
International Journal of Fracture 112: 23–41, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

The boundary-layer effect on the crack tip field in
mechanism-based strain gradient plasticity

M. SHI1, Y. HUANG1,∗, H. JIANG2, K. C. HWANG2 and MING LI3

1Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801, U.S.A.
2Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084,
China
3Alcoa Technical Center, Alcoa Center, PA 15069, U.S.A.

Received 27 February 2001; accepted in revised form 29 May 2001

Abstract. The theory of mechanism-based strain gradient (MSG) plasticity involves two material length parame-
ters, namely the intrinsic material length l and the mesoscale cell size lε, which are on the order of a few microns
and 0.1 µm, respectively. Prior studies suggest that lε has essentially no effect on the macroscopic quantities,
but it may affect the local stress distribution. We demonstrate in this paper that there is a boundary layer effect
associated with lε in MSG plasticity, and the thickness of the boundary layer is on the order of l2ε

/
l. By neglecting

this boundary layer effect, a stress-dominated asymptotic field around a crack tip in MSG plasticity is obtained.
This asymptotic field is valid at a distance to the crack tip between lε and l (i.e., from 0.1 µm to a few microns).
The stress in this asymptotic field has an approximate singularity of r−2/3, which is more singular than not only
the HRR field in classical plasticity but also the classical elastic K field (r−1/2). The stress level in this asymptotic
field is two to three times higher than the HRR field, which provides an alternative mechanism for cleavage fracture
in ductile materials observed in experiments.
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1. Introduction

Metallic materials display significant size effect at the micron and sub-micron scales, as ob-
served in the experiments of micro-twist (Flect et al., 1994), micro-bend (Stolken and Evans,
1998) and micro-indentation (Nix, 1989, 1997; de Guzman et al., 1993; Stelmashenko et al.,
1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998; Suresh et al., 1999).
Direct dislocation simulations also show strong size effect of metallic materials under various
loading conditions at the micron scale (Cleveringa et al., 1997, 1998, 1999a, b, 2000; Needle-
man, 2000). The classical theory of plasticity cannot explain the observed size effect since
its constitutive law contains no intrinsic material length. This has motivated the development
of strain gradient plasticity theories (Fleck and Hutchinson, 1993; Fleck et al., 1994; Gao
et al., 1999b; Shu and Fleck, 1999; Acharya and Bassani, 2000; Acharya and Beaudoin, 2000;
Chen and Wang, 2000; Huang et al., 2000a, b; Dai and Parks, 2001) based on the concept
of geometrically necessary dislocations in dislocation mechanics (e.g., Nye, 1953; Cottrell,
1964; Ashby, 1970; Arsenlis and Parks, 1999; Gurtin, 2000). The theories of strain gradient
plasticity have already shown some success to model the size dependence of material behavior
at the micron-scale. For example, Begley and Hutchinson (1998) and Huang et al. (2000b)
showed respectively that the phenomenological theory of strain gradient plasticity (Fleck and
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Hutchinson, 1997) and the mechanism-based strain gradient (MSG) plasticity theory derived
from the Taylor dislocation model (1938) agree well with McElhaney et al.’s (1998) micro-
indentation hardness experiments. Gao et al. (1999a) also showed that MSG plasticity theory
agrees well with the micro-twist (Fleck et al., 1994) and micro-bend experiments (Stolken and
Evans, 1998). There are also earlier works on strain gradient plasticity that were proposed in
order to avoid a spurious solution for the localized zone and an excessive mesh dependence in
classical plasticity (e.g., Aifantis, 1984; Lasry and Belytschko, 1988; Zbib and Aifantis, 1988;
Mühlhaus and Aifantis, 1991; de Borst and Mühlhaus, 1991, 1992; Aifantis, 1992; Sluys et al.,
1993).

The theories of strain gradient plasticity may also be important to another class of mi-
croscale phenomena, namely, the cleavage fracture in ductile materials. In a remarkable series
of experiments, Elssner et al. (1994) measured both the macroscopic fracture toughness and
atomic work of separation of an interface between a single crystal niobium and a single crystal
sapphire. They found the macroscopic fracture toughness to be two to three orders of mag-
nitude higher than the atomic work of separation, indicating significant plastic deformation
in niobium. According to models based on classical plasticity, the maximum stress level that
can be achieved around a crack tip in metals is no more than 4–5 times the initial yield stress
σY (Hutchinson, 1997). However, Elssner et al. (1994) observed that the crack tip remained
atomistically sharp, i.e., no crack tip blunting even though there was significant plastic de-
formation in niobium. Cleavage fracture in presence of significant plastic flow has also been
observed in other material systems (e.g., Oh et al., 1987; Wang and Anderson, 1991; Beltz and
Wang, 1992; Korn et al., 1992; O’Dowd et al., 1992; Bagchi et al., 1994; Bagchi and Evans,
1996). The stress level for atomic decohesion of a lattice or a strong interface is typically the
theoretical shear strength, which is around 10% of the elastic shear modulus, or approximately
10 times the initial yield stress σY . Classical plasticity theory (4–5 σY ) clearly falls short to
reach this stress level (10 σY ) triggering atomic decohesion. This motivated Suo et al. (1993),
Beltz et al. (1996) and Wei and Hutchinson (1999) to develop an elastic strip model, i.e.,
the crack tip was surrounded by a dislocation-free elastic strip with the strip height on the
order of average dislocation spacing. The stress level around the elastic crack tip increased
significantly since the elastic square-root singularity was much higher (i.e., more singular)
than that around a crack tip in plasticity.

The theories of strain gradient plasticity may provide an alternative approach to bridge the
gap between plasticity models and cleavage fracture experiments in ductile materials. Using
Fleck and Hutchinson’s (1997) phenomenological theory of strain gradient plasticity, Wei and
Hutchinson (1997) and Chen et al. (1999) found respectively that the stress level around a
quasi-statically propagating crack tip and around a stationary crack tip increased significantly
due to the strain gradient effect, though the asymptotic crack tip field may not have the domain
of physical validity (Chen et al., 1999). Shi et al. (2000) used MSG plasticity theory (Gao
et al., 1999b; Huang et al., 2000a, b) to investigate the asymptotic crack tip field and found
that, within a distance of 0.1 µm to the crack tip, the asymptotic field in MSG plasticity is not
separable, i.e.,

σij �= A

rλ
σ̃ij (θ) for r < 0.1 µm, (1)

where (r, θ) are the polar coordinates centered at the crack tip, σij is the stress and σ̃ij (θ)

the corresponding angular function, λ the power of stress singularity, and A the amplitude
factor depending on the applied loading, specimen geometry and material properties. Jiang
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et al. (2001) used the finite element method to investigate the crack tip field in MSG plasticity,
with the classical elastic K field being imposed as the remote boundary condition in the nu-
merical analysis. Moving away from the remote boundary towards the crack tip, the transition
was observed from the classical elastic K field through the HRR field (Hutchinson, 1968; Rice
and Rosengren, 1968) in classical plasticity to a new crack tip field in MSG plasticity. At a
distance larger than 0.1 µm to the crack tip, the stress level is significantly higher (2–3 times)
than its counterpart in the HRR field. This significant stress increase due to the strain gradient
effect provides an alternative mechanism for cleavage fracture in ductile materials. Contrary to
Shi et al.’s (2000) asymptotic analysis which holds for a distance to the crack tip r < 0.1 µm,
the numerical results of Jiang et al. (2001) showed that the stress field seems to be separable
at a distance r > 0.1 µm to the crack tip. Moreover, the crack tip stress singularity λ in (1) is
larger than 1

2 , i.e., the stress field in MSG plasticity is more singular than the classical elastic
K field.

It is puzzling why the crack tip field in MSG plasticity is not separable within a distance
of 0.1 µm to the crack tip (Shi et al., 2000), but becomes separable at a distance larger than
0.1 µm and is more singular than the square-root singularity. As shown in the present paper,
the above puzzle is due to the boundary layer effect in MSG plasticity. We first summarize the
theory of MSG plasticity in Section 2, followed by an example to demonstrate the boundary
layer effect in Section 3. The crack tip field in MSG plasticity is then studied in Section 4.

2. Mechanism-based strain gradient plasticity theory

The theory of mechanism-based strain gradient (MSG) plasticity (Gao et al., 1999b; Huang
et al., 2000a) is summarized in this section. It has incorporated the modifications proposed by
Huang et al. (2000b) based on polycrystalline plasticity.

2.1. GENERALIZED STRAINS AND STRESSES

In a Cartesian reference frame xi , the strain tensor εij and strain gradient tensor ηijk are related
to the displacement ui by

εij = 1
2

(
ui,j + uj,i

)
, ηijk = uk,ij , (2)

which have the symmetry εij = εji and ηijk = ηjik. Since the elastic deformation is negligible
around the crack tip, the incompressibility requries εii = 0 and ηkii = 0. The work increment
per unit volume of an incompressible solid is δw = σ ′

ij δεij + τ ′
ijkδηijk , where the symmetric

deviatoric Cauchy stress σ ′
ij is the work conjugate of the variation of strain δεij , and σ ′

ii = 0;
the symmetric deviatoric higher-order stress τ ′

ijk is the work conjugate of the variation of strain
gradient δηijk , and τ ′

kii = 0.

2.2. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The equilibrium equations for an incompressible solid can be written as (Fleck and Hutchin-
son, 1997)

σ ′
ik,i − τ ′

ijk,ij +H,k + fk = 0, (3)

where fk is the body force and H is the combined measure of the hydrostatic stress and hy-
drostatic higher-order stress. The stress traction and higher-order stress traction on the surface
of the body are
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t̂k = Hnk + ni

(
σ ′
ik − τ ′

ijk,j

)
+Dk

(
ninjnpτ

′
ijp

)
−Dj

(
niτ

′
ijk

)
+
(
ninjτ

′
ijk − nkninjnpτ

′
ijp

) (
Dqnq

)
,

(4)

r̂k = ninjτ
′
ijk − nkninjnpτ

′
ijp, (5)

where ni is the unit normal to the surface and Dj is the surface-gradient operator given by
Dj = (

δjk − njnk
)
(∂/∂xk). For the special case where the surface has edges, there is a line

traction that must be taken into account (Fleck and Hutchinson, 1997). Suppose the surface
has an edge C, formed by the intersection of two smooth surface segments S(1) and S(2). The
unit normal to segment S(i) (i = 1, 2) is designated n(i), while the unit tangent c(i) along the
edge C is defined with segment S(i) to the left. The line traction is

p̂k =
∑(

nikj τ
′
ijk − kkninjnpτ

′
ijp

)
, (6)

where the summation is over both surfaces S(1) and S(2) at the edge C, and k(i) (i = 1, 2) is
the unit outward normal to C lying within the surface S(i) given by k(i) = c(i)×n(i) (i = 1, 2).

2.3. CONSTITUTIVE EQUATIONS

The uniaxial stress-strain relation can be written as

σ = σreff (ε) , (7)

where σref is a reference stress in uniaxial tension. For most ductile materials, the function f
can be written as a power law relation f (ε) = εN , where N is the plastic work hardening
exponent (0 ≤ N < 1). The flow stress, after incorporating the strain gradient effects, is
obtained from Taylor’s dislocation model (Taylor, 1938) as (Nix and Gao, 1998; Huang et al.,
2000b)

σ = σref

√
f 2 (ε)+ lη, (8)

where lη and f 2 (ε) represent the contributions from geometrically necessary and statistically

stored dislocations, respectively, ε =
√

2
3 εij εij is the effective strain and η = 1

2
√
ηijk ηijk is

the effective strain gradient, l is the intrinsic material length in strain gradient plasticity given
in terms of shear modulus µ and Burgers vector b by

l = 18α2

(
µ

σref

)2

b, (9)

and α is an empirical material constant in Taylor’s dislocation model (1938) ranging between
0.1 and 0.5. For typical metallic materials, the intrinsic material length l is on the order of a
few microns.

The constitutive equations for the deformation theory of MSG plasticity are

σ ′
ij = 2εij

3ε
σ, (10)

τ ′
ijk = l2ε

[
σ

ε
()ijk −*ijk)+ σ 2

reff (ε)f
′(ε)

σ
*ijk

]
, (11)
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Figure 1. A schematic diagram of a bar subjected to a constant body force g and applied stress σ0 at the free end.

where the flow stress σ is given in (8), )ijk and *ijk are given by

)ijk = 1
72 [2ηijk + ηkij + ηkji − 1

4(δikηppj + δjkηppi)], (12)

*ijk = 1

54

εmn

ε2

[
εikηjmn + εjkηimn − 1

4(δikεjp + δjkεip)ηpmn
]
, (13)

lε is the mesoscale cell size introduced in MSG plasticity and is on the order of average
dislocation spacing at initial plastic yielding, i.e.,

lε ∼ µ

σY
b, (14)

and σY is the initial yield stress in uniaxial tension. For typical metallic materials, lε is less
than 0.1 µm and is therefore significantly less than the intrinsic material length l in (9).

It can be verified that the parameter l2ε scales the highest order derivative in the equilibrium
equation (3) after the constitutive law (10) and (11) are substituted into (3). Since lε is much
smaller than the intrinsic material length l, MSG plasticity may have a boundary-layer type
solution. As shown in the next section, the boundary layer thickness is on the order of l2ε / l,
which is less than 10 nm for typical metallic materials. This is, in fact, consistent with the
conclusion established in prior studies (Huang et al., 2000a, b) that the parameter lε does not
affect the macroscopic quantities (e.g., bending moment, torque, indentation hardness, applied
stress), but it may significantly change the local stress field near the boundary. In the following
section, we use a simple and analytic example to demonstrate such a boundary layer effect in
MSG plasticity.

3. An example of a boundary layer in MSG Plasticity

We consider a simple bar subjected to a constant body force g and a uniform stress σ0 at the
free end along the direction of the bar (Figure 1). For simplicity, we assume the material is
incompressible such that the non-zero components of the strain tensor are

ε11 = −2ε22 = −2ε33 = ε (x) , (15)
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where ε is the effective strain and the coordinate x (= x1) is along the direction of the bar. The
non-vanishing components of the strain gradient tensor and the effective strain gradient η are
obtained from (2),

η111 = 2η221 = 2η331 = −2η122 = −2η212 = −2η133 = −2η313 = dε

dx
,

η =
√

5

8

dε

dx
.

(16)

The constitutive law (10) and (11) give the non-vanishing components of the deviatoric
stress and deviatoric higher-order stress tensor as

− 1
2σ

′
11 = σ ′

22 = σ ′
33 = − 1

3σ, (17)

− 1
2τ

′
111 = τ ′

122 = τ ′
212 = τ ′

133 = τ ′
313 = − l2ε

48

dε

dx

σ 2
reff (ε) f

′ (ε)
σ

, (18)

where the flow stress σ is obtained from (8)

σ = σref

√
f 2 (ε)+

√
5

8
l
dε

dx
. (19)

The hydrostatic stress H can be determined from the traction-free boundary condition on the
lateral surface as

H = −σ ′
22 + 2

dτ ′
122

dx
. (20)

The substitution of the above constitutive relations into the equilibrium Equation (3) yields
the following ordinary differential equation (ODE) for the strain ε (x),

dσ

dx
− l2ε

12

d2

dx2

[
dε

dx

σ 2
reff (ε) f

′ (ε)
σ

]
= g. (21)

The stress traction at the free end (x = 0) is

t̂1
∣∣
x=0 =

(
H + σ ′

11 − dτ ′
111

dx

)∣∣∣∣
x=0

=
(
σ − 2

dτ ′
111

dx

)∣∣∣∣
x=0

= σ0. (22)

At the fixed end, the axial displacement should vanish,

u|x=L = 0, (23)

where L is the length of the bar. The higher-order boundary conditions are the vanishing of
higher-order stress tractions and line tractions at both ends, which give

l2ε
dε

dx

∣∣∣∣
x=0

= 0, (24)

and

l2ε
dε

dx

∣∣∣∣
x=L

= 0. (25)
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Without losing generality, we take the plastic work hardening exponent N = 1
2[

f (ε) = ε1/2
]

in order to find an analytical solution in this section that clearly shows the
structure of a boundary layer in MSG plasticity. The governing Equation (21), after integrating
with respect to x and using the stress traction boundary condition (22), yields

σ

σref
− l2ε

24

d

dx

[
dε

dx

(
σ

σref

)−1
]

= gx + σ0

σref
, (26)

where

σ

σref
=
(
ε +

√
5

8
l
dε

dx

)1/2

. (27)

Equation (26) constitutes a second-order ODE for the effective strain ε with two higher-
order boundary conditions in (24) and (25). Once ε is determined, its integration plus the
displacement boundary condition (23) at the fixed end gives the displacement in the bar. By
neglecting the strain gradient and higher-order stress, we obtain the strain distribution for the
classical plasticity theory

εclassical =
(
gx + σ0

σref

)2

. (28)

It is recalled that the parameter lε scaling the highest order derivatives in (26) is much less
than the intrinsic material length l in MSG plasticity, i.e., lε � l. Accordingly, the solution for
MSG plasticity may have boundary layers near the ends (x = 0, L) with the layer thickness on
the order of l2ε / l. It becomes clear later that the boundary layer is near the fixed end (x = L).
Away from the boundary layer (x < L), the l2ε terms are negligible and (26) becomes

εdomain +
√

5

8
l
dεdomain

dx
=
(
gx + σ0

σref

)2

, (29)

where εdomain denotes the strain in the domain (i.e., x < L). The solution of (29) satisfying the
higher-order boundary condition (24) at the free end is

εdomain = εclassical +
2g
√

5
8 l

σ 2
ref

g(√ 5
8 l − x)− σ0 − (g

√
5
8 l − σ0) exp

− x√
5
8 l

 . (30)

A boundary-layer solution near the fixed end x = L must be added to the above domain
solution in order to satisfy the higher-order boundary condition (25), i.e., the strain in the bar
can be written as

ε ≈ εdomain (x) +
(
lε

l

)2

εboundarylayer (ξ) , (31)

where

ξ = L− x(
lε

l

)2
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is the coordinate within the boundary layer, and εboundarylayer is the boundary-layer solution that
rapidly decreases to zero away from the fixed end (x = L) and does not disturb the solution
in the domain. By letting

(
lε
l

)2 → 0 (and therefore x → L with ξ remaining finite), (26)
becomes the following governing equation for εboundarylayer,

σ 2
boundary + εdomain|x=L

σ 2
boundary

(
gL+ σ0

σref
− σboundary

) dσboundary

dξ
= 15√

5
8 l

, (32)

where σboundary is σ
σref

near x = L and is related to εboundarylayer via (27) by

σboundary (ξ) =
[
εdomain|x=L +

√
5

8
l

(
dεdomain

dx

∣∣∣∣
x=L

− dεboundarylayer

dξ

)]1/2

. (33)

The higher-order boundary condition (25) at the fixed end can be expressed in terms of
σboundary as

σboundary

∣∣
ξ=0 = √

εdomain|x=L. (34)

The solution of (33) and (34) is

εdomain|x=L(
gL+ σ0

σref

)2 ln
σboundary√
εdomain|x=L

−

1 + εdomain|x=L(
gL+ σ0

σref

)2

 ln

∣∣∣∣∣∣∣∣
σboundary − gL+ σ0

σref√
εdomain|x=L − gL+ σ0

σref

∣∣∣∣∣∣∣∣
−
√
εdomain|x=L
gL+ σ0

σref

(√
εdomain|x=L
σboundary

− 1

)
= 15ξ√

5
8 l

.

(35)

It can be verified that, as ξ → +∞ (away from the boundary), σboundary → gL+ σ0/σref and
dεboundarylayer/dξ → 0, i.e., the boundary-layer solution indeed decreases rapidly away from
the fixed end (x = L). The integration of dεboundarylayer/dξ gives εboundarylayer, with the inte-
gration constant determined from the remote boundary condition, εboundarylayer (ξ → +∞) =
0.

Figure 2 shows the distribution of dε/dx in the bar for both MSG and classical plasticity
solutions, where dε/dx is normalized by g2L/σ 2

ref; the position x is normalized by the length
L of the bar; g and σref are the body force and the reference stress in uniaxial tension, respec-
tively. The applied stress at the free end (x = 0) takes a value σ0 = gL. The length of the bar
L = l, and the other material length lε = l/10, where l is the intrinsic material length in MSG
plasticity plasticity. Because L is the same as l, the strain gradient effect is significant over the
entire bar such that the curve for MSG plasticity is significantly lower than that for classical
plasticity over the entire domain. The curve for MSG plasticity rapidly decreases to zero near
the fixed end (x = L), displaying the boundary layer effect associated with lε.

Figure 3 also shows the distribution of dε/dx in the bar for the same material parameters,
but the bar is much longer, L = 10l. Away from both ends (x = 0 and x = L), the curves for
MSG plasticity and classical plasticity are close because L � l such that the strain gradient
effect is not significant except near the boundaries. The curves for MSG and classical plasticity
theories separate apart near the free end (x = 0), which reflects the strain gradient effect.
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Figure 2. The distribution of strain gradient dε
/

dx in the bar for a relatively short bar, L = l, where L is the
length of the bar, l is the intrinsic material length in strain gradient plasticity; g, σ0 and σref are the body force,
applied stress at the free end, and the reference stress in uniaxial tension, respectively, and σ0 = gL; the mesoscale
cell size lε = l

/
10.

Figure 3. The distribution of strain gradient dε
/

dx in the bar for a relatively long bar, L = 10l, where L is the
length of the bar, l is the intrinsic material length in strain gradient plasticity; g, σ0 and σref are the body force,
applied stress at the free end, and the reference stress in uniaxial tension, respectively, and σ0 = gL; the mesoscale
cell size lε = l

/
10.
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Figure 4. A schematic diagram of different zones surrounding the crack tip, including the elastic K field, HRR
field in classical plasticity, the stress-dominated and higher-order stress dominated fields in MSG plasticity.

Around the other end (x = L), the boundary layer associated with lε is once again clearly
observed.

This example demonstrates that there is a boundary layer effect in MSG plasticity asso-
ciated with the parameter lε. Away from the boundary layer, the solution can be obtained by
taking lε = 0, but this solution is still different from the classical plasticity solution due to the
strain gradient effect.

4. Crack tip field in MSG plasticity

Figure 4 is a schematic diagram of different annuli surrounding the crack tip. Far away from
the tip, deformation is elastic and the annulus (marked by I in Figure 4) corresponds to the
classical elastic K field. The next annulus (II in Figure 4) represents the plastic zone inside
which the HRR field in classical plasticity dominates. As the distance to crack tip decreases
to the order of intrinsic material length l in strain gradient plasticity, the strain gradient effect
becomes significant and the third annulus appears (III in Figure 4). The finite element analysis
(Jiang et al., 2001) showed that the stress level in this zone is two to three times higher than
that in the HRR field, and the stress singularity [λ in (1)] is higher than 1

2 , i.e., the stress is more
singular than not only the HRR field, but also the classical elastic K field. The higher-order
stress is very small as compared to the stress in this zone. Accordingly, the solution in zone III
is called the stress-dominated MSG plasticity solution (Figure 4). As the distance to the crack
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tip decreases further and becomes as small as the mesoscale cell size lε in MSG plasticity
(which is much smaller than l), the higher-order stress begins to dominate. The solution in
this zone, marked by IV in Figure 4, is the so-called higher-order stress dominated MSG
plasticity solution. Shi et al. (2000) investigated the asymptotic crack tip field in this zone and
established that the higher-order stress dominated asymptotic crack tip field in MSG plasticity
is not separable [see (1)].

We focus on the separable asymptotic field inside zone III (Figure 4), i.e., at a distance
much larger than lε such that the higher-order stress is negligible and the stress dominates.
Similar to the example in Section 3, the higher-order boundary condition cannot be met on
the crack face unless a boundary-layer solution is added to the domain solution given in this
section. As shown in the following, the domain solution (i.e., away from the crack face) has a
separable field, and the resulting stress singularity is around 0.65, consistent with that reported
in the finite element analysis (Jiang et al., 2001). We study the mode III crack tip field first
since it has a much simpler domain solution than the mode-I counterpart given at the end of
this section.

4.1. MODE III CRACK TIP FIELD IN MSG PLASTICITY

The out-of-plane displacement in anti-plane deformation is u3 = w (x1, x2), where (x1, x2)

are the Cartesian coordinates with the origin at the crack tip and the crack faces coinciding
with the negative x1 axis. The annulus III in Figure 4 is characterized by

l > r � lε. (36)

A separable displacement w in this annulus can be written as

w = r2−2λ w̃ (θ) , (37)

where (r, θ) are the polar coordinates with θ = ±π being the crack faces, w̃ (θ) is the
corresponding angular function of w, and λ, as shown later, is the power of stress singularity
to be determined and λ < 1 as required by the boundedness of the displacement at the crack
tip. The corresponding strain field is

ε3r = εr3 = (1 − λ) r1−2λw̃ (θ) , ε3θ = εθ3 = 1
2r

1−2λw̃′ (θ) . (38)

The effective strain and effective strain gradient can be obtained as

ε = r1−2λε̃ (θ) ≡ r1−2λ{ 4
3 (1 − λ)2 w̃2 + 1

3 w̃
′2}1/2, (39)

η = r−2λη̃ (θ)

≡ r−2λ{(1 − λ)2 (1 − 2λ)2 w̃2 + [ 1
2 w̃

′′ + (1 − λ) w̃]2 + 1
2 (1 − 2λ)2 w̃′2}1/2.

(40)

For a material point in annulus III (Figure 4) with the distance r to the crack tip characterized
by (36), the strain gradient becomes significantly larger than the strain such that the flow
stress in (8) is dominated by the strain gradient term. Accordingly, the flow stress becomes
independent of the uniaxial stress-strain relation σreff (ε) and is given by

σ = 3αµ
√

2b

rλ
η̃1/2 (θ) , (40)
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where η̃ (θ) is defined in (40). It becomes clear now that λ is the stress singularity for this
stress-dominated MSG plasticity solution in annulus III (Figure 4).

The deviatoric stress can be obtained from the constitutive law (10) while the hydrostatic
stress vanishes in anti-plane deformation. The higher-order stress, which scales with l2ε , be-
comes negligible in this stress-dominated solution in annulus III. The equilibrium equation
(3) gives the following third-order ODE for w̃ as

2 (1 − λ)2 w̃

ε̃
η̃

1
2 + d

dθ

{
w̃′

ε̃
η̃1/2

}
= 0. (42)

Only the upper half plane (θ ≥ 0) is analyzed. The anti-symmetry condition at θ = 0 requires

w̃
∣∣
θ=0 = 0, w̃′′∣∣

θ=0 = 0. (43)

The vanishing of stress traction on the crack face gives

w̃′∣∣
θ=π = 0, (44)

while the vanishing of higher-order stress traction on the crack face becomes

l2ε

[
2 (1 − λ) w̃

∣∣
θ=π + w̃′′∣∣

θ=π

]
= 0. (45)

Only two anti-symmetry conditions at θ = 0 in (43) and the stress traction condition (44)
on the crack face can be imposed for the third-order ODE in (42). The resulting domain
solution does not satisfy the higher-order stress traction condition (45). Similar to the example
in Section 3, a boundary-layer solution needs to be introduced near the crack face in order to
meet (45).

Without losing generality, we may impose a normalization condition for the above eigen-
value problem

w̃′∣∣
θ=0 = 1. (46)

Since (43) and (46) give three boundary conditions at θ = 0, the ODE (42) can be solved
by the standard Runge–Kutta numerical method. The only parameter that remains to be de-
termined is the power of stress singularity, λ, which is solved iteratively by the numerical
shooting method (Press et al., 1986) in order to meet the stress traction-free condition (44) on
the crack face.

The numerical solution gives the power of stress singularity λIII and the stress-dominated
asymptotic field around a mode-III crack tip in MSG plasticity,

λIII = 0.65717, σ3α = σα3 = AIII

rλIII
σ̃3α (θ) , (47)

where the subscript III corresponds to mode III, AIII is the amplitude factor depending on the
loading, specimen geometry and material properties, σ̃3α (θ) is the angular distribution, and
σ̃3θ

∣∣
θ=0 = 1. It is observed that the stress field in MSG plasticity

(∼ r−0.66
)

is indeed more
singular than the HRR field and the classical elastic K field

(∼ r−0.5
)
, consistent with the

finite element analysis (Jiang et al., 2001).
Figure 5 shows the angular distribution of stress, σ̃3r and σ̃3θ , for the stress-dominated

crack tip field in MSG plasticity. The mode-III elastic K field is also shown for comparison.
The angular distributions are normalized such that σ̃3θ

∣∣
θ=0 = 1. The angular distributions σ̃3θ
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Figure 5. Angular distribution of the stress-dominated asymptotic field around a mode-III crack tip in MSG
plasticity; σ̃3θ

∣∣
θ=0 = 1. The mode-III elastic K field is also shown.

are almost identical, but the difference in σ̃3r is significant. However, it should be emphasized
that the main difference between the stress-dominated crack tip field in MSG plasticity and
the elastic K field in mode III is the power of stress singularity.

4.2. MODE I CRACK TIP FIELD IN MSG PLASTICITY

Because the deformation is incompressible around a plane-strain mode I crack tip, we may
introduce a displacement potential φ such that the displacement can be expressed as

ur = −1

r

∂φ

∂θ
, uθ = ∂φ

∂r
. (48)

A separable form for φ is taken as

φ = r3−2λ φ̃ (θ) , (49)

where λ is the power of stress singularity to be determined, and φ̃ (θ) is the angular distribution
of φ. The strain and strain gradient fields can be written as

εαβ = r1−2λ ε̃αβ (θ) , ε = r1−2λ ε̃ (θ) ,

ηαβγ = r−2λ η̃αβγ (θ) , η = r−2λ η̃ (θ) ,
(50)

where the angular functions are determined in terms of φ̃ (θ) via the kinematic relations
(2) and ε̃αα = η̃γ αα = 0 due to incompressibility. The flow stress and deviatoric stress are
obtained from the constitutive law (8) and (10), respectively,

σ = 3αµ
√

2b

rλ
η̃1/2 (θ) , σ ′

αβ = 2αµ
√

2b

rλ

η̃1/2 (θ)

ε̃ (θ)
ε̃αβ (θ) . (51)

The hydrostatic stress H also takes a separable form

H = 2αµ
√

2b

rλ

η̃1/2 (θ)

ε̃ (θ)
H̃ (θ) , (52)
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where the angular function H̃ (θ) is to be determined.
Similar to the mode-III asymptotic field in Section 4.1, the higher-order stress is negligible

in annulus III (Figure 4). The equilibrium Equation (3) gives the following two ODEs for
angular function φ̃ (θ) and H̃ (θ),

− η̃1/2

ε̃

[
(2 − λ) ε̃θθ + λH̃

]
+ d

dθ

[
η̃1/2

ε̃
ε̃rθ

]
= 0,

(2 − λ)
η̃1/2

ε̃
ε̃rθ + d

dθ

[
η̃1/2

ε̃

(̃
εθθ + H̃

) ] = 0.

(53)

The symmetry condition at θ = 0 requires

φ̃

∣∣∣
θ=0

= 0, φ̃′′
∣∣∣
θ=0

= 0. (54)

By requiring that all angular functions and their derivatives be bounded at θ = 0, the first
equation of (53) gives an additional boundary condition at θ = 0,

− (2 − λ) ε̃θθ

∣∣∣
θ=0

− λH̃

∣∣∣
θ=0

+ d̃εrθ
dθ

∣∣∣
θ=0

= 0. (55)

The vanishing of stress tractions on the crack face gives(̃
εθθ + H̃

) ∣∣∣
θ=π

= 0, ε̃rθ

∣∣∣
θ=π

= 0, (56)

while the vanishing of higher-order stress traction on the crack face becomes

l2ε (̃ηθθr + η̃rθθ ) = 0. (57)

Only three conditions at θ = 0 in (54) and (55) and two stress traction conditions in (56) can be
imposed for the fifth ODE in (53). The resulting domain solution does not satisfy the higher-
order stress traction condition (57). Similar to the example in Section 3, a boundary-layer
solution needs to be introduced on the crack face in order to meet (57).

Without losing generality, we may impose a normalization condition for the above eigen-
value problem

φ̃′∣∣
θ=0 = sin β0, φ̃′′′∣∣

θ=0 = cos β0, (0 ≤ β0 ≤ π) . (58)

such that
√(

φ̃′∣∣
θ=0

)2 + (
φ̃′′′∣∣

θ=0

)2 = 1. For a given power of stress singularity λ and angle
β0, the fifth-order ODE in (53) can be solved by the standard Runge–Kutta numerical method
since (54), (55) and (58) give five boundary conditions at θ = 0. The parameters λ and β0 are
then determined iteratively by the shooting method (Press et al., 1986) in order to meet two
crack-face stress-traction free conditions in (56).

The numerical solution gives the power of stress singularity λI and the stress-dominated
asymptotic field around a mode-I crack tip in MSG plasticity,

λI = 0.63837, σαβ = AI

rλI
σ̃αβ (θ) , (59)

where the subscript I corresponds to mode I , AI and σ̃αβ are the amplitude and angular
distribution of the mode-I asymptotic field and σ̃θθ

∣∣
θ=0 = 1. The parameter β0 = 50.071◦.

It is observed once again that the stress field in MSG plasticity
(
r−0.64

)
is more singular
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Figure 6. Angular distribution of the stress-dominated asymptotic field around a mode-I crack tip in MSG
plasticity; σ̃θθ

∣∣
θ=0 = 1. The mode-I elastic K field (with Poisson’s ratio ν = 0.5) is also shown.

than both the HRR field and the classical elastic K field
(
r−0.5

)
, consistent with Jiang et al.’s

(2001) finite element analysis. In fact, the power of stress singularity λI agrees well with
that reported in Jiang et al.’s (2001) numerical study. The mode-I stress singularity in MSG
plasticity, λI = 0.63837, is slightly smaller than that for mode III, λIII = 0.65717. Even
though this has not been observed in classical elastic or elastic-plastic crack tip fields, similar
observations have been made in other strain gradient plasticity theories. For example, Huang
et al. (1995, 1997) and Xia and Hutchinson (1996) showed that the stress traction ahead of a
mode-I crack tip predicted by Fleck and Hutchinson’s couple-stress theory of strain gradient
plasticity (Fleck and Hutchinson, 1993; Fleck et al., 1994) has the same singularity as the
field, while the stress traction ahead of a mode-III crack tip has a stronger singularity (Zhang
et al., 1998). It should also be pointed out that, unlike the HRR field in classical plasticity, the
power of stress singularity in MSG plasticity (λI or λIII ) is independent of the plastic work
hardening exponent N . This is because the strain gradient becomes more singular than the
strain near the crack tip and dominates the contribution to the flow stress in (8). This indicates
that the density ρG of geometrically necessary dislocations around a crack tip is significantly
larger than the density ρS of statistically stored dislocations.

Figure 6 shows the angular distribution of stress, σ̃rr , σ̃θθ and σ̃rθ , for the stress-dominated
crack tip field in MSG plasticity and the mode-I elastic K field. The angular distributions are
normalized such that σ̃θθ

∣∣
θ=0 = 1. The differences in σ̃θθ and σ̃rθ between the two fields are

not significant, but the difference in σ̃rr is very large. Figure 7 shows the angular distribution
of the Von Mises effective stress for the stress-dominated crack tip field in MSG plasticity,
the HRR field in classical plasticity (with the plastic work hardening exponent N = 0.2),
and the classical elastic K field (with Poisson’s ratio ν = 0.5). The normalization condition
is the same as in Figure 6, i.e., σ̃θθ

∣∣
θ=0 = 1. The curve for MSG plasticity is similar to that

for the HRR field, but is quite different from that for the classical elastic K field. However,
it should be emphasized once again the main difference between these fields is the order of
stress singularity.



38 M. Shi et al.

Figure 7. Angular distribution of the effective stress for the stress-dominated asymptotic crack tip field in MSG
plasticity, the HRR field in classical plasticity (with plastic work hardening exponent N = 0.2), and the mode-I
elastic K field (with Poisson’s ratio ν = 0.5); σ̃θθ

∣∣
θ=0 = 1.

5. Discussion and conclusions

The separable stress-dominated asymptotic fields around a crack tip in MSG plasticity estab-
lished in Section 4 are the domain solutions, i.e., they hold in annulus III (Figure 4) except
near the crack face. Follow the same approach in Section 3, we could add boundary-layer
solutions to the domain solutions in Section 4 in order to satisfy the higher-order boundary
conditions (45) and (57) on the crack face. But it turns out that the boundary-layer solutions
around the crack face are not separable, because the powers r of the separable boundary-layer
and domain solutions cannot be matched simultaneously in the equilibrium Equation (3) and
higher-order boundary condition (5) on the crack face. This is similar to annulus IV (Figure 4)
inside which the crack tip field is not separable either (Shi et al., 2000), and one has to solve
partial differential equations in order to obtain the non-separable field.

The increase of stress singularity in MSG plasticity (as compared to the HRR field or
the classical elastic K field) gives a higher stress level near the crack tip. The finite element
analysis of Jiang et al. (2001) indeed showed that, at a distance of approximately 1 µm to the
crack tip, the stress level is more than ten times the initial yield stress, which is two to three
times higher than the prediction of the HRR field and has reached the stress level to trigger
cleavage fracture. This provides an alternative mechanism for cleavage fracture in ductile
materials observed in Elssner et al.’s (1994) experiments, i.e., significant stress increase due
to geometrically necessary dislocations around the crack tip. For a representative dislocation
density ρ = 1016

/
m2 of a strain-hardened metal, the average dislocation spacing is on the

order of 10 nm. Therefore, the height of the elastic strip surrounding the crack tip in Suo
et al.’s (1993) and Beltz et al.’s (1996) dislocation-free zone model is on the order of 10 nm,
which is much less than the size lε (∼ 100 nm) of the annulus IV (Figure 4) immediately
surrounding the crack tip. Therefore, we may take a multiscale view for cleavage fracture in
ductile materials, i.e., the dislocation-free zone (∼ 10 nm) is surrounded by the crack tip field
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in MSG plasticity (annulus IV ∼ 100 nm, annulus III ∼ 1 to 10 µm, Figure 4), which in turn
is surrounded by the HRR field in classical plasticity (annulus II) and the classical elastic K
field (annulus I) as the distance to the crack tip increases.

In summary, we have demonstrated in the present study that there is a boundary layer effect
associated with the mesoscale cell size lε in MSG plasticity. The thickness of the boundary
layer is on the order of l2ε

/
l (∼ 10 nm), where l is the intrinsic material length in MSG plas-

ticity. By neglecting this boundary layer effect, we have found a stress-dominated asymptotic
field around a crack tip in MSG plasticity. The domain of validity for such a field lies in an
annulus (III in Figure 4) that is approximately between 100 nm to a few microns to the crack
tip. The stress in this zone has an approximate singularity of r−2/3, and is more singular than
not only the HRR field but also the classical elastic K field. The stress level in this zone is
significantly (∼ 3 times) higher than the prediction of the HRR field, therefore provides an
alternative mechanism for the experimentally observed cleavage fracture in ductile materials.
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