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Abstract

We have developed a hybrid continuum/atomistic model to study Stone–Wales transformation in single wall carbon

nanotubes. The atoms far away from the defect are characterized by an atomistic-based continuum theory established

from the interatomic potential, while atom positions in the vicinity of the defect are determined by molecular mechanics

coupled with the atomistic-based continuum theory. For a carbon nanotube in tension, the hybrid continuum/atomistic

model predicts a critical strain 4.95% for Stone–Wales transformation, which is in excellent agreement with prior

molecular dynamic studies. For a carbon nanotube in torsion, the present study predicts a critical shear strain of 12%.
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1. Introduction

Atomistic studies have suggested that carbon nanotubes (CNTs) possess unique and superior electrical,
electromechanical, and mechanical properties, and therefore have many potential applications such as

nanoelectronics, nanoelectro-mechanical systems (NEMS), and nanocomposites (e.g., [10,19,20,22,28]).

There are, however, some discrepancies between atomistic modeling and experimental results. For example,

Yakobson et al.’s [29] molecular dynamics (MD) simulations based on the empirical interatomic potential

for carbon [5] suggested that the breaking strain of a single wall CNT is as large as 55%, while the fracture

strain of multiwall CNTs measured by [30] is less than 12%. One important reason for this large difference is

that most atomistic studies have not accounted for the effect of defects in CNTs.
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Defects in CNTs can be categorized to three groups [9]:

1. topological defects, such as the so-called Stone–Wales transformation (i.e., 90� rotation of a C–C bond,
resulting a low energy 5–7–7–5 ring pair);

2. rehybridization defects, which refer to the change from sp2 to sp3 of a C–C bond due to highly localized

deformation; and

3. incomplete bonding and other defects, such as impurity attachments and substitutions.

The experimental studies on topological defects have mainly focussed on the change of CNT electrical
properties due to defect nucleation [1,6,14,15,24,26]. For example, Tekleab et al. [24] observed abrupt

change of electrical properties in the scanning tunneling microscopy and spectroscopy study of deformed

CNTs. Their MD simulations suggested that this abrupt change of electrical properties can be attributed to

the Stone–Wales transformation induced by large deformation.

There are some atomistic studies on topological defects in CNTs. Terrones et al. [25] investigated the

structural stability of defects and the effect of defects on electrical and mechanical properties of CNTs.

Nardelli et al.’s [17,18] MD simulations showed that defect nucleation in CNTs under tension occurs via

Stone–Wales transformation at a critical strain between 5% and 6%. Due to the intrinsic limit on the
timescale (10�12 s) of MD simulations, Nardelli et al. [17,18] used an extremely high strain rate of

1.7 · 1010 s�1 and very high temperature of 1800 K in the atomistic studies. Belytschko et al. [3] and

Dumitrica et al. [8] studied fracture and bond breaking in carbon nanotubes.

The propose of this paper is to study defect nucleation in the form of Stone–Wales transformation in

CNTs under quasistatic loading and low temperature. Instead of using MD which have an intrinsic limit on

the timescale (10�12 s), we conduct a hybrid continuum/atomistic study. Atoms far away from the defect are

represented by an atomistic-based continuum theory [11,31–33], which has been shown to agree well with

MD simulations studies without any parameter fitting. For atoms near the defect, we use molecular
mechanics coupled with the atomistic-based continuum theory to determine the atom positions. This hybrid

continuum/atomistic study significantly reduces the computation. For example, for a 10 nm long CNT with

more than 2000 atoms, the hybrid continuum/atomistic model involves only 42 atoms but achieves the same

accuracy.

In Section 2, we use the atomistic-based continuum theory to determine the atom positions in a defect-

free CNT subject to tension or torsion. The atomistic-based continuum theory is then coupled with

molecular mechanics calculations to study defect nucleation in a CNT in Section 3. This hybrid continuum/

atomistic study involves the energy minimization of only 42 atoms, which is significantly less than the
atomistic models involving more than 2000 atoms. The results for defect nucleation in a CNT under tension

and torsion are presented in Section 4 and 5, respectively.
2. An atomistic-based continuum theory for single wall carbon nanotubes

2.1. The empirical interatomic potential for carbon

The empirical interatomic potential established by Brenner [5] for carbon has been widely used in the

MD simulations of CNTs. The energy V stored in the atomic bond between atoms i and j is given by

V ¼ VRðrijÞ � BijVAðrijÞ; ð1Þ
where rij is the distance between atoms i and j; VR and VA are the repulsive and attractive pair terms
(depending only on rij), respectively, and Bij represents the multi-body coupling which depends on all

neighbor atoms of i and j. (Therefore V is not a pair potential depending only on the distance rij.) The
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expressions of VR, VA, and Bij, given by Brenner [5], are very long and are therefore not repeated here.

Detailed expressions and the parameters involved can be found in [13,33]. It should be pointed out that the

cutoff distance in the empirical interatomic potential becomes irrelevant in the present study since the

Stone–Wales transformation occurs way before the cutoff distance is reached.

2.2. Carbon nanotubes prior to deformation

As shown in Fig. 1, a CNT is a honeycomb lattice (Fig. 1a) rolled into a cylinder (Fig. 1b) without any
stretching. It is convenient to describe the CNT orientation and diameter via the base vectors a1 and a2 of
the honeycomb lattice (e.g., [21]), where a1 and a2 are vectors from atoms B to C and D to C (Fig. 1a),
respectively, and B, C, and D are three nearest-neighbor atoms of the representative atom A. The chiral

vector Ch, which represents the circumference of the CNT in the honeycomb lattice (Fig. 1a), can be ex-

pressed in terms of base vectors by [21]

Ch ¼ na1 þ ma2; ð2Þ
where, without losing generality, n and m are integers, and nPmP 0. The pair ðn;mÞ is called the chirality
of the CNT. Carbon nanotubes can be divided to three groups based on their chiral angle h (the angle
between Ch and a1), namely zigzag (h ¼ 0� or equivalently m ¼ 0), armchair (h ¼ 30�, or n ¼ m), and chiral
CNTs (0� < h < 30�, or n > m > 0).
Because of the finite curvature (radius) effect of the CNT, the honeycomb lattice (Fig. 1a) unrolled from

the CNT (Fig. 1b) does not have the same lattice constants, i.e., AB 6¼AC 6¼AD. Jiang et al. [13] deter-
mined these lattice constants for various CNT chiralities ðn;mÞ by energy minimization. The positions of
nearest-neighbor atoms B, C, and D with respect to the representative atom A are also determined.

2.3. Continuum description of deformed carbon nanotubes

In this section, we determine atom positions in a CNT under tension or torsion via an atomistic-based

continuum theory (e.g., [13]). The deformation gradient F ¼ ox=oX characterizes the deformation of a
Fig. 1. A carbon nanotube (CNT) and the corresponding ‘‘unrolled’’ honeycomb lattice: (a) the planar, honeycomb lattice and (b) a

CNT rolled from the honeycomb lattice.
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material point in the continuum analysis, where the material point represents many atoms that undergo
locally uniform deformation, X and x denote the positions of the material point prior to and after
deformation, respectively. For a CNT subject to tension or torsion, the deformed CNT remains to have a

circular cross section, and can therefore be ‘‘unrolled’’ to a plane. Accordingly, the deformation gradient F
is intrinsically two-dimensional. This mapping from the ‘‘unrolled’’ plane to a cylindrical surface is similar

to the method introduced by [2] which ensures that the Cauchy–Born rule is applicable to a curved surface.

Let r
ð0Þ
ij denote the position vector from atom i to atom j prior to deformation. For a material point subject

to the deformation gradient F, the position vector r
ð0Þ
ij becomes rij ¼ F � rð0Þij after the deformation. Therefore,

the energy stored in the atomic bonds obtained from the empirical interatomic potential depends on F. Using
the Cauchy–Born rule [4,16] which equated the strain energy at the continuum level to the energy stored in

atomic bonds, we obtain the strain energy density W as a function of the deformation gradient F, i.e.,
W ¼ W ðFÞ. Such an approach, however, is limited to materials with a centrosymmetric atomic structure
since the centrosymmetry together with rij ¼ F � rð0Þij ensure the equilibrium of atoms [7,23,27,32,33].

A CNT, however, does not posses centrosymmetry. As shown in Fig. 2a, a CNT prior to deformation is

composed of two triangular sub-lattices (marked by open and solid circles, respectively), and each sub-

lattice possesses centrosymmetry. Once the deformation is imposed, the Cauchy–Born rule discussed above

can be applied to each sub-lattice, but the two sub-lattices may undergo a relative shift vector f, as dis-
cussed by [32,33] and shown in Fig. 2b. This shift vector f plays the role of relaxing the atoms between two

sub-lattices in order to ensure the equilibrium of atoms [7,23,27,33]. The position vector rij between atoms i
and j from two different sub-lattices then becomes

rij ¼ F � rð0Þij þ f; ð3Þ
(a) (b)

Fig. 2. (a) The decomposition of a hexagonal lattice to two triangular sub-lattices and (b) a shift vector f between two sub-lattices is

introduced to ensure the equilibrium of atoms. The solid and dashed lines denote the lattice structures with and without the shift vector

f, respectively.
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and their distance is

rij ¼ krijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � f þ 2f � F � rð0Þij þ r

ð0Þ
ij � FT � F � rð0Þij

q
: ð4Þ

The energy stored in the atomic bonds obtained from the interatomic potential in Eq. (1) now depends

on both F and f. The Cauchy–Born rule then gives the strain energy density W in the continuum analysis in

terms of F and f, i.e., W ¼ W ðF; fÞ. The shift vector f is determined by energy minimization which is

equivalent to the equilibrium of atoms, i.e.,

oW
of

¼ 0: ð5Þ

This is an implicit equation to determine the shift vector f in terms of F, i.e., f ¼ fðFÞ. The strain energy
density then becomes

W ¼ W ½F; fðFÞ
: ð6Þ
The second Piola–Kirchhoff stress T is the work conjugate of the Lagrangian strain E ¼ 1

2
ðF � F � IÞ,

i.e., T ¼ oW =oE, where FT is the transpose of F and I is the second-order identity tensor.
3. Deformation-induced Stone–Wales transformation in a carbon nanotube

The MD simulations of Nardelli et al. [17,18] showed that the Stone–Wales transformation occurred in a

CNT under tension at about 5% tensile strain. The MD simulations, however, are limited on both the
timescale (10�12 s) and length scale. For example, a 10 nm long, ð10; 10Þ CNT involves more than 2000
atoms, and its atomistic study is computationally intensive. On the other hand, the effect of Stone–Wales

transformation, which involves the 90� rotation of a carbon bond, is rather local and limited to atoms in the
neighborhood of defect nucleation. Atoms far away from the defect undergo uniform deformation, and we

may use the atomistic-based continuum theory described in Section 2 to determine their positions. For

atoms near the defect, we use molecular mechanics coupled with the atomistic-based continuum theory.

Fig. 3a and b illustrate our hybrid continuum/atomistic model to study the Stone–Wales transformation

in a CNT. Only the ‘‘unrolled’’ honeycomb lattice is shown, but all calculations are done for the cylindrical
configuration of the CNT. As the strain in the CNT reaches a critical value, a carbon bond rotates 90�, the
so-called Stone–Wales transformation forming two pentagons and two heptagons which is called the 5–7–

7–5 ring pair. The rotated bond prior to and after the transformation are highlighted in Fig. 3a and b,

respectively. The atoms can be divided to two groups as shown in Fig. 3a and b. Those in the vicinity of the

defect are marked by the shaded circles, while atoms away from the defect are marked by open and solid

circles which is consistent with Fig. 2 to represent atoms from two sub-lattices. Atoms in the latter group

undergo relatively uniform deformation since the effect of bond rotation is rather localized. Therefore, the

positions of these atoms (far ways from the defect) can be determined by the atomistic-based continuum
theory. (Here we have neglected the effect of Stone–Wales transformation on atoms far away.) Once the

positions of atoms in the latter group are known, the positions of atoms in the former group (i.e., in the

vicinity of the defect) are determined by molecular mechanics calculations to minimize energy in the system.

Here we use the conjugate gradient method in the IMSL. Program [12] to minimize the energy with respect

only to positions of atoms in the former group (i.e., the shaded circles in the vicinity of defect), though it is

important to account for the energy stored in the atomic bonds across these two different groups of atoms

(i.e., from shaded circles to open or solid circles in Fig. 3) in the molecular mechanics calculations. Such an

approach involves both continuum and atomistic calculations, and is therefore called a hybrid continuum/
atomistic model in the following.



(b)(a)

Fig. 3. A hybrid continuum/atomistic model to study the Stone–Wales transformation in a carbon nanotube. The open and solid

circles denote atoms whose positions are determined by the atomistic-based continuum theory, while the shaded circles represent atoms

whose positions are determined by the hybrid continuum/atomistic model: (a) without the Stone–Wales transformation and (b) with

the Stone–Wales transformation.
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We use the above hybrid continuum/atomistic model to calculate the energy Eperfect in the system without
the defect (Fig. 3a) and the energy Edefect with a per-existing defect (Fig. 3b) in the form of Stone–Wales
transformation (i.e, 90� rotation of a carbon bond). Both Eperfect and Edeffect depend on the deformation
gradient F in the CNT, but Edefect is always larger at infinitesimal strain because of the defect. As the strain
increase, Edefect may become smaller (i.e., Edefect < Eperfect), the Stone–Wales transformation then becomes
more energetically favorable, and defect nucleation may occur (though this criterion Edefect < Eperfect has not
accounted for kinetics of defect formation).

In order to ensure the hybrid continuum/atomistic model gives accurate results, there should be sufficient

number of atoms in the former group, i.e., in the vicinity of the defect. We have used 42 atoms (as shown in

Fig. 3) as well as 80 atoms around the defect in the molecular mechanics calculations, and the results are the
same.
4. Stone–Wales transformation in tension

For a CNT in simple tension, Nardelli et al.’s [17,18] MD simulation predicted that the Stone–Wales

transformation occurred at the tensile strain around 5%. We use the hybrid continuum/atomistic model to

study the Stone–Wales transformation in tension. There are two non-vanishing components of the
deformation gradient, FZZ and FHH, and they are related by the uniaxial tension condition THH ¼ 0, where Z
and H denote the axial and circumferential directions, respectively, and THH is the second Piola-Kirchhoff

stress. For each given axial strain �ZZ ¼ FZZ � 1 (i.e., percent increase of CNT length), the hybrid contin-
uum/atomistic model in the previous section gives the energy Eperfect and Edefect for the system without and
with the defect, respectively. The energy versus the axial strain �ZZ is shown in Fig. 4 for both perfect and
defect-containing ð10; 10Þ CNTs. Here the CNT without the defect at zero strain is taken as the ground
state (i.e., zero energy). For the perfect ð10; 10Þ CNT, the energy increases monotonically with the strain.
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For the defect-containing ð10; 10Þ CNT, there is a finite energy at zero strain because of the defect, and the
energy decreases as the strain increases. Below a critical axial strain ð�ZZÞcritical ¼ 4:95% at which

Edefect ¼ Eperfect, the perfect CNT has lower energy and is therefore energetically favorable. Once the axial
strain exceeds this critical value of 4.95%, the energy in the defect-containing CNT is lower such that defect

nucleation becomes more energetically favorable. This critical axial strain of 4.95% agrees well with

Nardelli et al.’s [17,18] MD simulations which reported the critical strains triggering the Stone–Wales

transformation around 5%.

The shift vector f, which was introduced in atomistic-based continuum theory in Section 2 to ensure

the equilibrium of atoms, has an important effect on the present hybrid continuum/atomistic study of

Stone–Wales transformation in a CNT. The curve of energy versus the axial strain �ZZ without
accounting for the shift vector is compared with that accounting for such effect in Fig. 5, and the latter



Table 1

Effect of tube diameter on the critical strains for Stone–Wales transformation in carbon nanotubes in tension and torsion

Chirality (n;m) Chiral angle (�) Diameter (nm) Critical axial strain

ð�ZZÞcritical (%) in tension
Critical shear strain

ðjRÞcritical (%) in torsion
ð6; 6Þ 30.00 0.84 4.70 11.94

ð8; 8Þ 30.00 1.11 4.92 12.21

ð10; 10Þ 30.00 1.39 4.95 12.21

ð12; 12Þ 30.00 1.66 4.97 12.22

ð15; 15Þ 30.00 2.08 5.01 12.24

ð18; 18Þ 30.00 2.50 5.04 12.24

ð20; 20Þ 30.00 2.77 5.04 12.24

Table 2

Effect of chiral angle on the critical strains for Stone–Wales transformation in carbon nanotubes in tension and torsion

Chirality (n;m) Chiral angle (�) Diameter (nm) Critical axial strain

ð�ZZÞcritical (%) in tension
Critical shear strain

ðjRÞcritical (%) in torsion
ð17; 0Þ 0.00 1.36 6.72 7.98

ð17; 1Þ 2.83 1.40 6.31 8.10

ð16; 2Þ 5.82 1.37 5.99 8.37

ð16; 3Þ 8.45 1.42 5.81 8.58

ð15; 4Þ 11.53 1.39 5.58 8.91

ð14; 5Þ 14.71 1.37 5.49 9.15

ð13; 6Þ 18.00 1.35 5.20 9.75

ð13; 7Þ 20.17 1.41 5.12 10.11

ð12; 8Þ 23.41 1.37 5.05 10.77

ð11; 9Þ 26.70 1.39 4.98 11.40

ð10; 10Þ 30.00 1.39 4.95 12.21
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is the same as the curve in Fig. 4. It is observed that, without accounting for the shift vector, the hybrid

continuum/atomistic model predicts higher energy, and lower critical strain of �ZZ ¼ 4:44% for defect

nucleation.

Table 1 shows the critical strain for several armchair CNTs that have the same chiral angle (angle be-

tween Ch and a1 in Fig. 1) but different tube diameters ranging from 0.84 to 2.77 nm. The variation of
critical strain is rather small, from 4.70% to 5.04%. This suggests that the CNT diameter does not have a
significant effect on Stone–Wales transformation. The chiral angle, however, has somewhat larger effect.

Table 2 shows the critical strain for several CNTs under tension that have approximately the same diameter

around 1.38 nm but different chiral angles. The critical strain ranges from 4.95% for an armchair ð10; 10Þ
CNT to 6.72% for a zigzag ð17; 0Þ CNT. For the same CNT diameter, the zigzag CNT requires a larger
critical strain for Stone–Wales transformation than the armchair CNT.
5. Stone–Wales transformation in torsion

The good agreement between the hybrid continum/atomistic model and Nardelli et al.’s [17,18] MD

simulations on the critical strain for Stone–Wales transformation in CNTs under tension provides vali-

dation of the proposed approach. To the best of our knowledge, there are no MD simulations on Stone–

Wales transformation in CNTs under torsion. We use the hybrid continuum/atomistic model to predict the

critical shear strain triggering the Stone–Wales transformation in pure torsion.



H. Jiang et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 3419–3429 3427
Let j denote the twist (angle of rotation per unit length) for a CNT in pure torsion; (R;H; Z) and (r; h; z)
be the cylindrical coordinates of a material point on the CNT prior to and after the deformation,

respectively, and they are related by h ¼ H þ jZ and z ¼ ð1þ �ÞZ, with � being the axial strain due to the
finite rotation. The corresponding base vectors are denoted by (eR; eH; ez) and (er; eh; ez). The deformation
gradient in pure torsion is given by

F ¼ r
R
eheH þ jreheZ þ ð1þ eÞezeZ : ð7Þ

The equilibrium equation and boundary conditions in pure torsion require the normal stress tractions to

vanish, which gives [13]

THH ¼ �2jRTHZ ; TZZ ¼ 0: ð8Þ

The radius r of the deformed CNT and the axial strain � are determined from (8) in terms of the twist j.
We use the hybrid continuum/atomistic model in Section 3 to calculate the energy Eperfect and Edefect for

the system without and with the defect, respectively. Fig. 6 shows the energy versus the shear strain jR for a
ð10; 10Þ CNT in torsion. Similar to Fig. 4 for simple tension, the energy Eperfect increases monotonically with
jR in torsion, while Edeffect initially decreases and then increases with jR. The critical shear strain at which
Eperfect ¼ Edeffect is found to be ðjRÞcritical ¼ 0:12. Therefore, for jR > 0:12, the CNT with the Stone–Wales
transformation is more energetically favorable than the CNT without the defect.

The critical shear strain ðjRÞcritical shown in Tables 1 and 2 for the Stone–Wales transformation in
CNTs under torsion confirm the conclusion established in the previous section that the CNT diameter

has little effect on the Stone–Wales transformation, but the chiral angle has a larger effect. However,

contrary to CNTs under tension, the critical strain for Stone–Wales transformation is smaller for a

zigzag CNT [e.g., ð17; 0Þ] than that for an armchair CNT [e.g., ð10; 10Þ]. This opposite dependence on
the chiral angle is due to different bond orientations with respect to the loading direction in tension and
torsion.
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6. Concluding remarks

We have proposed a hybrid continuum/atomistic model to study the Stone–Wales transformation in

carbon nanotubes. The position of atoms far away from the defect are determined by an atomistic-based

continuum model established from the interatomic potential. The positions of atoms near the defect are

determined by molecular mechanics calculations coupled with the atomistic-based continuum model. For a

carbon nanotube in tension, the critical strain for the Stone–Wales transformation predicted by the hybrid

continuum/atomistic model agrees very well with molecular dynamic simulations. We have also calculated
the critical shear strain for Stone–Wales transformation in a carbon nanotube under torsion.
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