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Abstract

The multiscale simulation is important to the development of nanotechnology and to the study of materials and

systems across multiple length scales. In order to develop an efficient and accurate multiscale computation method

within a unified theoretical framework, we propose an order-N atomic-scale finite element method (AFEM). It is as

accurate as molecular mechanics simulations, but is much faster than the widely used order-N 2 conjugate gradient

method. The combination of AFEM and continuum finite element method provides a seamless multiscale computation

method suitable for large scale static problems.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The fastest supercomputer in the world can handle up to a billion atoms today in molecular dynamics
simulations [3,4], which correspond only to a small cube of 1 lm in size. Even with the rapid advance in

computer power, this size may increase to only 10 lm in 15 years since the computer power doubles every
18 months (Moore�s law [18]). This size limit of computation is far short to reach the macroscale such that
molecular dynamics alone cannot predict the properties and response of macroscopic materials directly

from their nano- and micro-structures. Other atomistic methods also have difficulties for large systems. For

example, the widely used conjugate gradient method in molecular mechanics is an order-N 2 method whose

computational effort increases with the square of system size N . It is therefore not suitable for large systems,
nor for the rapid simulation of nanoscale components that are up to a few hundred nanometers in size.
On the other hand, the conventional continuum methods such as the finite element method (FEM) are

not applicable to nanoscale components because they are developed for macroscale problems. The mac-

roscale material behaviors are incorporated in the conventional continuum FEM via the constitutive
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models of solids, which are usually empirical and are determined from macroscale experiments such as
simple tension tests. These constitutive models represent the collective behavior of many atoms, and cannot

accurately predict the response of discrete atoms. For example, for a uniform deformation on the macro-

scale (as in a simple tension test), the atomic motion may not be uniform at the atomic scale even for a

perfect atomic structure without defects [30,31]. Furthermore, most atomistic interactions are multi-body in

nature, i.e., the energy in an atomic bond between a pair of atoms depends on the positions of atoms both

in and outside the pair (e.g., [6,7]). This ‘‘non-local’’ dependence of energy is inconsistent with the macro-

scopic, local constitutive model in the conventional FEM.

Since the atomistic simulations and continuum FEM have difficulties to ‘‘scale up’’ and ‘‘scale down’’,
respectively, multiscale computation methods have emerged as a viable means to study materials and

systems across different length scales (e.g., [2,8–10,16,20,21,26,28]). The basic idea is to combine the

atomistic simulation methods which capture the nanoscale physics laws with the continuum FEM which

represents the collective behavior of atoms but significantly reduces the degrees of freedom. One approach

is to use the atomistic simulation methods for domains in which the discrete motion of atoms is important

and must be accounted for, and use the continuum FEM for the rest where the response of materials and

systems can be represented by the continuum models [9,10,16,20,21,28]. Such an approach involves arti-

ficially introduced interfaces between domains of atomistic and continuum simulation methods. It requires
the interface conditions, which add significant computational efforts, and may lead to computation errors.

Another approach in the atomistic–continuum linkage is quasicontinuum method [22–24]. The interatomic

potential is directly incorporated into the continuum FEM method via the Cauchy–Born rule (e.g., [5]) to

obtain the continuum strain energy density from the energy stored in atomic bonds. The quasicontinuum

method involves both discrete atoms and continuum solids, and the method can also account for the non-

local effect [22,24], i.e., the multi-body atomistic interactions. However, the spurious or ‘‘ghost’’ force

appears at the interface between the domains of (local) continuum and (non-local) atomistic simulations in

the quasicontinuum method [22]. The quasicontinuum analysis uses the conjugate gradient method [23],
which is an order-N 2 method and is not suitable for large problems. Recently, Wagner and Liu [26] coupled

the atomistic and continuum simulations using a bridging scale decomposition.

In this paper we develop an order N , atomic-scale finite element method (AFEM) that is as accurate as
molecular mechanics simulations. It can be linked seamlessly with the continuum FEM since they are

within the same theoretical framework (of FEM). The AFEM can handle discrete atoms and account for

the multi-body interactions among atoms. It is an order-N method (i.e., the computation scales linearly

with the system size), and is therefore much faster than the (order-N 2) conjugate gradient method widely

used in atomistic studies. The vast increase in speed of AFEM makes it possible to study large scale
problems that would take unbearable amount of time with the existing methods. Furthermore, the seamless

linkage between AFEM and FEM provides a powerful multiscale computation method that significantly

reduces the degree of freedom and enables the computation for a much larger scale (possibly macroscale)

static systems.

The paper is structured in the following way. We present the AFEM elements for a one-dimensional

atomic chain and for carbon nanotubes in Section 2. The order-N nature and the stability of AFEM are

discussed in Sections 3 and 4, respectively. Section 5 presents the AFEM/FEM multiscale computation

method. A transitional element between AFEM and continuum FEM elements is also developed. The
AFEM is used to study a carbon nanotube knot, and the vibration of a carbon nanotube in Section 7.
2. Atomic-scale finite elements

The equilibrium configuration of solids corresponds to a state of minimal energy. The basic idea of

conventional continuum finite element method is to divide a continuum solid into finite number of ele-
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ments, and each element is characterized by a finite set of discrete nodes. The positions of all nodes are
determined by minimizing the energy in the solid. This is similar to the molecular mechanics calculations of

atom positions, which is based on the energy minimization with respect to discrete atoms. Therefore, the

continuum FEM and molecular mechanics share a common ground of energy minimization, with respect to

the nodes and to the discrete atoms, respectively.

For a system of N atoms, the energy stored in the atomic bonds is denoted by Utotðx1; x2; . . . ; xN Þ, where
xi is the position of atom i. An example of Utot is

Utot ¼
XN
i<j

Uðxj � xiÞ ð1Þ

for atoms characterized by a pair interatomic potential U such as the Lennard-Jones potential. For a multi-
body interatomic potential (e.g., [6,7]), the energy U in an atomic bond also depends on atoms outside the

bond.

The total energy is

EtotðxÞ ¼ UtotðxÞ �
XN
i¼1

F i � xi; ð2Þ

where x ¼ ðx1; x2; . . . ; xN ÞT, and F i is the external force (if there is any) exerted on atom i. The state of
minimal energy corresponds to

oEtot
ox

¼ 0: ð3Þ

The Taylor expansion of Etot around an initial guess xð0Þ ¼ ðxð0Þ
1 ; x

ð0Þ
2 ; . . . ; x

ð0Þ
N ÞT of the equilibrium state gives

EtotðxÞ � Etotðxð0ÞÞ þ oEtot
ox

����
x¼xð0Þ

� ðx� xð0ÞÞ þ 1
2
ðx� xð0ÞÞT � o

2Etot
oxox

����
x¼xð0Þ

� ðx� xð0ÞÞ: ð4Þ

Its substitution into Eq. (3) yields the following governing equation for the displacement u ¼ x� xð0Þ,

Ku ¼ P; ð5Þ

where

K ¼ o2Etot
oxox

����
x¼xð0Þ

¼ o2Utot
oxox

����
x¼xð0Þ

is the stiffness matrix,

P ¼ � oEtot
ox

����
x¼xð0Þ

¼ F � oUtot
ox

����
x¼xð0Þ

is the non-equilibrium force vector, and F ¼ ðF1;F2; . . . ;FN ÞT. Except for a linear system, Eq. (5) is solved
iteratively until P reaches zero, P ¼ 0. It is observed that the governing equation in FEM is identical to Eq.
(5) if the FEM nodes are taken as atoms.

The stiffness matrix K and non-equilibrium force vector P are evaluated in each iteration step. In

conventional continuum FEM, the total energy is partitioned into elements. The energy in each element is

obtained in terms of only the nodes in the element. For atomistic interactions characterized by a pair

potential (1), K and P can be obtained straightforwardly via the continuum conventional FEM since the
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pair potential can be equivalently represented by a (nonlinear) string element. For multi-body interatomic
potentials, however, the energy in an atomic bond between a pair of atoms is influenced by atoms outside

the pair. A conventional FEM element cannot capture this non-local dependence of energy since it requires

the information (e.g., atoms) beyond the element. This will be further illustrated in two examples for a one-

dimensional atomic chain and a carbon nanotube in this section.

We will develop an AFEM in order to capture the multi-body atomistic interactions. Unlike conven-

tional continuum FEM, we do not divide energy into elements but calculate the first and sec-

ond order derivatives of Etot needed in the governing equation, Eq. (5), directly from this single AFEM

element.

2.1. AFEM element for one-dimensional chain of atoms

We consider a one-dimensional atomic chain of N atoms shown in Fig. 1a. For the atomic bond between
atoms i� 1 and i ð36 i6N � 1Þ, one example of the multi-body interatomic potential is

Uði�1;iÞ ¼ Uðxi � xi�1; xi�1 � xi�2Þ þ Uðxi � xi�1; xiþ1 � xiÞ: ð6Þ

The two terms on the right hand side of the above equation reflect the interactions of this bond with the

bonds on the left and right, respectively. A conventional FEM element between atoms i� 1 and i cannot
evaluate the above energy (and its derivatives) since the element does not contain information about atoms

i� 2 and iþ 1 outside the bond.
Fig. 1b shows the AFEM element for atom i in this atomic chain. For the interatomic potential in (6),

the first order derivative of Utot with respect to atom i is

oUtot
oxi

¼ o½Uði�2;i�1Þ þ Uði�1;iÞ þ Uði;iþ1Þ þ Uðiþ1;iþ2Þ	
oxi

; ð7Þ

which depends on not only the nearest-neighbor atoms (i� 1 and iþ 1) but also the second nearest-
neighbor atoms (i� 2 and iþ 2) of atom i. The non-zero components of the second order derivatives are
o2Utot
oxioxj

, i� 2jiþ 2. The AFEM element in Fig. 1b includes all neighbor atoms that interact with atom i.

It is noted that such an AFEM element overlaps in space with neighbor elements. In fact, this over-

lap enables us to accurately account for the non-local (multi-body) effect within a single element. As dis-

cussed in the following, such an overlap does not double count the element contribution to the

global stiffness matrix K and non-equilibrium force vector P. The element stiffness matrix for atom i is
given by
(a)

(b)

Fig. 1. (a) A schematic diagram of a one-dimensional atomic chain, (b) an atomic-scale finite element for the one-dimensional atomic

chain accounting for multi-body atomistic interactions.
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ð8Þ

The element stiffness matrices associated with four atoms at or near the two ends, #1, 2, N � 1 and N , are
either 3 · 3 or 4 · 4. The non-equilibrium force vector for this element is

ð9Þ

The above element stiffness matrix and non-equilibrium force vector are accurate because they do not

involve any approximations of conventional FEM, such as the use of shape functions within the element,

and the neglect of non-local effect in a local element. By the standard assembly in FEM, the global stiffness

matrix K and non-equilibrium force vector P for the system are readily obtained from their counterparts at
the element level. Contrary to conventional FEM, the ith row of the global stiffness matrix K and the ith
component of the non-equilibrium force vector P are completely determined by this single AFEM element

for atom i. Although the AFEM elements overlap in space, there is no double count of contributions to K
and P from AFEM elements.

2.2. AFEM element for carbon nanotubes

It is important to note that the AFEM elements are material specific, i.e., they depend not only on the

atomic structure but also on the atomistic interactions (e.g., nearest-neighbor and second nearest-neighbor

interactions). We develop a three-dimensional AFEM element for carbon nanotubes in this section. Fig. 2a

shows a single wall carbon nanotube consisting of a single layer of carbon atoms with the hexagonal lattice

structure. Each carbon atom interacts with both nearest- and second nearest-neighbor atoms [6,7], and the
latter results from the bond angle dependence in the interatomic potential. Since each carbon atom on a

carbon nanotube has three nearest-neighbor atoms and six second nearest-neighbor atoms, the AFEM

element consists of 10 carbon atoms as shown in Fig. 2b, namely the central atom #1, nearest-neighbor

atoms #2, 5 and 8, and second nearest-neighbor atoms #3, 4, 6, 7, 9 and 10. Such an element captures the

interactions between the central atom and other carbon atoms. The position change of the central atom 1

influences only the energy stored in nine atomic bonds in this AFEM element.



Fig. 2. (a) A schematic diagram of a single wall carbon nanotube, (b) an atomic-scale finite element for carbon nanotubes.
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The element stiffness matrix and the non-equilibrium force vector are given by

K element ¼

o2Utot
ox1ox1

� �
3
3

1

2

o2Utot
ox1oxi

� �
3
27

1

2

o2Utot
oxiox1

� �
27
3

ð0Þ27
27

2
6664

3
7775; ð10Þ

Pelement ¼ F1 �
oUtot
ox1

� �
3
1

ð0Þ27
1

2
4

3
5; ð11Þ

where i ranges from 2 to 10 in o2Utot
ox1oxi

, and F1 is the external force (if there is) exerted on the central atom in

this element. It is observed that the non-zero components in the above element stiffness matrix are limited

to the top three rows and left three columns. This is very different from the element stiffness matrix in

conventional FEM because the AFEM element focuses on the ‘‘central’’ atom. The non-equilibrium force
vector given in (11) shares the same feature, so do the K element and Pelement in Eqs. (8) and (9) for the one-
dimensional atom chain.

Similar to conventional FEM, the global stiffness matrix K for the system is sparse. This is because each
row of K is obtained from a single AFEM element. For carbon nanotubes, the AFEM element has (at

most) 30 non-zero elements in each row (see Eq. (10)). Therefore, the number of non-zero components in K
is approximately 30
 N , which is on the order N , i.e., OðNÞ, where N is the total number of atoms in the
system. It should be pointed out that the number of non-zero components in each row is governed by the

non-local atomistic interactions. In the limit of local iterations, each atom interacts with three nearest-
neighbor atoms such that the number of non-zero components becomes 12. Therefore, K for non-local

atomistic interactions is less sparse than that for local interactions, but it is still a sparse matrix with the

number of non-zero components on the order of N . This observation holds for other material systems as
long as each atom interacts with a finite number of atoms in the neighbor. For order-N sparse K , the
computational effort to solve Ku ¼ P in Eq. (5) is also on the order of N [19].
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3. The order-N nature of AFEM

We show in this section that AFEM is an order-N method, while the widely used conjugate gradient

method in molecular mechanics is an order-N 2 method. We first use a one-dimensional chain of atoms to

illustrate this. Fig. 3 shows a chain of N atoms connected by linear springs. The last atom is fixed and the
system is at equilibrium before a force is imposed on the first atom. The conjugate gradient method involves

only the first order derivative of the energy, i.e., the non-equilibrium force Pi on atom i. Therefore, atom i
will not move unless Pi 6¼ 0. Only the first atom (subject to the external force) moves during the first
iteration searching for the minimal energy. Once the first atom moves, the second atom senses the non-

equilibrium force and its motion is determined in the second iteration step. The motion of atoms gradually

propagates to the rest of atoms, and it takes N steps to reach the last atom. Since the non-equilibrium force
P is evaluated for all N atoms within each iteration, the total computational effort for the conjugate

gradient method is on the order of OðN 
 NÞ ¼ OðN 2Þ, i.e., an order-N 2 method. Other simulation methods

based only on the first order derivative of energy, such as the steepest descent method and MD calculations

of the equilibrium state, are also (at least) order-N 2 methods. If the springs in Fig. 3 are nonlinear, more

computation efforts are needed such that these methods based on the first order derivative are (at least)
order N 2.

Because AFEM uses both first and second order derivatives of the energy, it takes one iteration step to

reach the minimal energy for the linear one-dimensional atomic chain as well as for general linear systems.

The computational effort of AFEM within each iteration step is composed of two parts:

(i) the computation of the stiffness matrix K and non-equilibrium force vector P, which is on the order N
since the number of non-zero components of K and P is proportional to N ;

(ii) the effort to solve Ku ¼ P in Eq. (5), which is also on the order N due to the sparseness of K [19].

Therefore, the computational effort for a general linear system is on the order of N . For a nonlinear system,
Eq. (5) has to be solved iteratively, and the computational effort is on the order of OðN 
MÞ, where M is

the number of iteration steps to reach minimal energy. As shown in the following example, M is essentially

independent of N such that the computational effort is still on the order OðNÞ.
Fig. 4 shows the number of iteration steps M and deformed configurations for four ð5; 5Þ armchair

carbon nanotubes with 400, 800, 1600 and 3200 atoms. The carbon nanotubes, which are initially straight

with two ends fixed, are subject to the same lateral force 50 eV/nm¼ 8.0 nN in the middle. The number
of iteration steps M varies very little with N (number of atoms), from 43 to 31 and averaged at 35. In

fact, the CPU time (on a personal computer with 2.8 GHz CPU and 1 GB memory) shown in Fig. 4

indeed displays an approximate linear dependence on N . We have also calculated a much longer ð5; 5Þ
carbon nanotube with 48,200 atoms, which has the same length of 605 nm as in Tombler et al.�s
experiments [25]. The number of iteration steps is 35, which is in the same range as those in Fig. 4. This

example demonstrates that AFEM is essentially an order-N method and is therefore suitable for large

scale computation.
Fig. 3. A schematic diagram of a one-dimensional atomic chain connected by linear springs. The two ends are subject to a force and a

vanishing displacement, respectively.
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Fig. 4. The CPU time for AFEM scales linearly with number of atoms for ð5; 5Þ carbon nanotubes. The numbers of iteration steps is
approximately independent of the atom number, which implies that AFEM is an order-N method.
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4. Stability of AFEM

In this section, we study the stability and convergence of AFEM for nonlinear interatomic poten-

tials that may display softening behavior. This instability may occur due to geometric or material

nonlinearities. The stability and convergence are ensured if the energy in the system decreases in

every step, i.e., u � P > 0, where u is the displacement increment, and P is the non-equilibrium force in

Eq. (5) and it represents the steepest descent direction of Etot. From Eq. (5), a sufficient condition for

u � P > 0 is that the stiffness matrix K is positive definite. For problems involving neither material
softening nor nonlinear bifurcation, K is usually positive definite and AFEM is stable, as in the examples

in Fig. 4. For non-positive definite K , we replace K by K� ¼ K þ aI , where I is the identity matrix and a
is a positive number to ensure the positive definiteness of K� which guarantees u � P > 0. It is impor-
tant to note that the state of minimal energy is independent of a. This is because the energy minimum
is characterized by P ¼ 0, and independent of K or K�. In fact, at (and near) the state of mini-

mum energy, such modification of K is unnecessary because the stiffness matrix K becomes positive

definite.

We use an example of a ð7; 7Þ armchair carbon nanotube under compression to examine the stability of
AFEM. Fig. 5 shows three stages of a 6 nm-long carbon nanotube at the compression strains of 0%, 6%

(prior to bifurcation), and 7% (post-bifurcation). The stiffness matrix K experiences non-positive defi-

niteness between the last two stages, but becomes positive definite again near the final stage. The bifurcation

pattern and the corresponding bifurcation strain (7%) agree well with Yakobson et al.�s molecular
mechanics studies [27].



Fig. 5. Deformation patterns for a 6 nm-long ð7; 7Þ carbon nanotube under compression predicted by atomic-scale finite element
method (AFEM). Bifurcation occurs at 7% compressive strain. This shows that AFEM is stable.
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5. AFEM/FEM multiscale computation method

One advantage of AFEM is that it can be readily linked with the conventional continuum FEM since
they are in the same theoretical framework. The AFEM/FEM linkage provides a seamless multiscale

computation method for static analysis because Ku ¼ P in Eq. (5) gives a unified governing equation for
both AFEM and FEM. In fact, we have implemented the AFEM element in the ABAQUS finite element

program [1] via its USER-ELEMENT subroutine, and have studied several atomic-scale problems in this

paper. We have also combined AFEM/FEM elements for multiscale computation.

In order to ensure that the AFEM/FEM multiscale computation method accurately represents the

material behavior at both atomic and continuum scales, the continuum FEM elements should be based on

the same interatomic potential as AFEM elements. Furthermore, similar to the use of different types of
elements in conventional FEM, it is necessary to develop the transitional elements in order to smoothly link

AFEM and FEM elements. These two issues are addressed in Sections 5.1 and 5.2, respectively.

5.1. The (local) continuum elements based on the (non-local) interatomic potential

The conventional continuum elements based on the phenomenological constitutive models will lead to

computation errors if used in multiscale computation. There are significant efforts to develop new



0l

(a)

(b)

Fig. 6. (a) A schematic diagram of a one-dimensional atomic chain with local and non-local atomistic interactions characterized by the

nearest-neighbor and second nearest-neighbor springs, respectively. The equilibrium distance between atoms is l0. The spring constants
are k1 and k2. (b) A schematic diagram of the transitional element between continuum and atomic-scale finite elements. The transitional
element overlaps with the atomic-scale finite elements, but does not overlap with the continuum finite element.
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constitutive models on the continuum level directly from the atomic structure and the interatomic potential

(e.g., [2,5,11,14,15,17]). These are achieved by the Cauchy–Born rule [5] to equate the continuum strain
energy to the energy in atomic bonds. These lead to local constitutive models for non-local (multi-body)

interatomic potentials. By replacing the phenomenological constitutive models in the conventional FEM

with the interatomic potential-based constitutive models, one obtains the new continuum elements repre-

senting the collective behavior of atoms. Zhang et al. [29–31] and Huang and Wang [13] provided details of

this approach for carbon nanotubes.

We use the one-dimensional atomic chain in Fig. 6a with non-local atomistic interactions to illustrate

this approach. The equilibrium distance between atoms is denoted by l0. Each atom is connected to its

nearest-neighbor atoms by linear springs with the spring constant k1. To illustrate the non-local atomistic
interactions, each atom is also connected to its second nearest-neighbor atoms via springs, and the spring

constant is k2. For a given strain e, a bond between nearest-neighbor atoms is stretched by l0e, and the
energy stored in the bond is E1 ¼ 1

2
k1ðl0eÞ2. A bond between second nearest-neighbor atoms is stretched by

2l0e, and the corresponding energy in the bond is E2 ¼ 1
2
k2ð2l0eÞ2. From the Cauchy–Born rule [5], the

strain energy per unit length for this atomic chain is ð2E1 þ 2E2Þ=ð2l0Þ ¼ 1
2
ðk1 þ 4k2Þl0e2. This gives a tensile

stiffness ðk1 þ 4k2Þl0 in the local, continuum constitutive model for this one-dimensional atomic chain.

Therefore, an atomic chain of length L with the above non-local atomistic interactions is equivalent a local
spring element with a spring constant ðk1 þ 4k2Þl0=L.

5.2. Transitional elements between AFEM and continuum FEM elements

The transitional elements ensure the smooth transition between AFEM and continuum FEM elements.

They are important to ensure the accuracy of multiscale computation linking the domains of discrete atoms

and continuum solids. The transitional elements should satisfy the following requirements:

i(i) A transitional element should possess both non-local and local features in order to interface with
AFEM and continuum FEM elements.

(ii) A transitional element must survive the ‘‘patch test’’, i.e., it should give accurate results for uniform

deformation.
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Fig. 6b shows a transitional element between a (local) continuum element (denoted by the solid line) and
(non-local) AFEM elements for the one-dimensional atomic chain in Fig. 6a. The transitional element

made of atoms #1, 2, 3, and 4 (Fig. 6b) overlaps with the AFEM elements but does not overlap with the

continuum elements, which reflects the non-local nature of AFEM elements and the local nature of con-

tinuum elements. The nodes 1; 0;�1;�2; . . . are for continuum elements, while nodes 1; 2; 3; 4; . . . are atoms
for AFEM and transitional elements. The derivatives of energy with respect to continuum nodes ði6 0Þ oUtot

oxi
are obtained from the standard conventional FEM. The derivatives oUtot

oxi
with respect to all atoms iP 3 (i.e.,

excluding the first two in the transitional element) can be obtained from the corresponding AFEM element

for atom i. In the following we evaluate oUtot
ox1
and oUtot

ox2
.

The energy related to atom 1 is composed of the parts from continuum element 0–1 (between nodes 0

and 1) and from the transition element, i.e.,

oUtot
ox1

¼ oU element
0–1

ox1
þ o

ox1

1

2
k1ðx2

�
� x1 � l0Þ2 þ

1

2
k2ðx3 � x1 � 2l0Þ2

�
: ð12Þ

The energy related to atom 2 is given by

oUtot
ox2

¼ o

ox2

1

2
k1ðx2

�
� x1 � l0Þ2 þ

1

2
k1ðx3 � x2 � l0Þ2 þ

1

2
k2ðx4 � x2 � 2l0Þ2 þ

1

2
� 1
2
k2ðx2 � x� � 2l0Þ2

�
;

ð13Þ

where the extra 1/2 in front of the last term on the right hand side results from half of the energy in the

spring connecting atom 2 in the transitional element to atom � in the continuum element. In order to

determine x� from the nodes in the transitional element, we approximate it by extrapolation x� ¼ 2x1 � x2.
For the one-dimensional atomic chain in Fig. 6a with the spring constant k1 ¼ k2 ¼ k, we have used the

combined AFEM/FEM to calculate the displacement in the chain. The continuum elements are used near

both ends of the chain, while AFEM elements are used in the central part. We have conducted the patch
test with and without the transitional elements. Fig. 7 shows the displacement in the chain whose left node

is fixed and right node is subject to a force F ¼ kl0. It is clearly observed that the deformation predicted by
AFEM/FEM with transitional elements is uniform, which is consistent with the analytic solution for this

problem. Without the transitional elements, the displacements display errors mainly around the interfaces

between AFEM and continuum FEM elements. These errors are attributed to the ghost force at the

interfaces. But the proper use of transitional elements can eliminate the ghost force.

The above example also provides some insights into the development of transitional elements for other

systems. First, it is important to realize that, the transition elements also depend on the atomic structure of
the material, similar to AFEM and continuum elements based on the interatomic potential. Secondly, the

calculation of energy related to nodes in the transitional elements may require some extrapolations of atom

positions (e.g., � in Fig. 6b) due to the non-local nature of atomistic interactions.

5.3. AFEM/FEM multiscale computation

In order to demonstrate the AFEM/FEM multiscale computation, we have calculated a 605 nm-long

ð5; 5Þ armchair carbon nanotube with 48,200 atoms (Fig. 8). The carbon nanotube has two fixed ends, and
is subject to a displacement of 81 nm in the middle, resulting in 15� rotation at the two fixed ends as in
Tombler et al.�s experiment [25]. Two computational schemes are adopted. In the first scheme (Fig. 8a),
only AFEM elements are used and there are 48,200 elements. In the second scheme (Fig. 8b), AFEM

elements are used for the middle portion of the carbon nanotube having 800 carbon atoms where the

deformation is highly non-uniform, while the rest of the carbon nanotube is modeled by continuum FEM

elements, which are linked to AFEM elements via two transitional elements. Two FEM string elements are
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Fig. 7. The linkage between atomic-scale and continuum finite elements for a one-dimensional atomic chain. The linkage with the

transitional elements shows accurate displacements, while that without the transitional elements clearly shows errors.

Fig. 8. A 605 nm-long ð5; 5Þ carbon nanotube with 48,200 atoms subject to 81 nm deflection in the middle. AFEM takes 24 min to

determine atom positions, while combined AFEM/FEM takes only 13 s. This shows that combined AFEM/FEM is an efficient

multiscale computational method.
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used and their tensile stiffness determined from the interatomic potential of carbon [31]. The differences
between the results obtained from two schemes are less than 1%. However, the CPU time in the second

scheme is only 13 s (on a personal computer with 2.8 GHz CPU and 1 GB memory), which is less than 1%

of that in the first scheme, 24 min. Moreover, the saving in computer memory is also tremendous since the

second scheme requires less than 2% memory of the first one.
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6. Applications of AFEM

6.1. Multiple atomistic interactions

AFEM can be combined with other elements to simultaneously account for multiple interactions among

atoms, such as the covalent bond and van der Waals interactions. These two atomistic interactions govern

the equilibrium state of a ð5; 5Þ armchair carbon nanotube knot. The van der Waals interactions between
carbon atoms from the contacting parts of the carbon nanotube are critical to the knot formation and
evolution under load, and therefore must be accounted for. The van der Waals interactions for carbon [12]

are included via nonlinear string elements, and they are accounted for only when the distance between two

carbon atoms is less than the cutoff radius.

Fig. 9a shows an equilibrium state of carbon nanotube knot with 10,000 atoms. The two ends of the

carbon nanotube are free. The diameter of the knot at this relaxed state is approximately 23 nm. Fig. 9b

shows the same carbon nanotube knot subject to horizontal displacements ±20 nm at the two ends of the

carbon nanotube, and it corresponds to the new equilibrium state for the given end displacements. The

diameter of the carbon nanotube becomes much smaller, approximately 13 nm. Once the ends are released,
the carbon nanotube knot in Fig. 9a is resumed. It is important to note that during this process the

nonlinear string elements (for van der Waals interactions) evolve due to the significant change of distance

between carbon atoms. Some existing nonlinear string elements disappear once the cutoff radius is ex-

ceeded, while some new string elements emerge once atom distance becomes smaller than the cutoff radius.

This example shows that AFEM can be used to study the quasi-static evolution of nanoscale materials and

systems.

6.2. Vibration frequencies and modes of carbon nanotubes

The vibration frequencies and modes of carbon nanotubes are important to various potential applica-

tions of carbon nanotubes and to their mechanical property measurement (e.g., see the review paper of

Huang and Wang [13] and the references therein). It is difficult for atomistic simulation methods (e.g.,

molecular dynamics) to determine the frequencies and modes of a carbon nanotube. AFEM provides a

straightforward way to achieve this goal since the vibration frequencies and modes can be readily obtained
Fig. 9. A knot of ð5; 5Þ armchair carbon nanotube with 10,000 atoms: (a) the equilibrium state, (b) the new equilibrium state subject to
the end displacements ±20 nm at the ends.



Fig. 10. The first three vibration modes of a ð5; 5Þ armchair carbon nanotube with 400 atoms and one end clamped.
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from the global stiffness matrix K and the mass matrix mI , where m is the mass of a carbon atom and I is
the identity matrix.
We have studied the vibration of a ð5; 5Þ armchair carbon nanotube with 400 atoms. One end of the

carbon nanotube is clamped. Fig. 10 shows the first three vibration modes. The corresponding frequencies

are 112, 614, and 685 GHz, respectively. The first two modes are rather similar to the base modes of a

cantilever beam, but the third one is very different and it corresponds to the radical expansion of the carbon

nanotube (with one end fixed). This vibration mode, not captured by the existing beam models for carbon

nanotubes (e.g., see the review paper of Huang and Wang [13]), can be easily studied by AFEM.
7. Discussion and concluding remarks

We have developed an AFEM that extends the finite element method (FEM) down to the atomic scale. It

does not involve any approximations of conventional FEM (e.g., shape functions), and is as accurate as

molecular mechanics simulations. It is an order-N method such that the computation scales linearly with

the system size N . It is therefore much faster than the widely used order-N 2 conjugate gradient method, and

is suitable for large scale computations. The combination of AFEM and continuum FEM provides a

seamless multiscale computation method, and is suitable for even larger scale static problems. The method
can also account for multiple atomistic interactions (e.g., van der Waals interaction), as well as the evo-

lution of atomic structures.

AFEM is also applicable to many atomistic studies since it can incorporate other atomistic models such

as tight-binding potential. Together with parallel computation technique, the combined AFEM/FEM is

most effective for treating problems with a large number of degrees of freedom to take advantage of its

order-N nature, and therefore significantly increases the speed and limit in large scale computation. Many
optimization problems involving a large number of variables can also be efficiently solved with this order-N
method if the corresponding K (second order derivative matrix) is sparse.
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