking along a bimaterial interface between Nb and sapphire. The stress required for cleavage cracking is around
the theoretical strength of the material. Classical plasticity models fall short to reach such a high stress level. We
use the conventional theory of mechanism-based strain gradient plasticity (Huang et al., 2004) to investigate the
stress field around the tip of an interface crack between Nb and sapphire. The tensile stress at a distance of 0.1 µm
to the interface crack tip reaches 13.3σY , where σY is the yield stress of Nb. This stress is nearly 4 times of that
predicted by classical plasticity theory (3.6σY ) at the same distance to the crack tip, and is high enough to trigger
cleavage cracking in materials and interfaces. This is consistent with Elssner et al.’s (1994) and Korn et al.’s (2002)
experimental observations.
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1. Introduction

1.1. CLEAVAGE CRACKS IN PRESENCE OF PLASTIC FLOW

In a remarkable series of experiments, Elssner et al. (1994) and Korn et al. (2002) meas-
ured both the macroscopic fracture toughness and atomic work of separation of an interface
between single crystal niobium and sapphire. The macroscopic work of fracture, measured
from a four-point bend specimen, was about 1000 times higher than the atomic work of
separation obtained from the equilibrium shapes of microscopic pores on the interface. This
large difference between macroscopic and atomic work of fracture was attributed to plastic
dissipation in niobium, i.e., the significant plastic flow associated with dislocation activities. It
is anticipated that the crack tip would be blunted by dislocations in niobium, and the maximum
stress around the crack tip is no more than 4 to 5 times the tensile yield stress σy of niobium
according to classical plasticity models (Hutchinson, 1997). However, Elssner et al. (1994)
and Korn et al. (2002) observed cleavage cracks in the niobium/sapphire system, i.e., the
crack tip remained atomistically sharp without any blunting even though niobium had a large
number of dislocations. Cleavage cracks in presence of significant plastic flow have also been
observed in many other material systems (e.g., Oh et al., 1987; Wang and Anderson, 1991;
Beltz and Wang, 1992; Korn et al., 1992; O’Dowd et al, 1992; Bagchi et al., 1994; Bagchi and
Evans, 1996). The stress level around a cleavage crack tip for atomic decohesion of a lattice or
strong interface is the theoretical strength of the metal, which is about one tenth of the shear
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modulus, µ/10. For typical metals, it is approximately E/30 (E is the Young’s modulus) or 10
times the yield stress, i.e., 10σy . This stress level of 10σy required for cleavage cracks is more
than twice the maximum stress around the crack tip predicted by classical plasticity models.
It is clear that classical plasticity models fall short to explain Elssner et al.’s (1994) and Korn
et al.’s (2002) experimental observation of cleavage cracks in presence of plastic flow.

There are significant efforts to develop continuum (but not classical) plasticity models that
predict higher stress level around the crack tip than classical plasticity models do in order to
explain the observed cleavage cracks in presence of significant plastic flow. Suo et al. (1993)
introduced the so-called SSV model in which the crack tip was surrounded by a dislocation-
free strip. The strip was elastic (since there are no dislocations inside), with the strip height
on the order of dislocation spacing. The strip was in turn surrounded by the plastic zone. The
SSV model indeed predicted much higher stress around the crack tip in the elastic strip. Using
the self-consistent method, Beltz et al. (1996) determined the height of the dislocation-free
strip. Wei and Hutchinson (1999) combined the SSV model with the cohesive zone model
(e.g., Needleman, 1987; Tvergaard and Hutchinson, 1992, 1993; Xu and Needleman, 1994;
Camacho and Ortiz, 1996) to investigate the stress level around a crack tip.

1.2. STRAIN GRADIENT PLASTICITY THEORIES

An alternative approach to study cleavage cracks in presence of significant plastic flow comes
from strain gradient plasticity theories. These theories are developed primarily to study size ef-
fects observed in materials at the micron and sub-micron scales, such as the micro-indentation
hardness experiments of various metallic materials (e.g., Nix, 1989, 1997; de Guzman et al.,
1993; Stelmashenko et al., 1993; Atkinson, 1995; Ma and Clarke, 1995; Poole et al., 1996;
McElhaney et al., 1998; Suresh et al., 1999; Saha et al., 2001; Tymiak et al., 2001; Swadener
et al., 2002; Lou et al., 2003); micro-twist experiments of thin copper wires (Fleck et al.,
1994); micro-bend experiments of nickel foils (Stolken and Evans, 1998; Shrotriya et al.,
2003) and aluminum beams (Haque and Saif, 2003); particle reinforced metal matrix compos-
ites (Lloyd, 1994; Argon et al., 1998); micro-electro-mechanical systems (Douglass, 1998);
and discrete dislocation models of van der Giessen, Needleman and co-workers (e.g., Needle-
man et al., 2001; van der Giessen et al., 2001; Shi et al., 2004a, b). These size effects, which
cannot be explained by classical plasticity models that possess no internal material lengths,
have been attributed to geometrically necessary dislocations associated with non-uniform
plastic deformation. Accordingly, strain gradient plasticity theories have been developed, and
internal material lengths are introduced to scale with strain gradients from the dimensional
consideration.

The strain gradient plasticity theories can be classified to the lower-order and higher-order
theories. The higher-order theories involve the rate of strain gradient in the incremental con-
stitutive relation (e.g., Fleck and Hutchinson, 1993, 1997, 2001; Fleck et al., 1994; Gao et al.,
1999a, b; Huang et al., 2000a, b; Qiu et al., 2001, 2003; Gurtin, 2002; Hwang et al., 2002,
2003). They belong to Mindlin’s (1964) theoretical framework of higher-order continuum
theory, and require additional governing equations and additional boundary conditions bey-
ond those in the classical continuum theories. For the lower-order theories, the plastic strain
gradient comes into play via the incremental plastic work hardening modulus. The lower-order
theories involve the conventional stress and strain only, and require no additional boundary
conditions beyond those in the classical continuum theories (e.g., Acharya and Bassani, 2000;
Acharya and Beaudoin, 2000; Bassani, 2001; Beaudoin et al., 2001; Evers et al., 2002; Huang
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Figure 1. The strain gradient distribution dε11/dx1 in the bar of length L = 0.1l predicted by lower-order theory
(CMSG, solid curve) and MSG plasticity, higher-order strain gradient plasticity theory (dashed curve) for a bar
subject to body force and applied stress traction at the free end, where l is the intrinsic material length in strain
gradient plasticity. The material parameters are power-law hardening exponent N = 0.5, Poisson’s ratio ν = 1/2,
the ration of yield stress to Young’s modulus σY /E = 0.2%, and rate sensitivity exponent m = 20.

et al., 2004). Volokh and Hutchinson (2002) provided a critical evaluation of Bassani’s (2001)
lower-order strain gradient plasticity theories, and pointed out that the lower-order theory is
not actually lower order. Rather some higher-order boundary conditions are imposed impli-
citly through the numerical evaluation of the plastic strain gradient. For a strip subject to pure
shear, Niordson and Hutchinson (2003) showed that the plastic strain distribution predicted
by Bassani’s (2001) lower-order strain gradient plasticity theory may exhibit a vertex at the
center of the strip, which contradicts the symmetry condition at the center. Niordson and
Hutchinson’s (2003) analysis, however, involves the central difference scheme inside the strip
and skew difference scheme on the strip boundary. In order to avoid this complexity of using
different numerical schemes by Niordson and Hutchinson (2003), Yun et al. (2004) used the
method of characteristics to determine the ‘domain of determinacy’ for the same problem of
a strip subject to pure shear. They established that, as the applied shear stress increases, the
‘domain of determinacy’ shrinks and eventually vanishes. Additional, non-classical bound-
ary conditions are necessary for the well-posedness of Bassani’s (2001) lower-order strain
gradient plasticity theory. Within the ‘domain of determinacy’, Yun et al.’s (2004) solution
based on the method of characteristics agrees well with Niordson and Hutchinson’s (2003)
finite difference solution. Outside the ‘domain of determinacy’ the solution is not unique
unless additional, non-classical boundary conditions are imposed. Acharya et al. (2004) also
examined the same problem of a strip in pure shear, but used Acharya and Bassani’s (2000)
lower-order theory. They established that the necessity of additional, non-classical boundary
conditions depends on the hardening function and the initial strain distribution. It is possible
for Acharya and Bassani’s (2000) lower-order theory no additional boundary conditions are
necessary.
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Huang et al. (2004) compared the higher-order (Gao et al., 1999b; Huang et al., 2000a, b;
Qiu et al., 2003) and lower-order strain gradient plasticity theories (Huang et al., 2004) based
on the same dislocation model (Taylor, 1934, 1938). They studied five examples including
uniaxial tension with a constant body force, strip in pure shear, bending, torsion, and void
growth, and found that the stress (or strain) fields predicted by the higher-order and lower-
order theories are identical except in a thin boundary layer of the solid. This boundary layer
results from the higher-order boundary conditions and the thickness of boundary layer is on
the order of 10 nm. For a bar of length L subject to body force and applied stress traction
(at the free end of the bar), the strain gradient distributions given by both lower-order (Huang
et al., 2004) and higher-order strain gradient plasticity theories (Gao et al., 1999b; Huang et al.,
2000a) based on the same dislocation model (Taylor, 1934, 1938) are shown in Figure 1. The
modeling parameters can be found in Huang et al. (2004) [also Shi et al. (2001)]. It is clearly
observed that the lower-order and higher-order theories agree very well except within two
boundary layers at the ends x1 = 0 and x1 = L. The strain gradient distributions within
two boundary layers are significantly different due to the additional boundary conditions in
the higher-order theories. Therefore, the higher-order boundary conditions only influence the
stress and strain fields near the boundary of the solid.

1.3. THE STRAIN GRADIENT EFFECT ON FRACTURE OF HOMOGENEOUS MATERIALS

The existing fracture analyses in strain gradient plasticity are limited to homogeneous materi-
als. The phenomenological theory of strain gradient plasticity based on the rotation gradients
(Fleck and Hutchinson, 1993) does not show a significant increase in the stress level around
the stationary crack tip (e.g., Huang et al., 1995, 1997, 1999; Xia and Hutchinson, 1996;
Chen et al., 1998). This motivated Fleck and Hutchinson (1997) to introduce stretch gradients
in strain gradient plasticity. A much higher stress level is then achieved around the tip of
a quasi-static propagating crack (Wei and Hutchinson, 1997), but not around a stationary
crack tip (Chen et al., 1999; Shi et al., 2000b). Recently, Jiang et al. (2001) used the higher-
order theory of mechanism-based strain gradient plasticity (Gao et al., 1999b; Huang et al.,
2000a, b) established from the Taylor dislocation model (1934, 1938) to investigate the stress
field around a stationary crack tip in a homogeneous solid. The stress near the crack tip was
indeed more than 10 times the yield stress, which was significantly higher than that in the HRR
field in classical plasticity (Hutchinson, 1968; Rice and Rosengren, 1968), and might trigger
cleavage fracture in ductile materials. Shi et al. (2000a, 2001) investigated the asymptotic
crack tip field in the higher-order theory of mechanism-based strain gradient plasticity (Gao
et al., 1999b; Huang et al., 2000a, b). They showed that the higher-order boundary conditions
have essentially no effect on the stress distribution at a distance of more than 10 nm away
from the crack tip. This is consistent with the boundary layer effect discussed in Section 1.2.

1.4. THE STRAIN GRADIENT EFFECT ON FRACTURE OF BIMATERIAL INTERFACES

The present study aims at investigating the strain gradient effect on fracture of bimaterial
interfaces between elastic and elastic-plastic solids. It focuses on the stress increase around
the crack tip due to the strain gradient effect, and its implications on cleavage cracking in
presence of plastic flow as observed in Elssner et al.’s (1994) and Korn et al.’s (2002) ex-
periments. Since there is essentially no difference between the lower-order and higher-order
theories at a distance of more than 10 nm away from the crack tip, we will use the lower-order
theory of mechanism-based strain gradient plasticity (Huang et al., 2004) based on the Taylor
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dislocation model (1934, 1938). This is because any continuum plasticity theories, including
classical and strain gradient plasticity theories, represent the collective behavior of disloca-
tions, and are therefore only applicable at a scale larger than the average dislocation spacing.
For a typical dislocation density of 1014 m−2, the average dislocation spacing is around 100 nm
at which the lower-order (Huang et al., 2004) and higher-order theories of mechanism-based
strain gradient plasticity (Gao et al., 1999b; Huang et al., 2000a) give the same stress field.
The lower-order theory of strain gradient plasticity is summarized in Section 2, along with
the Taylor dislocation model. We begin the fracture analysis for a homogeneous material in
Section 3 in order to validate our approach. The interface crack between niobium and sapphire
in Elssner et al.’s (1994) 4-point bend specimen is studied in Section 4. The stress around the
crack tip is indeed much higher than that predicted by classical plasticity for interface cracks,
and it exceeds the stress level for cleavage cracking.

2. A conventional theory of mechanism-based strain gradient plasticity

The conventional theory of mechanism-based strain gradient plasticity (CMSG) developed
by Huang et al. (2004) is a lower-order theory based on the Taylor dislocation model (1934,
1938). It is summarized in the following.

2.1. TAYLOR DISLOCATION MODEL

The shear flow stress τ is related to the dislocation density ρ by (Taylor, 1934, 1938; Bailey
and Hirsch, 1960)

τ = αµb
√

ρ, (2.1)

where µ is the shear modulus, b is the magnitude of the Burgers vector, and α is an empirical
coefficient ranging from 0.3 to 0.5. The dislocation density ρ is composed of the density ρS

for statistically stored dislocations, which accumulate by trapping each other in a random way
(Ashby, 1970), and density ρG for geometrically necessary dislocations, which are required
for compatible deformation of various parts of the material (Nye, 1953; Cottrell, 1964; Ashby,
1970), i.e.,

ρ = ρS + ρG. (2.2)

The density ρG is related to the curvature of plastic deformation (Ashby, 1970; Nix and Gao,
1998), or effective plastic strain gradient ηp, by

ρG = r̄
ηp

b
, (2.3)

where r̄ is the Nye factor introduced by Arsenlis and Parks (1999) to reflect the effect of
crystallography on the distribution of geometrically necessary dislocations, and r̄ is around
1.90 for face-centered-cubic (fcc) polycrystals (Arsenlis and parks, 1999; Shi et al., 2004a).

The tensile flow stress σf low is related to the shear flow stress τ by

σf low = Mτ, (2.4)

where M is the Taylor factor which acts as an isotropic interpretation of the crystalline aniso-
tropy at the continuum level, and M = 3.06 for fcc metals (Bishop and Hill, 1951a, b; Kocks,
1970) as well as for body-centered-cubic metals that slip on {110} planes (Kocks, 1970). The
substitution of (2.1)–(2.3) into (2.4) yields
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σf low = Mαµb

√
ρS + r̄

ηp

b
. (2.5)

For uniaxial tension, the flow stress can also be related to the plastic strain εp by σf low =
σref f (εp), where σref is a reference stress and f is a nondimensional function determined
from the uniaxial stress-strain curve. Since the plastic strain gradient ηp vanishes in uniaxial
tension, the density ρS of statistically stored dislocations is determined from (2.5) as ρS =[
σref f (εp) /(Mαµb)

]2
. The flow stress in (2.5) then becomes

σf low =
√[

σref f (εp)
]2 + M2r̄α2µ2bηp = σref

√
f 2 (εp) + lηp, (2.6)

where

l = M2r̄α2

(
µ

σref

)2

b = 18α2

(
µ

σref

)2

b (2.7)

is the intrinsic material length in strain gradient plasticity, M = 3.06 and r̄ = 1.90. This
intrinsic material length represents a natural combination of the effects of elasticity (shear
modulus µ), plasticity (reference stress σref ) and atomic spacing (Burgers vector b). It is
important to note that, even though this intrinsic material length l depends on the choice of
the reference stress σref in uniaxial tension, the flow stress σf low in (2.6) does not because
the strain gradient term inside the square root in (2.6) becomes σ 2

ref lηp = 18α2µ2bηp, and
is independent of σref . Here the term 18α2µ2bηp involves the plastic strain gradient ηp to
be given in Section 2.4, well-defined material properties such as shear modulus and Burgers
vector, and the coefficient α in the Taylor dislocation model that varies from 0.3 to 0.5.

2.2. AN ALTERNATIVE EXPRESSION OF THE UNIAXIAL STRESS-STRAIN CURVE

Huang et al. (2004) suggested to rewrite the uniaxial stress-plastic strain relation σ = σref f

(εp) to the following viscoplastic expression (e.g., Hutchinson, 1976; Canova and Kocks,
1984; Asaro and Needleman, 1985) in order to pave the way for the establishment of a lower-
order theory of CMSG plasticity

ε̇p = ε̇0

[
σ

σref f (εp)

]m

, (2.8)

where ε̇p is the rate of plastic strain, ε̇0 is a reference strain rate, and m is the rate-sensitivity
exponent which usually takes a large value (m � 20). In the limit m → ∞, (2.8) degener-
ates to σ = σref f (εp). Equation (2.8), however, displays a strain-rate sensitivity such that
the resulting stress-strain relation depends on the normalized time ε̇0t , even though this rate
sensitivity is rather weak for a large m (� 20).

Following Kok et al. (2002a, b, c), Huang et al. (2004) proposed to replace the reference
strain rate ε̇0 by the effective strain rate ε̇ in order to eliminate the strain-rate sensitivity.
Equation (2.8) then becomes

ε̇p = ε̇

[
σ

σref f (εp)

]
m. (2.9)

In the limit m → ∞, (2.9) also degenerates to the uniaxial stress-strain relation σ = σref f (εp).
Since (2.9) has strain rate on both sides, the resulting stress-strain relation becomes independ-
ent of the strain rate, and the strains (including elastic and plastic strains) do not change once
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Figure 2. Uniaxial stress-strain relation for rate sensitivity exponent m = 5, 20 and ∞; σY is the initial yield
stress; power-law hardening exponent N = 0.2, the ratio of yield stress to Young’s modulus σY /E = 0.2%,
Poisson’s ratio ν = 0.3. The limit m = ∞ corresponds to the conventional power-law hardening relation.

the stresses are fixed. Figure 2 shows the uniaxial stress-strain relation for rate sensitivity
exponent m = 5, 20 and ∞. Other modeling parameters can be found in Huang et al. (2004).
It is clearly observed that all curves are very close, and there is essentially no difference
between the curves for m = 20 and m = ∞. Therefore, (2.9) with m � 20 is an excellent
representation of the uniaxial stress-strain relation σ = σref f (εp). Even though such an
approach looks more complex, it paves the way to establish a conventional theory of strain
gradient plasticity based on the Taylor dislocation model, as discussed in the next section.

Another advantage of this approach is that, similar to viscoplastic models, it is not neces-
sary to distinguish elastic unloading from plastic loading any more since (2.9) is applicable
to both elastic and plastic deformation. If σ < σref (εp), the plastic strain rate ε̇p obtained
from (2.9) with m � 20 becomes essentially zero, i.e., the deformation is essentially elastic.
Figure 3 shows the loading and unloading stress-strain curve in uniaxial tension. The modeling
parameters can be found in Huang et al. (2004). Here m = ∞ corresponds to the uniaxial
stress-strain relation σ = σref f (εp) and it gives a straight line with the slope of Young’s
modulus in Figure 3 during unloading. The curve for m = 20 is very close to that for m = ∞
during both loading and unloading.

2.3. THE CONSTITUTIVE MODEL IN CMSG PLASTICITY

The volumetric strain rate ε̇kk and deviatoric strain rate ε̇′
ij in CMSG plasticity are related to

the stress rate in the same way as in classical plasticity, i.e.,

ε̇kk = σ̇kk

3K
, (2.10)

ε̇′
ij = σ̇ ′

ij

2µ
+ 3ε̇p

2σe

σ ′
ij , (2.11)
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Figure 3. Loading and unloading stress-strain curve in uniaxial tension; σY is the initial yield stress. The stress σ

increases monotonically to 1.5σY , at which it unloads completely and reloads to a higher stress 2σY . The material
parameters are the same as those in Figure 1. The solid curve (m = 20) corresponds to the new constitutive relation
(2.9). The dashed curve (m = ∞) corresponds to the conventional power-law hardening with a linear unloading
relation (a straight line with the slope of Young’s modulus E).

where K and µ are the elastic bulk and shear moduli, respectively, σ ′
ij is the deviatoric

stress, and σe =
(

3σ ′
ij σ

′
ij /2

)1/2
is the effective stress. The effective plastic strain rate ε̇p =(

2ε̇
p

ij ε̇
p

ij /3
)1/2

is obtained from (2.9) except that the tensile flow stress σref f (εp) in the
denominator is replaced by the flow stress in (2.6) established from the Taylor dislocation
model accounting for the strain gradient effect, i.e.,

ε̇p = ε̇

(
σe

σf low

)m

= ε̇

[
σe

σref

√
f 2 (εp) + lηp

]m

, (2.12)

where ε̇ =
(

2ε̇′
ij ε̇

′
ij /3

)1/2
. Equations (2.10)–(2.12) can be rearranged to give the stress rate in

terms of the strain rate,

σ̇ij = Kε̇kkδij + 2µ

{
ε̇′
ij − 3ε̇

2σe

[
σe

σref

√
f 2 (εp) + lηp

]m

σ ′
ij

}
. (2.13)

This is the constitutive relation in CMSG, which involves the conventional stress and strain
only, and no higher-order stress. The plastic strain gradient comes into play to reduce the
incremental plastic modulus, similar to Acharya and Bassani (2000) and Acharya and Beau-
doin (2000). CMSG also bears similarity with Ever et al.’s (2002) viscoplastic strain gradient
plasticity theory because CMSG would have been viscoplastic if ε̇0 were not replaced by
ε̇ in (2.9). Furthermore, Huang et al. (2004) compared CMSG with the higher-order theory
of mechanism-based strain gradient plasticity (Gao et al., 1999b; Huang et al., 2000a, b)
established from the same Taylor dislocation model (1934, 1938). The stress distributions
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predicted by the lower and higher-order theories are only different within a thin boundary
layer whose thickness is around 10nm (e.g., Shi et al., 2001; Huang et al., 2004).

It is important to note that the yield condition σe = σref

√
f 2 (εp) + lηp is not strictly

enforced in CMSG. Rather it holds approximately via Equations (2.12) or (2.13). The effective

stress σe is related to the deviatoric stress by σe =
(

3σ ′
ij σ

′
ij /2

)1/2
, and the deviatoric stress is

updated via (2.13). The effective strain rate is similarly obtained via ε̇ =
(

2ε̇′
ij ε̇

′
ij /3

)1/2
.

2.4. EFFECTIVE PLASTIC STRAIN GRADIENT

There are two measures of effective plastic strain gradient ηp in CMSG (Huang et al., 2004).
The first was given by Gao et al. (1999b) who used three quadratic invariants of plastic strain
gradient tensor to represent ηp, and the coefficients of three quadratic invariants were determ-
ined by three models of geometrically necessary dislocations, namely bending, torsion and
void growth. The resulting effective plastic strain gradient is given by

ηp =
∫

η̇dt, η̇p =
√

1

4
η̇

p

ijk η̇
p

ijk , η̇
p

ijk = ε̇
p

ik,j + ε̇
p

jk,i − ε̇
p

ij,k , (2.14)

where ε̇
p

ij is the tensor of plastic strain rate.
Another expression of the effective plastic strain gradient in CMSG results from Nye’s

dislocation tensor (e.g., Kondo, 1952, 1955; Bilby et al., 1955; Eshelby, 1956; Kröner, 1960;
Fox, 1966). Even though the total deformation gradient F = Fe · Fp (Lee, 1969) corresponds
to a compatible deformation field, its plastic part Fp (or equivalently, the inverse elastic part,
Fe−1

) is generally incompatible, and therefore requires geometrically necessary dislocations
to accommodate the incompatible plastic deformation (Steinmann, 1996; Arsenlis and Parks,
1999; Shizawa and Zbib, 1999; Acharya and Bassani, 2000; Acharya and Beaudoin, 2000;
Beaudoin et al., 2001; Cermelli and Gurtin, 2001). Steinmann (1996) and Cermelli and Gurtin

(2001) defined the tensor of geometrically necessary dislocations as
1

detFp
Fp · (∇ × Fp

)
,

where det is the determinant and ∇ is the gradient operator. For infinitesimal deformation, it
degenerates to −εp × ∇, where εp is the tensor of plastic strain εp = ∫

ε̇pdt . Accordingly,
the effective plastic strain gradient ηp is defined as the quadratic invariant of −εp × ∇, i.e.,

ηp = √
(−εp × ∇) : (−εp × ∇) = √

(εp × ∇) : (εp × ∇). (2.15)

Huang et al. (2004) examined the difference between two effective plastic strain gradients
in (2.14) and (2.15) in several examples, including microbend, microtwist, microvoid growth,
uniaxial tension subject to a body force, and an infinite strip in shear. The strain (and stress)
fields predicted by CMSG based on these two different effective plastic strain gradients are
essentially the same. Therefore, we use (2.14) for the effective plastic strain gradient in the
present study.

2.5. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

Since CMSG does not involve the higher-order stress, equilibrium equations remain the same
as those in conventional continuum theories, i.e.,

σji,j + fi = 0, (2.16)



208 S. Qu et al.

where fi is the body force. The traction and displacement boundaries are also the same as
their counterparts in conventional continuum theories, i.e.,

σjinj = ti, (2.17)

ui = ūi, (2.18)

where nj is the unit normal, and ti and ūi are stress traction and displacement on the traction
boundary and displacement boundary, respectively.

2.6. LIMIT ON CMSG

It is important to note that CMSG as well as other continuum plasticity theories must have
lower limits and cannot be applied down to the nanometer scale. This is because the continuum
plasticity theories represent the collective behavior of discrete dislocations, and are therefore
only applicable at a scale larger than the average dislocation spacing. For example, the Taylor
dislocation model (2.1), which represents the collective effect of dislocations on the shear
flow stress, holds at a scale larger than the dislocation spacing. For a representative dislocation
density 1014/m2, the average dislocation spacing is around 100 nm such that the lower limit
of CMSG is on the order of 100 nm. This lower limit, however, is not a fixed constant and it
may vary for different materials, but such a lower limit exists below which CMSG and other
continuum plasticity theories are not applicable. This is similar to the limit of continuum
elasticity theory which is not applicable below the atomic spacing.

There is no upper limit of CMSG since the strain gradient term lηp becomes negligible at
the large scale. CMSG then naturally degenerates to classical plasticity.

2.7. FINITE ELEMENT ANALYSIS FOR CMSG

Unlike the higher-order theory of mechanism-based strain gradient plasticity (Gao et al.,
1999b; Huang et al., 2000a, b), CMSG is a lower-order theory which does not involve the
higher-order stress such that its governing equations are essentially the same as those in the
classical plasticity. One can easily modify the existing finite element program to incorporate
the plastic strain gradient effect. Specifically, we have implemented the constitutive relation
(2.13) of CMSG in the ABAQUS finite element program via its USER-MATERIAL sub-
routine UMAT. Its only difference from classical plasticity is that the plastic strain gradient
must be evaluated in UMAT. This is accomplished by the numerical differentiation within the
element, i.e., to interpolate the plastic strain increment 	εp within each element via the values
at Gaussian integration points in the isoparametric space, and then to determine the gradient
of plastic strain increment via the differentiation of the shape function.

3. Fracture in homogeneous materials

We use the finite element method for CMSG to investigate the stress field around a plane-strain
mode-I crack tip. The crack faces correspond to the rays θ = ±π in the polar coordinates
centered at the tip. A circular region of radius 42 mm centered around the crack tip is analyzed
by the finite element method. Very fine mesh is used near the crack tip, around which the
smallest element is approximately 10 nm. Only the upper half circular domains is studied due
to symmetry, and there are 20 elements in the circumferential direction (0◦ � θ � 180◦). The
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mesh gradually becomes coarse remote from the crack tip, and the aspect ratio of elements is
close to 1. Refined meshes are used to ensure the numerical results are accurate.

The crack faces are traction free. The classical mode-I elastic K field is imposed on the
outer boundary (r = 42 mm) of the circular domain surrounding the crack tip. The elastic
stress intensity factor KI of the remote field increases monotonically such that there is no
unloading.

The elastic properties of the material include the Young’s modulus E and shear modulus
µ (or equivalently the Poisson’s ratio ν). The stress-plastic strain relation in uniaxial tension
can be written as

σ = σref f
(
εp

) = σY

(
E

σY

)N (
εp + σY

E

)N

, (3.1)

which involves the plastic properties: the yield stress σY and plastic work hardening exponent

N . The reference stress can be taken as σref = σY

(
E

σY

)N

, and f (εp) =
(
εp + σY

E

)N

. The

rate sensitivity exponent m also comes into play in (2.13). The dislocation properties of the
material include the Burgers vector b and the coefficient α in the Taylor dislocation model.

Figures 4a and 4b show the distribution of hoop stress σθθ ahead of the crack tip on
the plane θ = 0. The stress distribution in classical plasticity (without the strain gradient
effect) is also shown for comparison. The hoop stress is normalized by the tensile yield
stress σY . The distance r to the crack tip ranges from 0.1 µm to 200 µm, where 0.1 µm
corresponds to the lower limit of CMSG, as discussed in Section 2.6. The material parameters
are σY = 0.2%E, Poisson’s ratio ν = 0.3, plastic work hardening exponent N = 0.2, rate
sensitivity exponent m = 20, Burgers vector b = 0.255 nm, and coefficient α = 0.5 which
is within the range (0.3 to 0.5) for the Taylor dislocation model. These give the intrinsic
material length in (2.7) as l = 3.53 µm. The stress intensity factor in the remote elastic
field is KI = 17.3σY l1/2. For a representative yield stress σY = 200 MPa, the remote stress
intensity factor is KI = 6.5 MPa

√
m. It is observed from Figure 4a that CMSG and classical

plasticity predict essentially the same stress distribution away from the crack tip. Within a
zone of approximately 1 µm (at this stress intensity factor KI = 17.3σY l1/2, CMSG gives a
much higher stress level than the HRR field (Hutchinson, 1968; Rice and Rosengren, 1968)
in classical plasticity. In fact, the stress level in CMSG is 12σY at a distance of 0.1 µm to
the crack tip. This stress level is high enough to trigger cleavage cracking, as discussed in
Section 1. On the contrary, the stress level at the same distance 0.1 µm to the crack tip in
classical plasticity is 7.5σY . The significant increase in stress is due to the strain gradient
effect around the crack tip. To illustrate the transition from the remote elastic K field through
the HRR field to the new stress field around the crack tip, we have shown the same stress
distribution in Figure 4b but in the log-log scale. The curve for large r becomes a straight
line with the slope −1/2, which corresponds to the elastic K field. The curve for r between
2 and 20 µm becomes another straight line with the slope −N/(N + 1), which corresponds
to the HRR field (Hutchinson, 1968; Rice and Rosengren, 1968) in classical plasticity. The
stress field predicted by CMSG agrees with the elastic K field and the HRR field in the
corresponding regions, but becomes much larger within 1 µm distance to the crack tip.

We have also compared the stress distribution in Figure 4 to the higher-order theory of
mechanism-based strain gradient plasticity (see Jiang et al., 2001). CMSG and the higher-
order theory give identical stress distributions at a distance 0.1 µm away from the crack tip.
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Figure 4. Distributions of the hoop stress σθθ ahead of the crack tip on the plane θ = 0 in a homogeneous
material predicted by the conventional theory of mechanism-based strain gradient plasticity (CMSG) and classical
plasticity theory. Here r is the distance to the crack tip. The material properties include the Poisson’s ratio ν = 0.3,
yield stress σY = 0.2% (E is the Young’s modulus), plastic working hardening exponent N = 0.2, rate sensitivity
exponent m = 20, Burgers vector b = 0.255 nm, and the coefficient α = 0.5 in the Taylor dislocation model. The
stress intensity factor in the remote elastic field is KI = 17.3σY l1/2, where l = 3.53 µm is the intrinsic material
length in (2.7). a) The distance to the crack tip r is in log scale; b) Both σθθ and r are in log scale.
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Table 1. Elastic properties of Sapphire, Alumina, Single Crystal Nb and
Polycrystalline Nb (Korn et al., 2002)

Young’s modulus E (GPa) Poisson’s ratio ν

Sapphire 425 0.16

Alumina 390 0.27

Single Crystal Nb 145 0.36

Polycrystalline Nb 105 0.39

Figures 5a, b and c show the contour plots of the densities ρG and ρS of geometrically
necessary dislocations and statistically stored dislocations, and the total dislocation density
ρ = ρG + ρS . Here ρG and ρS are related to the effective plastic strain gradient and the
uniaxial stress-plastic strain relation by ρG = r̄ηp/b and ρS = [

σref f (εp) /(Mαµb)
]2

,
respectively. The contours are shown in a region of 16 µm × 20 µm surrounding the crack
tip. The density ρG of geometrically necessary dislocations is large around the crack tip, but it
rapidly decreases away from the crack tip. On the contrary, the density ρS of statistically stored
dislocations is not as large as ρG around the crack tip, but it decreases much slower than ρG

away from the crack tip. The contours of total dislocation density ρ in Figure 5c are similar
to those of statistically stored dislocation density ρS in Figure 5b except in the immediate
neighborhood of the crack tip. This suggests that both ρS and ρG are important near the crack
tip, which is consistent with the conclusion established from Figure 4 that the significant
increase in stress near the crack tip is due to the geometrically necessary dislocations.

Figure 6 shows the ratio of normal stress predicted by CMSG and by classical plasticity,
σCMSG

θθ /σ classical
θθ , at a distance r = 0.1 µm ahead of the crack tip (θ = 0) versus the normalized

stress intensity factor KI/
(
σY l1/2

)
. This ratio σCMSG

θθ /σ classical
θθ represents the stress increase

due to the strain gradient effect. At a relatively small remote stress intensity factor KI =
17.3σY l1/2, the stress accounting for the strain gradient effect is approximately 60% higher
than that in classical plasticity. As the remote stress intensity factor KI increases, the strain
gradient effect becomes much more significant and the stress in CMSG can be almost 4 times
that in classical plasticity.

4. Fracture of bimaterial interfaces

We use CMSG to investigate fracture of interfaces between elastic and elastic-plastic solids.
To the best of our knowledge there exists no prior studies of the strain gradient effect on
fracture of bimaterial interfaces. The focus of the present study is on the stress level near an
interface crack tip in order to explore whether it is high enough to trigger cleavage cracking
in presence of significant plastic flow as observed in Elssner et al.’s (1994) and Korn et al.’s
(2002) experiments. Figure 7 shows a schematic diagram of the four-point bend specimen used
in their experiments. A single crystal sapphire layer is sandwiched between a single crystal
and a polycrystalline Nb layer, which in turn are sandwiched by two alumina layers. There is
a notch on the interface between the single crystal Nb and sapphire, and the notch length is
0.4 mm. The inner span of the four-point bend specimen is 9 mm, and the momentum arm is
also 9 mm (Figure 7). The specimen thickness (in the out-of-plane direction) is 2 mm.
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Figure 5. Contour plots of dislocation densities. a) geometrically necessary dislocation density ρG; b) statistically
stored dislocation density ρS ; c) total dislocation density ρ = ρS + ρG. The unit of dislocation densities is m2.
The material properties and the remote stress intensity factor are the same as those in Figure 4.

The four-point bend specimen in Figure 7 is analyzed by the two-dimensional, plane-strain
finite element method. The finite element mesh is shown in Figure 8. The applied loads are
imposed at the location shown in Figure 7. Sapphire and alumina are linear elastic. Their
elastic properties, as well as those of single crystal and polycrystalline Nb, are given in Table 1
(Korn et al., 2002). The single crystal and polycrystalline Nb are both elastic-plastic with the
uniaxial stress-plastic strain relation in (3.1). For single crystal Nb, we have taken the ratio of
yield stress to Young’s modulus as σY/E = 0.1%, which gives the yield stress σY = 145 MPa.
The plastic work hardening exponent is N = 0.05 to represent easy glide in single crystal
deformation. For polycrystalline Nb, the plastic work hardening exponent N = 0.24 and the
yield stress σY = 105 MPa (http://www.rembar.com/niobium.htm), and the latter also gives
the ratio of yield stress to Young’s modulus σY /E = 0.1%. The rate sensitivity of Nb m = 20,



Fracture analysis in the conventional theory of mechanism-based strain gradient 213

Figure 6. The ratio of normal stress predicted by CMSG and classical plasticity theories at a distance r = 0.1 µm

ahead of the crack tip (θ = 0) versus the normalized stress intensity factor KI/
(
σY l1/2

)
. The material properties

are the same as those in Figure 4.

Figure 7. A schematic diagram of the four-point bend specimen used in Elssner et al.’s (1994) and Korn et al.’s
(2002) experiments to study fracture of Nb/sapphire interface.
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Figure 8. The finite element mesh for the four-point bend specimen shown in Figure 7.

Burgers vector b = 0.25 nm, and coefficient α = 0.5 in the Taylor dislocation model. These
give the intrinsic material length for Nb as l = 5.29 µm.

Figure 9 shows the distributions of normal stress σ11 and shear stress σ12 along the single
crystal Nb/sapphire interface ahead of the notch tip. Here σ11 is the tensile stress normal to
the interface. Both σ11 and σ12 are normalized by the yield stress σY = 145 MPa of the single
crystal Nb. The distance r to the notch tip ranges from 0.1 µm to 200 µm. The applied force
is F = 85N . The shear stress σ12 is much smaller than the normal stress σ11 such that the
tensile stress dominates at the interface crack tip (Figure 9 shows −σ12 instead of σ12.). This
is because the sapphire layer is sandwiched between two Nb layers such that the mode mixity
for the interface crack tip is small. Both CMSG and classical plasticity results are shown, and
they give essentially the same stress distribution at a distance of more than 1 µm to the notch
tip. For r < 1 µm, CMSG gives much higher normal stress than classical plasticity due to the
strain gradient effect. In fact, classical plasticity gives σ11 = 3.6σY at r = 0.1 µm which is
far short to trigger cleavage cracking. CMSG gives σ11 = 13.3σY at the same r. This stress is
nearly 4 times that of classical plasticity, and definitely exceeds the stress needed for cleavage
cracking. The stress increase around an interface crack tip (Figure 9) is much more drastic
than that around a crack tip in a homogeneous solid (Figure 4). Therefore, CMSG provides an
explanation of cleavage cracking along the bimaterial interface in presence of plastic flow.
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Figure 9. Distributions of normal stress σ11 and shear stress σ12 along the interface between the single crystal Nb
and sapphire ahead of the notch tip, where σ11 is the tensile stress normal to the interface and σ11 and σ12 are
normalized by the yield stress σY of single crystal Nb. The elastic properties of sapphire, alumina, single crystal
and polycrystalline Nb are given in Table 1. The ratio of yield stress to Young’s modulus is 0.1% for both single
crystal and polycrystalline Nb. The plastic work hardening exponent N = 0.24 and 0.05 for polycrystalline and
single crystal Nb, respectively. The rate sensitivity exponent m = 20, Burgers vector b = 0.25 nm, and coefficient
α = 0.5 in the Taylor dislocation model. The applied force (see Figure 7) is F = 85N .

5. Concluding remarks

We have used the conventional theory of mechanism-based strain gradient plasticity (CMSG)
(Huang et al., 2004) to investigate fracture of materials and bimaterial interfaces. CMSG is a
lower-order theory of strain gradient plasticity established from the Taylor dislocation model
(1934, 1938). Except in a thin boundary layer whose thickness is on the order of 10 nm,
CMSG gives the same stress (or strain) field as the higher-order theory of mechanism-based
strain gradient plasticity (Gao et al., 1999b; Huang et al., 2000a, b). The following conclusions
are established in the present study.
(1) The stress level given by CMSG is much higher than that predicted by classical plasticity

within a zone on the order of microns around the crack tip. Our finite element analysis
clearly shows the transition from the remote elastic K field via the HRR field (Hutchinson,
1968; Rice and Rosengren, 1968) in classical plasticity to the new crack tip field.

(2) The contour plots of the dislocation densities clearly show that both geometrically ne-
cessary dislocations and statistically stored dislocations are important around the crack
tip. The strain gradient effect associated with geometrically necessary dislocations is
responsible for the significant stress increase around the crack tip.

(3) The stress increase due to the strain gradient effect around the crack tip at the Nb/sapphire
interface is much more significant than that around a crack tip in a homogeneous material.
The normal stress given by CMSG reaches 13.3 times the yield stress σY of Nb at a
distance 0.1 µm to the crack tip, while the classical plasticity theory (without the strain
gradient effect) only gives a normal stress 3.6σY at the same distance.
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(4) This stress level (13.3σY ) due to the strain gradient effect is high enough to trigger cleav-
age cracking. Therefore, CMSG provides an explanation of cleavage fracture in presence
of significant plastic flow observed in Elssner et al.’s (1994) and Korn et al.’s (2002)
experiments for the Nb/sapphire bimaterial system.
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